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Abstract

Jupyter notebook allows data scientists to
write machine learning code together with its
documentation in cells. In this paper, we pro-
pose a new task of code documentation gen-
eration (CDG) for computational notebooks.
In contrast to the previous CDG tasks which
focus on generating documentation for single
code snippets, in a computational notebook,
one documentation in a markdown cell often
corresponds to multiple code cells, and these
code cells have an inherent structure. We pro-
posed a new model (HAConvGNN) that uses
a hierarchical attention mechanism to consider
the relevant code cells and the relevant code
tokens information when generating the docu-
mentation. Tested on a new corpus constructed
from well-documented Kaggle notebooks, we
show that our model outperforms other base-
line models.

1 Introduction

In recent years, computational notebooks such as
Jupyter have become popular programming plat-
forms for data scientists and machine learning re-
searchers to document ideas, write code, and visu-
alize results, all in a single document (Wang et al.,
2021a). Documentation in a notebook provides a
rich medium for users to record not only what the
code does, but also why they code it. This rich-
ness of content is one distinctive nature of code
documentation in a notebook versus in traditional
software source code.

Code documentation is found critical for data sci-
entists to share or reuse code (Zhang et al., 2020;
Chattopadhyay et al., 2020). However, research
has shown that many data scientists still neglect to
write appropriate documentation for their code in
notebooks, as they feel writing documentation will
slow down their coding process. Rule et al. (2018)
report that among one million computational note-
books on Github, 25% of them have no comment.

∗‡ Equal contributions from the first authors:
x827liu@uwaterloo.ca, dakuo.wang@ibm.com.

Documentation
ground truth Implementing Neural Network
our Model Implementing Neural Network
code2seq The following function of the model
graph2seq After perturbations
T5-small Model

Code Cells
import keras
from keras.utils import plot_model
from keras.models import

Model,Sequential,load_model↪→
...

def nn_model(X,y,optimizer,kernels):
input_shape = X.shape[1]

if(len(np.unique(y)) == 2):
op_neurons = 1
op_activation = 'sigmoid'
loss = 'binary_crossentropy'

else:
op_neurons = len(np.unique(y))
op_activation = 'softmax'
loss = 'categorical_crossentropy'

classifier = Sequential()
...

classifier.summary()
return classifier

model =
nn_model(X_train,y_train,'adam','he_uniform')↪→

history = model.fit(X_train, y_train,
batch_size = 64, epochs = 1000,
validation_data=(X_test, y_test))

↪→
↪→

pd.DataFrame(abs(train.corr()['Survived'])
.sort_values(ascending = False))

Table 1: An example of multiple code cells after one
documentation block

As a first step towards building an automated
documentation generation system for notebooks,
in this paper we focus on the code documen-
tation generation (CDG) task for Jupyter note-
books. Since there is no publicly available CDG
dataset for notebooks, we construct a new dataset
(notebookCDG) which contains around 28k pro-
cessed code-documentation pairs extracted from
2,476 highly-ranked notebooks from Kaggle com-
petitions (details in Section 3)

Part of work was done when Xuye, April, and Lingfei were at
IBM.
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A few previous literature have explored tech-
niques to generate documentation for software code
snippet one at a time (LeClair et al., 2020; Haque
et al., 2020, 2021; Xu et al., 2018). However, in
computational notebooks, one documentation (in
a markdown cell) can cover more-than-one code
cells after it. For instance, the ground truth text
in Table 1 is a single documentation covering four
code cells. Existing work on CDG (Kery and My-
ers, 2017; Iyer et al., 2016; Hu et al., 2018; Alon
et al., 2019; LeClair et al., 2020) does not consider
such structure information since they only focus on
documentation generation for single code snippet
(i.e., one function, or one expression).

To account for the above mentioned properties
of documentation in computational notebooks, in
this paper, we propose a graph-augmented encoder-
decoder model to generate documentation for note-
books (Section 4). In particular, our model con-
sists of three parts: a code sequence encoder, an
auxiliary documentation text encoder based on the
already predicted documentation tokens, and a Hi-
erarchical Attention-based Convolutional Graph
Neural Network (HAConvGNN) component.

The first two sequence encoders encode the se-
mantic information in code and documentation text,
respectively. The graph encoder encodes the con-
textual abstract syntactic trees (i.e., AST extracted
from the code sequence). In order to capture the
relations between code sequences and the corre-
sponding text documentations, we further employ
a hierarchical attention mechanism consisting of
a low-level attention module and a high-level at-
tention module. The former attends to the token
in a code sequence and the latter attends to the
corresponding code cells in the AST tree.

Experiments show that our model achieves bet-
ter performance on the notebookCDG dataset com-
pared to baseline models on ROUGE scores, and
in a muti-dimensional human evaluation study.

Base on this result, we integrated our approach
into a user-facing downstream application (Wang
et al., 2021c) to further explore the Human-AI
collaboration opportunity in the code documen-
tation scenario. In the follow-up user study (re-
ported seperately (Wang et al., 2021b)), users found
that the automatically generated documentation re-
minded them to document code they would have
ignored, and improved their satisfaction with their
computational notebooks.

In summary, the main contributions of our work

are: (1) a large-scale high quality dataset for the
CDG task in the computational notebook context;
(2) a graph-based neural network architecture with
hierarchical attention for the notebook CDG task
which considers the structure information between
multiple code cells and the relations between code
tokens and text tokens; and (3) human evaluations
to validate our model for real world application.
The experiment code and data are shared1.

2 Related Work

In order to automate the machine learning and
AI workflow, researchers have applied automation
techniques on various code-related tasks (Wang
et al., 2020), including code summarization (Iyer
et al., 2016; LeClair et al., 2020; Haque et al., 2020,
2021), source code generation from natural lan-
guage (Agashe et al., 2019), and source code trans-
formation (Roziere et al., 2020).

In this work, we focus on the code documenta-
tion generation(CDG) task. Our work is closely
related to code summarization. Most existing
datasets for code summarization contain one sum-
mary per one code snippet. For instance, Code-
SearchNet (Husain et al., 2019) contains two mil-
lion function-documentation pairs across six pro-
gramming languages (e.g., java, php, python). In
contrast, our new dataset (notebookCDG) is de-
signed for computational notebooks. The differ-
ence from previous CDG datasets is that in our
dataset, a documentation text can correspond to
several code snippets.

Previous work on code summarization focuses
on summary generation for a single standalone
code snippet. Iyer et al. (2016) collected Stack
Overflow question titles as code summaries and
paired them with top-rated code snippets. They
then used an attention seq2seq model to generate
a summary for each code snippet. Several studies
explored the abstract syntactic tree (AST) informa-
tion of source code to better capture the relation
between different elements (Hu et al., 2018; Alon
et al., 2019). Recently, Xu et al. (2018) and Chen
et al. (2020) have proposed a general graph to se-
quence model to learn node embeddings and then
reassemble them into the graph embeddings.

Unlike the aforementioned works that only fo-
cus on summary generation for a single standalone
code snippet, in our new CDG task for computa-
tional notebooks, multiple adjacent code cells can

1https://github.com/dakuo/HAConvGNN

https://github.com/dakuo/HAConvGNN
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Overall Train Dev Test

Notebooks number 2,476 2,426 1,390 1,394
Code-documentation pairs 28,625 22,851 2,856 2,856
Code vocabulary size 20,522
Code AST vocabulary size 67,211
Documentation vocabulary size 13,053
Avg. # token in documentation 9.15 9.13 9.37 9.18
Max. # token in documentation 202 202 130 104
Std. # token in documentation 8.40 8.44 8.27 8.25
Avg. # token in code cell(s) 65.38 65.50 65.41 64.39
Max. # token in code cell(s) 400 400 400 395
Std. # token in code cell(s) 68.93 69.16 68.23 67.71
Avg. # token in code AST 181.08 181.47 180.77 178.24
Max. # token in code AST 1732 1548 1732 1167
Std. # token in code AST 192.19 193.00 190.43 187.40

Table 2: notebookCDG dataset statistics. The overall code-to-markdown ratio is 2.2195, which suggests one
markdown corresponds to more than one code cells.

correspond to one documentation and these code
cells may have a hierarchical structure, and use
a graph to represent it (Kipf and Welling, 2016).
We thus propose Hierarchical Attention-based Con-
volutional Graph Neural Network (HAConvGNN)
to handle the hierarchical AST graph structure of
multiple code cells.

3 notebookCDG Dataset

CDG for notebooks is a relatively new task. To our
best knowledge, we could not find an appropriate
dataset for this task. Thus, we decided to construct
a new dataset and share it with the community.
Publicly shared notebooks on Github are often ill-
documented (Rule et al., 2018), thus are not suit-
able for constructing the training dataset for CDG
task. A recent work (Wang et al., 2021a) manually
analyzed 80 publicly available notebooks on two
Kaggle challenges (i.e. out of 12,000 notebooks
submitted to Titanic and HousePrice). Kaggle al-
lows community members to vote up and down on
those notebooks, and Wang et al. (2021a)’s find-
ings show that the highly-voted notebooks are of
good quality and quantity in code documentation.
Inspired by their work, we decided to utilize the
top-voted and well-documented Kaggle notebooks
to construct the notebookCDG dataset2.

We collected the top 10% highly-voted note-
books from the top 20 popular competitions on

2We share the notebookCDG dataset with processed 28k
code-document pairs at https://ibm.biz/Bdfpk6

Kaggle (e.g. Titanic). We checked the data pol-
icy of each of the 20 competitions, none of them
has copyright issues. We also contacted the Kag-
gle administrators to make sure our data collection
complies with the platform’s policy. In total, we
collected 3,944 notebooks as raw data.

3.1 Data Preprocessing
We performed various preprocessing steps to pre-
pare the dataset, following LeClair and McMillan
(2019). For example, we removed notebooks in
non-English language. One major difference be-
tween our dataset and previous datasets is that in
previous datasets, each documentation unit is cor-
responding to one code snippet, whereas in our
dataset, one documentation unit may correspond
to upto four code snippets (code cells). We first
located the markdown cells that have code cells
beneath them. According to Wang et al. (2021a),
there are nine categories of documentations in a
notebook, some are related to code, some are not
related to code. For those types closely related to
code (Process and Headline), which take up
80% of the cases, we can directly use the mark-
down cell as documentation. For some other types,
such as the Result type, which interprets the ren-
dered result table or plot thus are often long and
irrelevant to the code, we used a list of keywords
(e.g., shows) to filter out the key sentences from
the markdown cell as the documentation. Another
special types of documentation are Reason and
Education, which also uses long word sequence

https://ibm.biz/Bdfpk6
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to explain why the author did something. In these
cases, based on our observation, we used the first
sentence as the documentation, as the first sentence
is often related to the code cells.

Our analysis shows that for one markdown cell,
there could have maximum four code cells follow-
ing it. We construct our dataset to have a struc-
ture with one documentation unit and four code
sequence units, and fill with empty sequence if
there is less than four code sequences. As part of
the data preparation, we also parse each of code se-
quence to an AST graph structure through a Python
AST library3. While doing so, we removed all the
non-Python notebook magic (e.g. %matplotlib).

3.2 Dataset Core Statistics

After data preprocessing, the final dataset contains
2,476 notebooks out of the 3,944 notebooks from
the raw data. It has 28,625 code–documentation
pairs. The overall code-to-markdown ratio is
2.2195, which suggests one markdown corresponds
to more than one code cells. Then, the code-
documentation pairs are randomly split into train,
dev, and test subsets, following a 8:1:1 ratio (Table
2).

Our notebookCDG dataset has a vocabulary size
of 13,053 for the documentation sequence, a vo-
cabulary size of 20,522 for the code sequence, and
67,211 for the parsed code AST node. On average,
each pair of code-documentation has 65.38 code to-
kens, and 9.15 documentation tokens. When code
is translated to AST structure, on average it has
181.08 tokens.

4 Approach

Our model is built upon the standard encoder-
decoder structure. To handle multiple code cells
in computational notebooks, we propose a hierar-
chical attention mechanism based on convolutional
graph neural network (HAConvGNN) for capturing
the relevant code cells during the decoding stage.

The system architecture is illustrated in Figure 1.
Below, we describe each module in detail.

4.1 Model Input

As mentioned in Section 3, we found that there are
up to four adjacent code cells under a markdown
cell, thus we constructed the notebookCDG dataset
to have one documentation mapping to four code

3https://docs.python.org/library/ast.
html

cells, and used empty code cell as padding. There-
fore, when generating the abstract syntactic tree
(AST) for a code cell, we can assemble up to four
AST trees into a higher level graph structure.

In summary, each training data point has four
parts: the tokenized code sequence, the tokenized
documentation sequence, the nodes of the AST
graph generated from the code sequence, and the
edges (topology) of the AST graph generated from
the code sequence. We denoted code sequence
input as S = {s1, s2, ..., sn} ∈ S where si is se-
quence consisting of a sequence of code token em-
beddings si = {w1, w2, ..., wk} ∈ W in which W is
the token embedding space and k is the length of si.
Next we construct the AST graph inputA = (V,E)
where V are the nodes containing the original code,
E are the edges which denote whether two nodes
are connected or not in the AST graph.

4.2 Embeddings

We use three embedding layers to generate embed-
dings for the tokenized code sequence, the nodes
in an AST graph, and the documentation decoder,
respectively.

4.3 Encoder

We use one encoder to encode the source code
sequence, and additional four encoders to encode
up to four code cells’ AST graphs. In addition, we
have a high-level GRU encoder layer for all the
four AST graphs to generate one high-level output.
More specifically, the encoder for the tokenized
code sequence is a GRU with an output length
of 256. An AST graph encoder is a collection
of Convolutional Graph Neural Networks layers
followed by a GRU layer of output length 256. We
use four AST graph encoders for up to four code
cells. Following LeClair et al. (2020), the number
of hops in our GNN layers is set to 2.

4.4 HAConvGNN

The key design of our HAConvGNN model is the
hierarchical attention. When handling AST graphs
input, instead of blending these 4 code cells as
a whole sequence, we propose to use a hierarchi-
cal attention mechanism (low-level attention and
high-level attention in HAConvGNN in Figure 1)
on these AST graphs to better preserve the graph
structure.

Firstly, the four code cells’ AST graph can be
represented as G = {G1, G2, G3, G4}. We denote

https://docs.python.org/library/ast.html
https://docs.python.org/library/ast.html
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Figure 1: HAConvGNN model architecture

the decoder output (i.e., the predicted documenta-
tion tokens up till t− 1) as D ∈ Rn×d where d is
the dimension. We further denote each code cell’s
AST graph as Gi ∈ Rm×d where m is the number
of nodes. After using a high-level encoder to en-
code the AST graph input, we execute a graph-level
attention to get high-level attention score:

α(Gi, D) = DG>i /
√
d (1)

Then we apply softmax on α, given by:

bi =
exp(α(Gi, D))∑
j exp(α(Gj , D)))

(2)

In this way, we get the results denoted as α =
{α1, α2, α3, α4}. This is our high-level attention
weights indicating the relations between each code
cell and the already predicted documentation se-
quence D.

Secondly, we apply an attention mechanism on
each code cell to find the relations between nodes in
a code cell’s AST and the predicted documentation
sequence D. For each code cell’s AST tree G =
{G1, G2, G3, G4}, we apply the same operation as
in EQ.1 and EQ.2. As a result, for each code cell
Gi, we are able to get a new low-level attention
weight βi. For all code cells, we can denote these
attention scores as β = {β1, β2, ..., βm}.

Eventually, we fuse these attention weights (α
and β) with code cells:

O =

4∑
i=1

αi

m∑
j=1

βi,jGi,j (3)

Now we get the AST matrices from HACon-
vGNN. It is then concatenated with code matrices

into a single context matrix. Note that code ma-
trices are based on the code sequence input with
a separate uniform attention (see the left “Code
Sequence” in Figure 1). Next, we apply a linear
projection to project the merged context matrix into
a 256 dimension space. This is an effective way
to avoid overfitting during the training process. Fi-
nally, we flatten the new context matrix and apply
another linear layer to project it into an output. The
output layer size is the vocabulary size. By apply-
ing the Argmax function to the output layer, we can
obtain the predicted next token (i.e., documentation
token at time step t) in the output sequence.

5 Experimental Setup

5.1 Implementation Details

We split our dataset into training, development, and
test datasets at a 8:1:1 ratio. We use the Adam
optimizer (Kingma and Ba, 2014) with a batch size
of 20. The learning rate is 0.001 and the code
sequence embedding size is 100. In the encoder,
we use GRU (Cho et al., 2014) with the hidden size
of 256. The hop size of our GNN is 2. The dropout
rate of our attention layer is 0.5.

5.2 Baselines

We compare our model against two baseline models
for single code snippets.

code2seq. Alon et al. (2019) proposed a
code2seq model to generate a summary for a C#
function. The model creates a vector representation
for each AST path separately through an encoder.
During decoding, the model uses attention to select



4478

Models
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1
Baselines

code2seq 11.45 8.46 8.23 1.67 1.11 1.11 13.13 10.28 10.24
graph2seq 13.21 9.87 9.51 2.86 1.99 2.03 14.46 11.40 11.18

Our Model & Ablation Study
HAConvGNN (Our Model) 22.87 16.92 16.58 6.72 4.86 4.97 24.03 18.60 18.54
HAConvGNN

with low-level attention
without high-level attention
with uniform attention

20.66 15.65 14.91 4.74 3.92 3.80 21.84 17.27 16.81

HAConvGNN
with low-level attention
without high-level attention
without uniform attention

19.57 14.59 14.23 4.87 3.56 3.63 20.83 16.24 16.12

HAConvGNN
without low-level attention
without high-level attention
with uniform attention

11.39 7.73 7.82 1.58 1.06 1.08 13.13 9.47 9.82

Table 3: ROUGE scores for the baselines, our model, and the ablation models. Results show that our model has
higher scores for all three metrics, demonstrating a robust advantage over the code2seq and graph2seq models.

the relevant paths. We re-implement this model
and apply it on our dataset.

graph2seq. Xu et al. (2018) proposed a graph-to-
sequence learning framework that maps an input
graph to a sequence of vectors and uses an attention-
based LSTM method to decode the target sequence
from these vectors. The authors tested the model on
natural language question generation from the SQL
query task. We re-implement this model using all
recommended parameters from the original paper.

5.3 Experimental Details

The training time of code2seq model is around 2.5
hours per epoch; the training time of graph2seq
is around 2.75 hours per epoch; the training time
of T5-small is around 3.25 hours per epoch; the
training time of our HAConvGNN model is around
2.65 hours per epoch.

The training environment of code2seq,
graph2seq, and HAConvGNN is three GPUs using
Parallelism. The training environment of T5-small
is two GPUs.

code2seq and graph2seq are implemented in
Keras framework4. T5-small model is implemented
based on Huggingface repo 5.

4https://github.com/Attn-to-FC/
Attn-to-FC

5https://github.com/huggingface/

6 Automated Evaluation

We use ROUGE scores (Lin, 2004) to evaluate our
model’s performance with regard to the ground-
truth documentation content. We report ROUGE-1,
ROUGE-2, and ROUGE-LCS (longest common
sub-sequence). As shown in Table 3, our HACon-
vGNN model outperforms the other two baselines
in all ROUGE metrics.

Ablation study. In order to better understand the
impact of the attention components in our model,
we also perform an ablation study (Table 3). Our
ablation study evaluates how low-level attention,
high-level attention, and AST uniform attention
contribute to the model. More concretely, we
generate ablation models as the following:

(1) without high-level attention in the hierar-
chical attention: we remove high level attention
component in Figure 1 in our HAConvGNN
structure. That means we do not compute attention
weights for separated code cells.

(2) without AST uniform attention: we do not
apply uniform attention mechanism (i.e., the atten-
tion component above HAConvGNN in Figure 1 for
our HAConvGNN output with the decoder. (3)
without low-level or high-level attentions: we

transformers

https://github.com/Attn-to-FC/Attn-to-FC
https://github.com/Attn-to-FC/Attn-to-FC
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 2: Attention visualization for the data point illustrated in Table 1. Each row represents a code cell, and each
column is a code token. In this example, it shows the second and third token in the second code cell (“ nn_model”,
“X”) contribute the most to the predicted documentation in Table 1.

remove separated low-level attention components
in Figure 1) in our HAConvGNN structure. Note
that when we remove these separated attentions,
we also remove the high-level attention (thus
the entire hierarchical attention structure). We
treat multiple code cells as a standalone code
snippet in this situation and process graph data with
the original GNN layer (see the last row in Table 3).

In general, we found that the hierarchical struc-
ture in our HAConvGNN is proven to enhance our
final performance. It is worth noting that the sepa-
rated attention mechanism is essential in our model.
Remember that we use the attention mechanism for
our four code cells separately. Treating them as a
single big code snippet leads to a considerable per-
formance drop (see the last row in Table 3). This
demonstrates that the hierarchical structure in our
model can better handle the code documentation
generation task for multiple code cells.

Attention Visualization. Our high-level atten-
tion mechanism can indicate the most relevant code
cell when generating the documentation for sev-
eral code cells. Figure 2 illustrates the attention
heatmap for the code example in Table 1. Each
row represents a code cell, and each column cor-
responds to a code token. It seems that the modes
pays more attention to the second code cell (es-
pecially the first few tokens) when generating the
documentation “Implementing Neural Network”.

7 Human Evaluation

We also conduct a human evaluation to further eval-
uate our model against the two baselines and the
ground truth.

Participants. Our human evaluation task in-
volves reading code snippets and rating the gen-
erated documentation of the codes. We recruited
participants with data science and machine learning
backgrounds (N = 15).

Task. We randomly selected 30 pairs of docu-
mentation and code(s) from our dataset. Note that
each pair has only one summary, but may have mul-
tiple code snippets. Each participant is randomly
assigned 10 trials, and the order of these 10 trials
is also randomized. Each pair is evaluated by 5
individuals. In each trial, a participant reads 4 can-
didate documentation for the same code snippet(s):
three generated by the three models, and the other
one is the groundtruth. Participants do not know
which documentation text is from which model.
The participant is asked to rate the 4 documenta-
tion texts along three dimensions using a five-point
Likert-scale from -2 to 2.

• Correctness: The generated documentation
matches with the code content.

• Informativeness: The generated documenta-
tion covers more information units.

• Readability: The generated documentation is
in readable English grammar and words.

Evaluation Results. We conducted pairwise t-
tests to compare each model’s performance. The
result (Table 4) shows that for the Correctness
dimension, our model (avg=0.21) is significantly
better than the other two baselines (avg=-0.59 for
code2seq, avg=-0.30 for graph2seq, both p<.01).
Our model is also the only model that has a
positive rating. For the Informativeness dimen-
sion, groundtruth also has the best rating. Our
model (avg=0.17) comes in second and outper-
forms code2seq (avg=-0.72, p<.01) and graph2seq
(avg=-0.21, p<.01).

For the Readability dimension, in which we
consider whether generated documentation is a
valid English sentence or not, groundtruth out-
performs all ML models again, but our model
(avg=0.67) also significantly outperforms baseline
models code2seq (avg=0.03 p<.01) and graph2seq
(avg=0.32 p<.01). Our model can generate more
readable documentation than baselines.
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Figure 3: Average rated scores given by human evaluators to each method across three dimensions.

Model Correctness Informativeness Readability

Groundtruth x = 1.09, σ=0.95 x = 0.85, σ=0.97 x = 1.03, σ=1.01
Our model x = 0.21, σ=1.33 x = 0.17, σ=1.18 x = 0.67, σ=1.20
Code2seq x = -0.59, σ=1.29 x = -0.72, σ=1.17 x = 0.03, σ=1.35
Graph2seq x = -0.30, σ=1.40 x = -0.21, σ=1.25 x = 0.32, σ=1.35

Table 4: Human Evaluation Result

All the results suggest that our model has above-
zero ratings, which suggests it reaches an accept-
able user satisfaction along all three dimensions.

8 Comparison With Transformers

We also carried out an additional experiment to
compare our model with T5 (Raffel et al., 2020),
which is a state-of-the-art transformer encoder-
decoder model. In order to fairly compare our
model against T5, we do not use any pre-trained
embeddings for the T5 model. Also, T5 input has
limitation for the input token length thus we did not
feed AST hierarchy into it. More specifically, we
initialize a T5-small model6 with random weights
and train this model using our training data. Our
code adapts the transformer models from Hugging-
Face (Wolf et al., 2020). We use the dev dataset
to choose the hyperparameters and evaluate the
trained model on our test dataset. The ROUGE
F1 scores for the trained T5-small model are as
follows: ROUGE-1 = 17.55, ROUGE-2 = 4.57,
ROUGE-L = 19.53.

We found that the trained T5-small model
achieves slightly better results than our model in
ROUGE-1 and ROUGE-L. In practice, we found
that the T5-small model relies on a much more
hyperparameters and tends to generate less infor-
mative content compared to other models (see the
documentation generated from different models in
Table 1 for an example).

But in our dataset, as reported in Table 2, the max

6In a pilot study, training a T5-base model (with random
initialization) on our dataset leads to worse results.

AST token sequence is 1,732, which is too long as
T5 input (512) or BART input (1,024). That is why
T5 in Sec 8 can only take the raw code sequence
as input, instead of the AST hierarchy. It is known
that programming code has a tree-based hierarchy
and leveraging such AST hierarchy can enhance the
baseline model (e.g., (Alon et al., 2019)). Our con-
tribution is that we provide a hierarchical attention
architecture that is well suited for the programming
code nature and can generalize to a much longer
length of code inputs. Imagine in a scenario where
we can feed a whole code repo as training input by
treating each code file as a lower layer, and con-
necting them through function/variable referencing
– our architecture can also handle that. In general,
we think our model is orthogonal to the standard
transformer models. One interesting future work is
to integrate our hierarchical attention mechanism
into the transformer-based structure instead of a
GRU-based structure.

9 Downstream User Application

To demonstrate the application of the HACon-
vGNN model, we designed a Jupyter Notebook
plugin to assist document writing in data science
programming (as shown in Figure 4).

The plugin is triggered when detecting users fo-
cusing on a code cell (Figure 4.A). The plugin then
reads the contents from the focused cell and its
adjacent cells, and sends the content to the back-
end. The backend server first generates a code
summarization using the HAConvGNN model (Fig-
ure 4.B). In addition, we implemented two other
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A

B

C

D

Figure 4: We implement a downstream application as a Jupyter Notebook plugin (A) to assist users documentation
writing, incorporating the HAConvGNN-predicted results (B) next to an IR-based approach (C), and a user-prompt
approach (D).

approaches to generate documentation that was in-
tended for explaining a design decision or explain-
ing a technical concept for educational purposes.
We retrieved the relevant documentation from the
API webpage for educational purposes (Figure 4.C)
and we used prompts to nudge users to explain an
output (Figure 4.D). If the user likes one of these
three candidates, they can simply click on one of
them, and the selected documentation candidate
will be inserted into above the code cell (if it de-
scribes what and why for the code), or below it (if
it interprets the result of the code).

Our plugin went through several rounds of pilot
testing and iterative design. Participants found it
reminds them to document code they would have
ignored, reduce the time for developing documen-
tation while they were actively exploring the data
science task. The implementation details and a
formal evaluation of understanding the benefits of
the human-AI collaborative effort for automatic
documentation generation are reported separately
in (Wang et al., 2021b).

10 Conclusion and Future Work

This work targets a new application that aims to
automatically generate code documentation (CDG)
for a computational notebook. This project is part
of our longterm research initiative of designing AI
to automated the various tasks in an AI project’s

lifecycle (Wang et al., 2021d). The notebookCDG
context imposes unique challenges to the current
code documentation generation approaches which
only consider a single code snippet. We construct
a dataset from Kaggle challenge notebooks, and
present a novel HAConvGNN model to encode
the multiple adjacent code cells as a hierarchical
AST graph to enhance a sequence model architec-
ture. Both automated evaluation and human evalua-
tion show that our model outperforms the baseline
models. We also incorporate our algorithm into a
Jupyter Notebook plugin to assist code documenta-
tion creation.

11 Ethical Concern

Our task is an instance of natural language genera-
tion task, thus it may have potential risk and ethical
issues similar to any other NLG tasks, such as the
generated content may have offensive language.
However, we believe our task and our approach has
minimum risk of such ethical issues, due to two
reasons: firstly, the language used in the context
of machine learning code documentation is more
strict to technical terms, offensive language is less
likely to appear in the dictionary thus in our model;
secondly, the dataset construction method is to use
highly-voted notebooks from a publicly available
Kaggle community, there is unlikely to have offen-
sive languages in these highly-voted notebooks.
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A Appendix: Code
snippets-documentation Pair
Examples

Documentation
Ground Truth Feature scaling
Our Model Feature scaling
Code2seq We can have the model
Graph2seq The next step is a lot of the training set
T5-small Scaling

Code Cells
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(train_df)
train_scale =

pd.DataFrame(scaler.transform(train_df))↪→

Table 5: Example: Feature Scaling

Documentation
Ground Truth handle missing values in X test
Our Model we can deal with missing values
Code2seq We can have the categorical data
Graph2seq We can also make any numeric variable

in the model
T5-small Filling the missing values in the test set

Code Cells
cols_with_missing_val = [col for col in

X_test.columns if X_test[col].isnull().any()]↪→
print(cols_with_missing_val)

from sklearn.impute import SimpleImputer
my_imputer =

SimpleImputer(strategy='most_frequent')↪→
my_imputer.fit(X_train)
imputed_X_test =

pd.DataFrame(my_imputer.transform(X_test))↪→
imputed_X_test.columns = X_test.columns

Table 6: Example: Handle Missing Values

Documentation
Ground Truth Data Augmentation
Our Model Data Builder
Code2seq We can have the model
Graph2seq LSTM
T5-small Visualize the images

Code Cells
import warnings
from imgaug import augmenters as iaa
warnings.filterwarnings("ignore")

augmentation = iaa.Sequential([
iaa.OneOf([ ## rotate

iaa.Affine(rotate=0),
iaa.Affine(rotate=90),
iaa.Affine(rotate=180),
iaa.Affine(rotate=270),

]),

iaa.Fliplr(0.5),
iaa.Flipud(0.2),

iaa.OneOf([
iaa.Cutout(fill_mode="constant",

cval=255),↪→
iaa.CoarseDropout((0.0, 0.05),

size_percent=(0.02, 0.25)),↪→
]),

iaa.OneOf([
iaa.Snowflakes(flake_size=(0.2, 0.4),

speed=(0.01, 0.07)),↪→
iaa.Rain(speed=(0.3, 0.5)),

]),

iaa.OneOf([
iaa.Multiply((0.8, 1.0)),
iaa.contrast.LinearContrast((0.9,

1.1)),↪→
]),

iaa.OneOf([
iaa.GaussianBlur(sigma=(0.0, 0.1)),
iaa.Sharpen(alpha=(0.0, 0.1)),

])
],
random_order=True

)

def get_ax(rows=1, cols=1, size=7):
_, ax = plt.subplots(rows, cols,

figsize=(size*cols, size*rows))↪→
return ax

limit = 4
ax = get_ax(rows=2, cols=limit//2)

for i in range(limit):
image, image_meta, class_ids,\
bbox, mask = modellib.load_image_gt(

dataset_train, config, image_id,
use_mini_mask=False,↪→

augment=False, augmentation=augmentation)

visualize.display_instances(image, bbox, mask,
class_ids, dataset_train.class_names,
ax=ax[i//2, i % 2, show_mask=False,
show_bbox=False)

↪→
↪→
↪→

Table 7: Example: Data Augmentation



4485

Documentation
Ground Truth Plot the model s performance
Our Model Plot the model s performance
Code2seq We can have the model
Graph2seq The next step is a lot of the training and

test set
T5-small Plot model performance

Code Cells
plt.plot(history_size_val_1)
plt.plot(history_size_val_2)
plt.plot(history_size_val_3)
plt.plot(history_size_val_4)
plt.plot(history_size_val_5)
plt.plot(history_size_val_6)
plt.title('Model accuracy for different Conv

sizes')↪→
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.ylim(0.98,1)
plt.xlim(0,n_epochs)
plt.legend(['8-16', '16-32', '32-32', '24-48',

'32-64', '48-96', '64,128'], loc='upper left')↪→
plt.savefig('convolution_size.png')
plt.show()

Table 8: Example: Plot Model Performance

Documentation
Ground Truth Count Monthly Mean
Our Model Monthly Count
Code2seq We can have a look at the training set
Graph2seq Feature Engineering
T5-small Creating a new column

Code Cells
for year in year_list:

for month in range(num_months_per_year):
start_date = datetime.datetime(year,

month+1, 1, 0, 0, 0)↪→
end_date = datetime.datetime(year, month+1,

19, 23, 0, 0)↪→
count_mean =

train_data[start_date:end_date]↪→
['count'].mean()
train_data.loc[start_date:end_date,

'count_mean'] = count_mean↪→

start_date = datetime.datetime(year,
month+1, 20, 0, 0, 0)↪→

last_day_of_month =
calendar.monthrange(year,month+1)[1]↪→

end_date = datetime.datetime(year, month+1,
last_day_of_month, 23, 0, 0)↪→

test_data.loc[start_date:end_date,
'count_mean'] = count_mean↪→

test_data.head()

Table 9: Example: Count Monthly Mean


