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Abstract

Among the most critical limitations of deep
learning NLP models are their lack of inter-
pretability, and their reliance on spurious cor-
relations. Prior work proposed various ap-
proaches to interpreting the black-box models
to unveil the spurious correlations, but the re-
search was primarily used in human-computer
interaction scenarios. It still remains underex-
plored whether or how such model interpreta-
tions can be used to automatically “unlearn”
confounding features. In this work, we pro-
pose influence tuning—a procedure that lever-
ages model interpretations to update the model
parameters towards a plausible interpretation
(rather than an interpretation that relies on spu-
rious patterns in the data) in addition to learn-
ing to predict the task labels. We show that in
a controlled setup, influence tuning can help
deconfounding the model from spurious pat-
terns in data, significantly outperforming base-
line methods that use adversarial training.1

1 Introduction

Despite the huge success of contemporary deep
learning models and various applications that they
power, critical limitations persist. Among the most
harmful issues are their lack of interpretability (Lip-
ton, 2018; Guidotti et al., 2018), and the tendency
to learn spurious correlations, in addition to the true
signals of the task (Leino et al., 2019; Sagawa et al.,
2020b). Both of these lead to corrosive outcomes,
from reduced performance on datasets in which
the confounds no longer hold (Jia and Liang, 2017;
Gururangan et al., 2018; Glockner et al., 2018; Mc-
Coy et al., 2019; Kumar et al., 2019; Clark et al.,
2019), to pernicious biases in model decisions (Sun
et al., 2019; Blodgett et al., 2020; Field et al., 2021),
and to overall reduced trust in technology (Ribeiro
et al., 2016; Ehsan et al., 2019).

1This work was done at Carnegie Mellon University.
Code is available at https://github.com/xhan77/
influence-tuning.

Consequently, multiple approaches have been
proposed to alleviate the issues of the growing in-
scrutability and brittleness of the models. Two
prominent approaches to interpretability in NLP
models are (1) feature attribution—identifying im-
portant tokens in the input span, e.g. via saliency
maps (Li et al., 2016; Ribeiro et al., 2016); and (2)
instance attribution—explaining the model deci-
sions as a function of influential training data (Koh
and Liang, 2017; Han et al., 2020; Pruthi et al.,
2020b). Both lines of research aim to help users
build trust in the model by showing the rationale
behind the model decision.

Approaches to demoting the influence of spuri-
ous confounds in the data include (1) model-based
approaches to learn confound-invariant representa-
tions, e.g., adversarial training (Pryzant et al., 2018;
Elazar and Goldberg, 2018; Kumar et al., 2019); (2)
data-based approaches to balance the training data,
e.g., counterfactual data augmentation (Zmigrod
et al., 2019; Kaushik et al., 2020); (3) optimization
approaches to account for worst-case scenarios,
e.g., distributionally robust optimization (Sagawa
et al., 2020a); and (4) post-processing approaches,
such as model ensembling (Clark et al., 2019).

The issues of interpretability and robust gener-
alization are not unrelated. Interpretations can fa-
cilitate the discovery of the model’s reliance on
frequent spurious patterns. For example, in natural
language inference models an over-reliance on lex-
ical signals can be revealed via feature attribution
(Gururangan et al., 2018), via instance attribution
(Han et al., 2020), or through a combination of
thereof (Pezeshkpour et al., 2021a). In this work,
we investigate a closer interaction between inter-
pretability and model robustness.

Our research hypothesis is that interpretations
that discover confounds can be incorporated at
training time, to proactively guide the model to-
wards avoiding the confounds and improving gen-
eralization. Our method relies on instance attri-

https://github.com/xhan77/influence-tuning
https://github.com/xhan77/influence-tuning
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bution interpretation methods that determine the
influence of training data on the model’s decisions
(§2). We show how this influence can help discover
the model’s reliance on some spurious patterns, first
in an illustrative task (§3), and then more generally
in our proposed framework influence tuning. Influ-
ence tuning aims to demote the spurious patterns
by guiding the model to produce plausible interpre-
tations via instance attribution (§4). We evaluate
our approach on two datasets in a controlled setup
(§5, §6). Our experiments show that the proposed
influence tuning method outperforms the baselines
that use adversarial training (Ganin et al., 2016;
Pryzant et al., 2018). We conclude with a discus-
sion of a potentially broader impact of influence
tuning on various NLP tasks.

2 Interpretation via Instance Attribution

Our primary goal is to use model interpretations for
deconfounding the model during training. We fo-
cus on instance attribution approaches since these
interpretations may help capture higher-level at-
tributes in addition to token- and phrase-level lexi-
cal features, e.g., span overlaps, the length of text,
etc. In this section, we review the family of in-
stance attribution methods.

Many NLP models share a same general for-
mula for their decision process during testing:
ŷ = f(xtest; θ), where xtest is the test input tokens
and θ is the parameters of the trained model. While
feature attribution methods like saliency maps (Si-
monyan et al., 2014; Li et al., 2016) focus on inter-
preting an NLP model’s decision by the importance
of each individual tokens within xtest, instance at-
tribution methods often look at the influence of
θ on the decision, which is further influenced by
the training examples the model uses during the
training phase.

Influence functions Koh and Liang (2017) pro-
pose influence functions (IF) for ML models, fol-
lowing the vision from robust statistics. IF first ap-
proximates how upweighting a particular training
example ztrain = (xtrain, ytrain) in the training set
{(x1, y1), . . . , (xn, yn)} by an infinitesimal εtrain
would change the learned model parameters θ:

dθ

dεtrain
= −H−1θ ∇θL(ztrain, θ),

where Hθ = 1
n

∑n
i=1∇2

θL(zi, θ) is the Hessian
of the model. We can then use the chain rule to

measure how this change in the model parameters
would in turn affect the loss of the probing input:2

dL(zprobe, θ)

dεtrain
= ∇θL(zprobe, θ) ·

dθ

dεtrain

The final influence of a train example to a prob-
ing example is defined as: I(ztrain, zprobe) =

−dL(zprobe,θ)
dεtrain

. That is, a training example is influen-
tial to a probing example if upweighting it in the
training set would make the model more likely to
make a correct decision over the probing example.3

Gradient product Computing the inverse Hes-
sianH−1θ in the IF is expensive and requires further
approximations if the model is non-convex.4 Pruthi
et al. (2020b) tackle the problem from a different
perspective and arrive at a similar, but a first-order
solution:5

I(ztrain, zprobe) =

k∑
i=1

∇θL(ztrain, θi)

·∇θL(zprobe, θi),

where θi is the checkpoint of the model at each
training epoch. The intuition behind this method is
to approximate the total reduction in the probing
loss L(zprobe, θ) during the training process when
the training example ztrain is used. Compared to IF,
this gradient product method essentially drops the
inverse Hessian term and reduces the problem to
the dot product between the gradient of the training
loss and the gradient of the probing loss.

Gradient cosine One potential problem of IF
and gradient product is being dominated by some
outlier training examples, where the norm of their
training gradients is significantly larger than the
rest of examples. This would lead the method to
identify the same set of outlier training examples
being influential to a large number of different prob-
ing examples. Barshan et al. (2020) points out
this variance-lacking problem of IF and proposes a
simple modification: substituting the dot product
operation with cosine similarity, normalizing by
the norm of the training gradients. Following the

2A probing input can be either obtained during test time or
selected from the training set.

3More details about IF and its applications in NLP can be
found in Koh and Liang (2017) and Han et al. (2020).

4Basu et al. (2021) also points out IF can be less accurate
when used with deep neural networks.

5Here, we are presenting the equally weighted TracInCP
variant from Pruthi et al. (2020b).
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same intuition, we modify and further simplify the
gradient product method:

I(ztrn, zprb) =
∇θL(ztrn, θ) · ∇θL(zprb, θ)

‖∇θL(ztrn, θ)‖ ‖∇θL(zprb, θ)‖

We use this latter influence definition for the in-
stance attribution interpretation method throughout
this work.

3 A Toy Example: Predicting Text Length

Now let’s imagine a simple synthetic task where
an NLP model like BERT (Devlin et al., 2019) is
trained for binary text classification. Class 0 con-
tains random short sentences with a length sampled
from N (µshort, σ

2); class 1 contains random long
sentences with a length sampled fromN (µlong, σ

2).
Our classification task is to predict the text length.

However, there are confounds in this data. For
every sentence, we insert a confounding token
at the beginning of the sentence. Most of the
time (e.g., 90%), token A would co-occur with
a short sentence and B would co-occur with a
long sentence; for the remaining sentences, this
co-occurrence is flipped.

Our goal is to finetune the classifier so that it
learns to predict the class labels (0 or 1) using, as
intended, the text length information, instead of
overfitting to the confounding tokens A or B. We
refer to the text length as a core attribute, and to the
confounding prefix tokens as a spurious attribute.6

Finetuning the classifier on our synthetic task
yields an 100% accuracy on the training set (over-
fitting). We are more interested in interpreting what
information the model relies on to make classifica-
tion decisions. This drives us to apply the instance
attribution interpretation methods.

To interpret each classification decision via in-
stance attribution, we randomly sample a few ex-
amples within the training set7 as our probing ex-
amples zprb. We calculate the influence of each
training example ztrn on zprb using the gradient co-
sine method (§2). Our expectation is that the ztrn
instances that have the same core attribute as zprb
should be influential to zprb. In our example case,
this means we expect the model to learn that the
long training instances from class 1 are positively
influential for labeling a long probing example with

6This toy task is inspired by the numeric toy dataset in
Sagawa et al. (2020b).

7In our experiments we choose probing examples from the
training set, but it can be a held-out set as well.

Figure 1: Distribution of each same-class training ex-
ample’s influence score I(ztrn, zprb) towards a typical
probing example in TextLen (§5.2). The range of in-
fluence scores is [−1, 1]. The average score difference
between the two groups is 0.15, and the difference is
statistically significant via t-test.

class 1. At the same time, the spurious attribute
of ztrn should not dominate the contribution to the
training example’s influence towards zprb. Specifi-
cally, two long training examples, one with a con-
founding prefix A and the other with B, should be
both influential to the long probing example with a
confounding prefix, say, B.

Figure 1 illustrates the influence score distribu-
tion for a typical probing example. The probing
example is from class 1 (long text) and has a con-
founding prefix B. The orange plot in the figure
shows the influence distribution of all class 1 train-
ing examples with the same prefix B, whereas the
blue plot shows the influence distribution of all
class 1 training examples with the different spu-
rious prefix A. We observe that there is a statisti-
cally significant influence difference between these
two groups. However, as the spurious attribute
should not influence the model’s decision process,
we conjecture that the influence difference shows
the model is confounded.

As we show in this motivating example, research
on interpretability via instance attribution can help
us extract rationales behind the model decisions.
When we know what are possible spurious patterns
in the data, we can check whether the spurious con-
founds are influencing learning, yielding implau-
sible interpretations. For plausible interpretations,
such reliance on spurious attributes should not be
as significant. In the next section, we propose a
methodology to improve the model systematically,
upon seeing an implausible rationale.
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Figure 2: The influence tuning framework alternates between the standard finetuning phase (left) and the influence tuning
phase (right). Illustrative examples are adapted from the MSGS dataset. Standard finetuning (left): As introduced in §5.2, the
main verb in “the boy who was hugging a dog laughs” is not a present participle ending with “-ing”, so the sentence should
belong to CLASS_0 (y). A model θ may initially predict CLASS_1 with a high probability (ŷ). In the finetuning steps, we form
a loss function Ly,ŷ over the labels and backpropagate into the model parameters. Influence tuning (right): For the influence
tuning steps, we sample a few probing examples zprb and training examples ztrn from the train set. In the figure zprb and ztrn both
belong to CLASS_1 (main verb in -ing form) while the examples in ztrn can have the same spurious attribute (sentence beginning
with “the”) or different spurious attribute (beginning with “a”) as zprb. A model θ may initially give the interpretation (π̂(I)) that
these examples in ztrn have significantly different influence over zprb. This could be a sign that the model is confounded; we form
a loss function Jπ(I),π̂(I) and backpropagate into the model parameters for a more plausible interpretation.

4 Influence Tuning

We propose a method to tune the model towards
providing plausible rationales behind its decisions.
Motivated by the example scenario in §3, we de-
fine this plausibility to be the difference between
the influence of training examples with different
spurious attributes. We therefore call the method
influence tuning. Formally, we first randomly sam-
ple one probing example zprb = (xprb, yprb) from
the training set. We then sample a small group of
training examples {zA1 , . . . , zAk} ⊂ {ztrn | ytrn =
yprb, ctrn = cprb}, that share the same label (y) and
the same spurious attribute (c) as in zprb (e.g., sam-
ples from the orange distribution in Figure 1). Simi-
larly, we sample a small group of training examples
{zB1 , . . . , zBk} ⊂ {ztrn | ytrn = yprb, ctrn 6= cprb},
that share the same label but with a spurious at-
tribute that is different from the spurious attribute
in zprb (e.g., samples from the blue distribution
in Figure 1). Note that although in our example
scenario y and c are both binary, they are not re-
quired to be so. Since the spurious attribute c
should not be a part of the rationale behind the
model’s decision, we expect the average influence
of {zA1 , . . . , zAk} and {zB1 , . . . , zBk} on zprb to
be close to each other. Therefore, it is natural to
define a new loss function over the influence scores
and incorporate it in the model training:

J = (
1

k

k∑
i=1

I(zAi , zprb)−
1

k

k∑
i=1

I(zBi , zprb))
2.

To optimize for the influence loss J , we need the
gradient∇θJ :

∇θJ = (
2

k

k∑
i=1

I(zAi , zprb)−
2

k

k∑
i=1

I(zBi , zprb))

(
1

k

k∑
i=1

∇θI(zAi , zprb)−
1

k

k∑
i=1

∇θI(zBi , zprb)),

where the key is in calculating∇θI(ztrn, zprb) with
arbitrary ztrn being either zAi or zBi .

Recall that with the gradient cosine influence
definition, I(ztrn, zprb) =

∇θL(ztrn,θ)·∇θL(zprb,θ)
‖∇θL(ztrn,θ)‖ ‖∇θL(zprb,θ)‖ .

We can then derive∇θI(ztrn, zprb) as:

∇θI(ztrn, zprb) = p+ q− r− s

p =
1

‖∇θL(ztrn)‖ ‖∇θL(zprb)‖
Htrn∇θL(zprb)

q =
1

‖∇θL(ztrn)‖ ‖∇θL(zprb)‖
Hprb∇θL(ztrn)

r =
∇θL(ztrn) · ∇θL(zprb)

‖∇θL(ztrn)‖3 ‖∇θL(zprb)‖
Htrn∇θL(ztrn)

s =
∇θL(ztrn) · ∇θL(zprb)

‖∇θL(ztrn)‖ ‖∇θL(zprb)‖3
Hprb∇θL(zprb)

where the Hessians Htrn = ∇2
θL(ztrn) and Hprb =

∇2
θL(zprb). We omit θ in L(·) for simplicity. De-

tailed derivations can be found in the appendix.8

8Intuitively, p and q find gradients that would help max-
imize the inner product of the training and probing model
gradients in the next model update; r and s find gradients that
would constrain the norm of the training and probing gradients
for the next update.
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Overall, obtaining the gradient ∇θJ for
the influence loss J defined over the tuple
(zprb, {zA1 , . . . , zAk}, {zB1 , . . . , zBk}) makes the
optimization possible. For the actual training pro-
cess, we alternate the optimization of θ over both
the regular label prediction loss L and the influ-
ence loss J , with the interval as a hyperparameter
to select. That is, do m steps of regular label loss
propagation, n steps of influence loss propagation,
then back to label loss propagation, and so on. The
goal is to find a set of model parameters, without
changing the model architecture, that lead to both
accurate label predictions and plausible rationales
behind the decisions. We use a pretrained BERT
model as our initial model θ. Figure 2 summarizes
our proposed method using the data examples that
we will introduce in §5.2.9

4.1 A special case of influence tuning

The above section gives an influence tuning frame-
work based on the influence score I(·, ·) defined
on the full set of model parameters θ. Now we are
going to investigate an interesting special case of
the framework, which defines the influence score
on a partial parameter set.

Recall that we are using a pretrained BERT
model as our initial model θ in our setup, and fine-
tuning the BERT model would require training a
prediction head over the transformer layers. For
text classification, the prediction head is just a lin-
ear projection layer W , projecting from the BERT
[CLS] token embedding to the label space and
connecting to the final cross entropy loss. Addi-
tionally in our setup, our sampled zprb and ztrn have
the same label y. Now let’s define a small parame-
ter subset θproj =W(y), representing the row of the
final projection layer W corresponding to the label
y.

Similar to the original gradient cosine in-
fluence definition, we define Iproj(ztrn, zprb) =
∇θprojL(ztrn,θ)·∇θprojL(zprb,θ)

‖∇θprojL(ztrn,θ)‖ ‖∇θprojL(zprb,θ)‖ . We can further ex-

pand the label loss L with the parameter subset

9Instead of the alternating optimization we adopted, fold-
ing the influence loss into the standard finetuning loss as a
regularizer may work as well. We did not explore it here
since our initial hypothesis is whether we can use a plausible
interpretation to help build a more generalizable model: the in-
stance attribution interpretation methods assume some regular,
untouched finetuning steps before interpreting.

W(y) and the [CLS] embedding h[CLS]:

L(z, θ) =− log
exp(W(y)h[CLS])∑
y′ exp(W(y′)h[CLS])

∇θprojL(z, θ) =
exp(W(y)h[CLS])∑
y′ exp(W(y′)h[CLS])

h[CLS]

− h[CLS] = (p(y)− 1)h[CLS]

Therefore,
∇θprojL(ztrn,θ)

‖∇θprojL(ztrn,θ)‖ = − htrn[CLS]
‖htrn[CLS]‖ , and

similarly
∇θprojL(zprb,θ)

‖∇θprojL(zprb,θ)‖ = − hprb[CLS]
‖hprb[CLS]‖ . We

finally rewrite the partial influence definition
Iproj(ztrn, zprb) as htrn[CLS]·hprb[CLS]

‖htrn[CLS]‖ ‖hprb[CLS]‖ , which is es-
sentially the cosine similarity between the training
and probing example’s [CLS] embeddings.

The new definition Iproj(ztrn, zprb) leads to a new
influence loss Jproj. Different from the second-
order influence tuning method that obtains ∇θJ ,
we can get ∇θJproj by applying the regular gra-
dient backward operation on the model and thus
updating the model faster. All the other parts of
the framework, like the data tuple selection and
the alternating training objectives, remain the same.
We call this special variant of influence tuning em-
bedding tuning.

5 Experimental Setup

5.1 Adversarial training as a baseline
One notable feature of influence tuning is that it
is designed to help deconfounding NLP models
without adding additional modules to the network.
A related line of research on deconfounding NLP
models takes the intuition from domain adversarial
training (Ganin et al., 2016; Pryzant et al., 2018;
Kumar et al., 2019). These methods usually have
two classifier modules built on top of a shared en-
coder. The objective for the model is adversarial:
the model should be able to predict the target label
y of the input accurately, while failing at recon-
structing the spurious attribute c effectively, which
potentially indicates that the confounding informa-
tion regarding c is not encoded by the model.

As a baseline for this work, we specifically mod-
ify a BERT model according to the method de-
scribed in Pryzant et al. (2018). It uses a gradient
reversal layer at the beginning of the confound
classifier head that would multiply the gradient by
−1 during the backward pass. All of the BERT
transformer layers form the shared encoder for the
label classifier and the confound classifier. The
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implicit loss used by the model can then by writ-
ten as L = Llabel − λLconfound, where Llabel and
Lconfound are both cross entropy loss, and λ is a
hyperparameter to select. Essentially, this method
learns and unlearns—learns to predict the correct
label while unlearning the information that could
help reconstruct the confound attribute. Compared
to other prior work tackling spurious correlations
mentioned in §1, this method is also most suitable
for a direct comparison with our proposed influ-
ence tuning framework, because both methods aim
to explicitly demote certain known confounds for
the model.

5.2 Datasets

To evaluate the proposed approaches for decon-
founding NLP models, we conduct controlled ex-
periments on two datasets.

TextLen TextLen is a synthetic dataset we create
that follows the example scenario in §3. Specifi-
cally, for the training set, we randomly split 1500
sentences from the canonical CoNLL-2003 shared
task dataset (Sang and De Meulder, 2003) to two
classes 0 and 1 of equal sizes. Sentences from
class 0 are trimmed to a length sampled from a
normal distribution with µshort = 15, σ = 4; sen-
tences from class 1 are trimmed with µlong =
25, σ = 4. We add prefix tokens A=“Negative.”
and B=“Positive.” to the start of the sentences,
such that 90% of the time, a class 0 sentence would
receive the negative prefix and a class 1 sentence
would receive the positive prefix. However, in the
dev set and the test set of TextLen,10 while trimmed
with the same text length distribution, only 50%
of the time the confounding prefix would corre-
late with the class label of the sentence. A decon-
founded model should achieve a good classification
performance on both the train and test splits.

MSGS The Mixed Signals Generalization Set is
proposed by Warstadt et al. (2020) to investigate
whether language models would acquire a prefer-
ence for linguistic generalizations. The model is
supposed to learn a classification task with an am-
biguous training dataset. For example, a class 1
sentence could be “the boy who hugged a cat is
sneezing”, and a class 0 sentence could be “a boy
who is hugging the cat sneezed”. To distinguish the

10Like the TextLen training set, the dev set content also
comes from the CoNLL-2003 training set; the TextLen test set
content instead comes from the CoNLL-2003 test set.

two classes, a model performing surface generaliza-
tions could potentially rely on whether the article
“the” or “a” precedes the sentence. A model per-
forming linguistic generalizations, however, could
be deciding based on whether the main verb of
the sentence is in the “-ing” form. The linguistic
feature decides the class of the sentence in both
the MSGS train and test sets, whereas the surface
feature correlates highly with the classes only in
the training set, and co-occurs randomly with the
classes in the disambiguated test data. Specifically,
we choose MSGS’s SYNTACTIC CATEGORY as the
core attribute and RELATIVE POSITION as the spu-
rious attribute; for the training set, we also adopt
an inoculation rate of 0.3% (Warstadt et al., 2020).

We show statistics of TextLen and MSGS in
Table 1. We use BERT-base as our model template
and the default BERT Adam optimizer for both
tasks and all of the deconfounding methods. We
perform hyperparameter search using the dev set
for all of the methods. Detailed hyperparameters
can be found in the appendix.

6 Results

6.1 Does influence tuning make the model
interpretations more plausible?

We are interested in a preliminary research ques-
tion first: having seen the confounded model in-
terpretations discovered in §3, does our proposed
method, influence tuning, make the model inter-
pretations more plausible? To quantitatively mea-
sure how much the model relies on the spuri-
ous attribute to make decisions, for both tasks
we randomly select 40 probing examples zprb
from the training set. For each probing exam-
ple zprb, we put the training examples into two
groups: A = {ztrn | ytrn = yprb, ctrn = cprb} and
B = {ztrn | ytrn = yprb, ctrn 6= cprb}, where y
is the true label and c is the confounding spuri-
ous attribute. We define the confound influence
difference (CID) to be the influence difference
between the two groups to the probing example:
1
|A|

∑
trn∈A I(ztrn, zprb)− 1

|B|
∑

trn∈B I(ztrn, zprb).
We show in Figure 3 the average CID of three dif-

ferent models for TextLen during the training pro-
cess: a model that is trained with the regular fine-
tuning objective, a model that is trained using the
influence tuning framework, and a control model
that is trained over a non-confounding version of
TextLen data (i.e., the spurious prefix token is re-
moved). The final CIDs are 0.093, 0.035 and 0.019,
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TextLen MSGS

Size 1500 / 480 / 500 5000 / 15000 / 15000
Core attribute Text length SYNTACTIC CATEGORY

Spurious attribute Prefix token RELATIVE POSITION

Variance in core attribute Yes No
Spurious attribute train set success rate 90.0% 99.7%
Spurious attribute test set success rate 50.0% 66.7%

Table 1: Dataset statistics

Figure 3: Average confound influence difference (CID)
of different models in the TextLen task. The scale of
the influence scores is [−1, 1]. The final CID is 0.093
for the finetuning model, 0.035 for the influence tuning
model, and 0.019 for the model trained on non-spurious
data.

respectively for the three models. We observe that
both the finetuning model and the influence tun-
ing model start with a very high CID, indicating
the confound attribute is exploited heavily at the
beginning of the training process. However, for
the influence tuning model, each influence tuning
round happened after every 50 standard finetuning
steps, helps the model achieve a near zero CID (as
shown by the vertical drops within the influence
tuning plot). The model does regain the CID dur-
ing the following finetuning steps, but eventually
arrives at a relatively low CID. The result on the
MSGS data is similar, except that we do not have
the non-confounding control model. The drops in
CID caused by influence tuning answer our prelim-
inary question: we do find that influence tuning
makes the model interpretations more plausible in
accordance with our expectation.

6.2 Does the guided plausibility transform
well to the model generalizability?

Would a more plausible model, or more specifi-
cally a model that is guided to provide plausible

interpretations, achieve a stronger performance in
out-of-distribution test sets, where the confound in-
formation no longer helps the decision? To answer
this question, we compare the different deconfound-
ing approaches introduced in §4 and §5.1 over the
TextLen and MSGS tasks.

We show our main results in Table 2. On
TextLen, we observe that the adversarial training
method gives a moderate improvement over the
regular finetuning model. Both influence tuning
and embedding tuning lead to significant accuracy
gain, with the embedding tuning method achieves
the highest 82.2% test accuracy. In §4.1 we derived
why embedding tuning is a special case of influ-
ence tuning with a reduced set of parameters for
the influence calculation. This could be enough for
the TextLen dataset since the task is relatively easy.
The upper bound model with the spurious attribute
removed from the data still outperforms all of the
deconfounding methods, leaving a gap to address
in future work.

On MSGS, we observe a similar trend for the
adversarial training method, which makes a mod-
erate improvement over finetuning as expected.
Again, both influence tuning and embedding tun-
ing achieve significant improvements. However,
the influence tuning method outperforms embed-
ding tuning on this task. One contributing reason
could be that the linguistic generalizations required
by this task can be encoded across the full BERT
transformer layers. Therefore, the influence de-
fined only over the final projection layer in the
embedding tuning case might be limiting. Overall,
both our proposed influence tuning and the special
case embedding tuning are effective at deconfound-
ing the models in our experiments compared to the
baselines.
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Finetuning Adversarial training Influence tuning Embedding tuning No spurious

TextLen 76.00 78.44 (p=0.026) 80.48 (p=0.003) 82.20 (p<0.001) 84.96 (p<0.001)

MSGS 75.33 83.41 (p=0.179) 88.23 (p=0.015) 87.45 (p=0.042) -

Table 2: Test set performance (accuracy) of different deconfounding approaches. All the experiments use five
random seeds. The subscripts show the p-values of the t-tests comparing the deconfounding approaches with the
regular finetuning model.

6.3 Can we use less data with influence
tuning?

The advantage of influence tuning does not come
without a price. For a general dataset, it would
require at least some lightweight annotations in
addition to the regular label information. For ex-
ample, in §4 when we operate with the data tuple
(zprb, {zA1 , . . . , zAk}, {zB1 , . . . , zBk}), we would
need information about the confound group an ex-
ample belongs to. Though in our experiments with
TextLen and MSGS we are sampling a relatively
small set of zprb, zAi and zBi (50–100 zprb each full
influence tuning round, 3–5 zAi and zBi for each
zprb), the model still potentially has access to the
confound information of the full dataset during the
whole training process.11 Therefore, in this section
we are interested in whether we can strictly provide
less accessible confound information to the model,
and how this would affect the performance of our
methods.

For both the TextLen and MSGS data, we ran-
domly select subsets of the training set containing
m% of the total examples. Then during the training
process, we limit the model to sample zprb, zAi and
zBi only from the m% training subset where the
confound group information is accessible. Note
that this serves as a hard upper limit for the con-
found access, and the actual confound information
queried by the influence tuning framework can be
well under this limit.

In Table 3 we show the test performance of influ-
ence tuning and embedding tuning on TextLen and
MSGS, using the same model hyperparameters as
the results in Table 2. However, unlike the Table 2
results where every trial within the five random
seeds succeeds in fitting the training set, the exper-
iments with the data constraint sometimes fail to
converge (i.e., not even fitting the train set). We
exclude such failed trials from the average perfor-
mance reported in Table 3, while we observe that

11Our baseline approach adversarial training also has access
to and actually uses the confound information of the full data.

Influence tuning Embedding tuning

TextLen
5% 78.24 78.84
10% 78.68 80.80
20% 80.65 80.44
50% 80.13 81.07
100% 80.48 82.20

MSGS
5% 81.74 84.90
10% 80.48 81.56
20% 83.90 81.56
50% 93.57 82.80
100% 88.23 87.45

Table 3: Performance of influence tuning and embed-
ding tuning when there is an upper limit for the con-
found access rate. The accuracy shown is an average
of at least three succeeded trials within the use of five
random seeds.

at least three out of the five trials for each confound
access rate can converge successfully.12 We see
that even with the hard constraint on the confound
access rate, influence tuning and embedding tuning
still outperform the baseline methods, using only
5%-20% examples. Generally, higher confound
access rate would lead to stronger deconfounding
performance, which creates a tradeoff to decide
based on the need of the users.

6.4 Discussion
In this section we answered three questions regard-
ing the influence tuning framework: whether it
makes the model more plausible, whether it helps
the model achieve a strong deconfounding perfor-
mance, and whether it can be used with a reduced
amount of data. We conducted experiments on a
synthetic dataset and a linguistic probing dataset,

12Importantly, the trials are considered failed based on their
training set performance (0.5 accuracy equivalent to random
guess), not based on the dev set or test set performance. When
deploying to an unknown test set, we would know when to
re-train the model based on its known training performance.
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but the potential application of our approach can be
more impactful than the current tasks. For example,
our method might be helpful for identifying and
mitigating gender biases and racial biases in sen-
timent analysis or toxicity detection systems (Kir-
itchenko and Mohammad, 2018; Sap et al., 2019),
by modeling the problem as a deconfounding task.
One potential drawback is that these natural cases
would inevitably require some extent of extra hu-
man annotations. However, we also believe the
human feedback in NLP (Settles, 2011; Kaushik
et al., 2020; Wang et al., 2021) is a crucial and
controllable way to tackle model’s exploitation of
spurious correlations in the data, which happens
as a result of the absence of proper supervision.
Furthermore, if we define the influence objective
differently in §4, e.g. modeling which groups of ex-
amples should be influential to the probing instance
and to what extent, we may be able to implicitly
promote the core attributes in the task in addition
to demoting the confounds.

7 Related Work

Interpreting NLP models by token-level importance
scores over the input span is a widely adopted ap-
proach (Belinkov and Glass, 2019). These scores
can be gradient-based (Simonyan et al., 2014; Li
et al., 2016), attention weights if supported by the
model (Jain and Wallace, 2019; Wiegreffe and Pin-
ter, 2019), or weights from a linear model fitting the
local region of a deep model (Ribeiro et al., 2016).
The models can achieve better performance or learn
more efficiently if supervisions are provided for
these feature importance scores (Ross et al., 2017;
Zhong et al., 2019; Pruthi et al., 2020a).

Unlike the token-level interpretations, our focus
in this work is on the instance attribution methods.
Apart from influence functions (Koh and Liang,
2017) and TracIn (Pruthi et al., 2020b) that are
already introduced, other instance attribution meth-
ods include representer point selection (Yeh et al.,
2018) and θ-relative influence functions (Barshan
et al., 2020), with Pezeshkpour et al. (2021b) com-
paring the methods empirically in NLP tasks. How-
ever, these methods do not facilitate a systematic
improvement for the model based on the plausibil-
ity of the interpretations, which is a gap addressed
by this work. Models designed with explicit inter-
pretability considerations like deep weighted aver-
aging classifiers (Card et al., 2019) and SelfExplain
(Rajagopal et al., 2021) may also support instance

attribution, though the flexibility of the model ar-
chitecture can be more limited.

One key use case of the proposed influence tun-
ing framework is to deconfound the model from
relying on spurious attributes during the decision
process. Other works that aim at preventing neu-
ral models from using the spurious attributes in-
clude Elazar and Goldberg (2018) and Pryzant
et al. (2018) which operate over a known set of
confounds, and Kumar et al. (2019) which models
unknown, latent confounds. They often involve the
idea of learning invariant features across domains
through adversarial training (Ganin et al., 2016; Xie
et al., 2017). Spurious correlations can also be mit-
igated by data-based, optimization-based, and post-
processing methods (Zmigrod et al., 2019; Kaushik
et al., 2020; Sagawa et al., 2020a; Yaghoobzadeh
et al., 2021; Clark et al., 2019). In this work,
we mainly compare with the adversarial training
method with gradient reversal in Pryzant et al.
(2018) as a baseline, since both methods perform
explicit demotions to some known confounds in the
data used by the model. Future work can explore
comparisons and potential combinations with other
approaches addressing the spurious correlations.

8 Conclusion

NLP models that build upon deep neural networks
are notoriously opaque about their decision process.
Though instance attribution methods can be used to
unveil problems of the model reflected by the im-
plausible interpretations, a novel research question
is whether or how the model training can benefit
from interpretability methods in a systematic way.
Our work addresses this question, by proposing the
influence tuning framework that backpropagates a
target instance attribution interpretation directly to
the model. In two use cases of demoting spurious
confounds in the data, we show that (1) influence
tuning can eventually lead to more plausible model
interpretations; (2) influence tuning can help build
better-performing deconfounded models compared
to those trained with the baseline methods; (3) influ-
ence tuning can still be reliable in lower-resource
setups. Future work will explore more datasets and
tasks, and other optimization methods. Addition-
ally, we will explore guiding the model to learn to
promote core attributes of the task in addition to
demoting the spurious confounds.
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A Hyperparameters

For finetuning BERT, we use a learning rate of 2e-5
for both TextLen and MSGS. We tune 10 epochs
for TextLen and 3 epochs for MSGS with a batch
size of 64, resulting in around 250 steps for each
dataset since the data size is also different.

For adversarial training, we use the same
batch size of 64, but search the learning rate
∈ {2e-5, 5e-5}, the number of training epochs
∈ {10, 20, 40} for TextLen and ∈ {3, 6, 12} for
MSGS, and λ ∈ {0.1, 0.3, 1.0, 3.0}. For TextLen,
the best hyperparameters are [5e-5, 20, 0.3]. For
MSGS, the best hyperparameters are [5e-5, 12,
0.3].

For influence tuning and embedding tuning, we
follow the vanilla finetuning and use the same
learning rate of 2e-5, batch size of 64 and a to-
tal number of steps at around 250 for the reg-
ular label loss propagation steps. For the influ-
ence loss propagation steps, we search the tuning
interval (i.e., how many label propagation steps
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needed before a round of influence propagation hap-
pens) ∈ {25, 50, 100}, number of epochs within
one round of influence propagation ∈ {5, 10, 15}
for TextLen and ∈ {3} for MSGS, batch size
∈ {4, 16, 64}, influence propagation optimizer’s
learning rate ∈ {3e-5, 1e-5, 3e-6, 1e-6}. The best
hyperparameters for influence tuning are [50, 5, 64,
3e-5] for TextLen and [50, 3, 16, 3e-5] for MSGS.
The best hyperparameters for embedding tuning
are [50, 10, 64, 3e-5] for TextLen and [25, 3, 4, 1e-
5] for MSGS. For TextLen, each influence tuning
epoch we randomly sample 75 probing examples
(zprb) from the train set, and for each probing ex-
ample we sample 5 positive and 5 negative train
examples based on the confound information (zAi
and zBi). For MSGS, each influence tuning epoch
we randomly sample 100 probing examples (zprb)
from the train set, and for each probing example
we sample 3 positive and 3 negative train examples
based on the confound information (zAi and zBi).
For all experiments with all the methods, we use 5
random seeds [2021, 2022, 2023, 2024, 2025].

B Derivation of the influence gradients

To derive the gradient of the cosine influence, we
first derive the gradient of the dot product influence:

I =∇θL(x1) · ∇θL(x2)

=
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Next we derive the gradient of the full cosine
influence:

I =
∇θL(x1) · ∇θL(x2)
‖∇θL(x1)‖ ‖∇θL(x2)‖

=
i(θ)

m(θ)

∇θI =
m(θ)∇θi(θ)− i(θ)∇θm(θ)

m(θ)2

We already know the gradient of i(θ), so we
are only interested in ∇θm(θ). We first calculate
∇θ‖∇θL(x1)‖ and∇θ‖∇θL(x2)‖, and then apply

product rule to combine:
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Combining the above terms, we have:

∇θI =
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For clarity, we rearrange the equation as below:

∇θI =p+ q− r− s
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