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Abstract

Code-switching (CS), a ubiquitous phe-
nomenon due to the ease of communication
it offers in multilingual communities still
remains an understudied problem in language
processing. The primary reasons behind this
are: (1) minimal efforts in leveraging large
pretrained multilingual models, and (2) the
lack of annotated data. The distinguishing
case of low performance of multilingual
models in CS is the intra-sentence mixing
of languages leading to switch points. We
first benchmark two sequence labeling tasks —
POS and NER on 4 different language pairs
with a suite of pretrained models to identify
the problems and select the best performing
model, char-BERT, among them (addressing
(1)). We then propose a self training method
to repurpose the existing pretrained models
using a switch-point bias by leveraging
unannotated data (addressing (2)). We finally
demonstrate that our approach performs well
on both tasks by reducing the gap between the
switch point performance while retaining the
overall performance on two distinct language
pairs in both the tasks. We plan to release our
models and the code for all our experiments.

1 Introduction

Code-switching (CS) is a phenomenon of switching
back and forth between multiple languages and is
very common in multilingual communities such
as India, Singapore, etc. Understanding mixed
language texts has several applications in an in-
creasingly online world like hateful content de-
tection, maintaining engagement with virtual as-
sistants. Despite this pervasive prevalence, CS is
often overlooked in language processing research
and current models still cannot effectively handle
CS. We believe that the reasons behind this are (1)
the lack of efforts in leveraging existing large scale
multilingual resources or pretrained models and (2)
dearth of annotated resources in switching scenar-
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ios. In this paper, we present solutions to address
these two problems specifically.

The advent of pretraining techniques marshalled
the celebrated successes of several language un-
derstanding and generation tasks in English (Dong
et al., 2019) and multilingual tasks (Chaudhary
et al., 2020). However, the same level of com-
mendatory results are not translated to CS scenar-
ios; as studied by Aguilar et al. (2020); Khanuja
et al. (2020) presenting a preliminary evaluation of
multi-lingual pretrained models for CS scenarios.
It is still largely unclear if the inadequacies are re-
sulting due to dearth of data or ineptitude of quick
adoption of multilingual models. We study pre-
cisely this problem of identifying the artifacts that
hinder the competent performance of pretrained
models on CS with a case study on sequence label-
ing tasks including Part-Of-Speech (POS) tagging
and Named Entity Recognition (NER).

Our contributions from this work are as fol-
lows: (1) We first conduct a comprehensive bench-
marking of different pretrained models for two se-
quence labeling tasks across 4 different language
pairs. Specifically we evaluate datasets in Hinglish,
Tenglish, Benglish and Spanglish CS for the tasks
NER and POS. (2) To broaden understanding to-
wards the usefulness of different fine-tuning strate-
gies, we investigate multitasking, character model-
ing uncovering the problematic switch point cases
in §4. (3) We propose a novel switch-point bias
based self training approach built upon on obser-
vations from the benchmarks and demonstrate im-
proved results on both tasks.

2 Related Work

CS benchmarks: From one of the recent surveys
(Sitaram et al., 2019), linguistic CS has been stud-
ied in the context of many NLP tasks including
language identification (Solorio et al., 2014) (Bali
et al., 2014), POS tagging (Soto and Hirschberg,
2018) (Molina et al., 2019) (Das, 2016), NER
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(Aguilar et al., 2019), parsing (Partanen et al.,
2018), sentiment analysis(Vilares et al., 2015),
and question answering (Chandu et al., 2019)
(Raghavi et al., 2015). Many CS datasets have been
made available through the shared-task series FIRE
(Choudhury et al., 2014); (Roy et al., 2013) and
CALCS (Aguilar et al., 2018), which have focused
mostly on core NLP tasks. Additionally, other re-
searchers have provided datasets such as humor
detection (Khandelwal et al., 2018), sub-word CS
detection (Mager et al., 2019) among others. More
recently new CS benchmarks (Aguilar et al., 2020)
(Khanuja et al., 2020) have been developed to com-
pare models across language pairs, domains and
general language processing in CS.

Pretrained Models for CS: Before the advent
of pretrained multingual models, pretrained mono-
lingual models were combined in different ways
to derive word embeddings (AlGhamdi and Diab,
2019; Pratapa et al., 2018), POS tagging (Bhattu
etal., 2020), sentiment analysis (Singh and Lefever,
2020) etc., Similarly, pretrained multilingual mod-
els have been explored on various CS tasks like
language identification, POS tagging, NER, ques-
tion answering and Natural language inference
(Khanuja et al., 2020). However, (Winata et al.,
2021) show that these pretrained models do not
assure high quality representations on CS. We ex-
amine prospective reasons for this and present a
data augmentation technique to mitigate this.

Motivation for our work - Gaps in CS adapta-
tion: Building off the prior work, we will briefly
discuss primarily three techniques that demon-
strated usefulness in adapting models to CS. First,
non-standardization of cross-scripting (i.e, translit-
eration of words to another language) is identified
as one of the major reasons behind the noisiness of
CS datasets (Chandu et al., 2019). Prior literature
on noisy texts proved the superiority of charac-
ter level modeling to combat this problem (Cherry
et al., 2018); (Adouane et al., 2018). Secondly,
the domains of most of these noisy datasets are
still vastly scattered. In order to improve general-
ization in CS patterns, prior studies have shown
the potency of multitasking with an auxiliary task
of language tag prediction (Winata et al., 2018).
Thirdly, the dearth of annotated CS data has been
a dramatic problem across tasks. (Bhattu et al.,
2020) compare pretrained models with fined-tuned
models augmented with unlabeled Twitter text to

Notation Task  # Sentences
EnHi-Tw-P  POS 1489
EnHi-UD-P POS 1311

Corpus
Twitter (Singh et al., 2018a)
UD (Bhat et al., 2018)

ICON (Jamatia et al., 2016) EnHi-I-P POS 2630
ICON (Jamatia et al., 2016) EnBn-I-P POS 625
ICON (Jamatia et al., 2016) EnTe-I-P POS 1979

Miami (AlGhamdi et al., 2019)
Twitter (Singh et al., 2018b)
CALCS (Aguilar et al., 2019)

EnEs-M-P POS 27893
EnHi-Tw-N  NER 1243
EnEs-Tw-N  NER 50757

Table 1: Details of CS datasets & training sizes

exemplify the improved performance with the lat-
ter model. Despite these takeaways, the usefulness
of the three points above is not thoroughly inves-
tigated in the context of pretrained models for CS.
To this end, we adapt these techniques in conjunc-
tion with the pretraining strategies and propose a
novel bias-based data iterative augmentation tech-
nique to get more bang for the buck in terms of the
performance to augmented dataset size ratio.

3 Benchmarking Multilingual Pretrained
Models

3.1 Datasets and Models

We selected datasets from LinCE(Aguilar et al.,
2020) and GlueCOS (Khanuja et al., 2020) bench-
marks for all our experiments. The details of
these datasets are presented in Table 1. We
present a comprehensive evaluation of different
BERT-based mono-lingual and multi-lingual pre-
trained models when adapted to the chosen CS
datasets/tasks. We performed sequence tagging on
different transformer models: (a) We use the un-
cased base implementation of BERT and mBERT
(Devlin et al., 2018) (b) Distill mBERT (Sanh
et al., 2019), (c) XLM-RoBERTa (Conneau et al.,
2019) trained using knowledge distillation and (d)
Char-BERT (Boukkouri et al., 2020) that employs
Character CNN to capture unknown and misspelled
words. Motivated by prior works on multi-task
learning (Chandu et al., 2018; Li et al., 2020), we
also experiment with language-aware modeling. In
these experiments, we added a language token ei-
ther as the input encoding or output prediction.

3.2 Analysis of Benchmarking

The results for the aforementioned experiments are
presented in Table 2. The baseline in this table
indicates the current state-of-the-art models on re-
spective datasets as cited in the table. Here are our
main observations from these results.

o Multi-task Learning did not help much: Despite
the effectiveness of multi-tasking in non-pretrained
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Model Part-Of-Speech tagging Named Entity Recognition
EnHi-Tw-P  EnHi-UD-P  EnEs-M-P  EnHi-I-P  EnBn-I-P  EnTe-I-P | EnHi-Tw-N  EnEs-Tw-N
Baseline 91.03 (A) 90.53 (B) 95.39(B) 85.26 (C)  77.15(C) 74.88 (C) | 78.21 (B) 69.17 (B)
eng-BERT 84.01 82.12 91.77 80.55 75.78 76.11 65.93 55.12
M-BERT 89.27 87.67 93.12 86.38 80.74 79.01 74.2 60.12
M-BERT (lang-input) 89.74 87.96 93.65 86.99 81.67 78.55 75.38 61.46
M-BERT (lang-output) 88.89 86.47 92.89 85.65 81.17 76.13 74.01 60.20
Distill M-BERT 90.28 88.19 93.65 86.92 82.07 79.85 67.26 62.67
XLM-ROBERTa 90.74 89.88 95.34 86.24 80.58 75.83 73.34 66.12
char-BERT 90.89 90.23 96.88 87.11 8221 80.33 77.24 65.72
char-BERT (lang-input) 91.02 90.93 97.01 87.24 82.87 82.52 77.43 66.34
char-BERT (lang-output) | 90.25 89.29 96.25 86.39 82.47 80.98 77.12 66.01

Table 2: Performance of different multilingual models for various POS tagging datasets (Accuracy), NER (F1) in
single , multi-task setting (language at input/output). Results are reported for datasets- (A) (Aguilar and Solorio,

2020), (B) (Khanuja et al., 2020), (C) (Bhattu et al., 2020)

(models trained from scratch) CS modeling, vast
improvements are not observed upon finetuning
pretrained with multitasking objective.

o Improvement with Char-BERT: We observe that
Char-BERT gives significant improvement in POS
specifically for Indic sets: English-Bengali and
English-Telugu. On others, its performance is com-
parable to current SOTA with mBERT or XLM-
RoBERTa. Although the languages in the pretrain-
ing of mBERT include the language pairs of con-
cern here, we do not observe benefits from this
model as the training data mostly includes data
from the script of the source language. For exam-
ple, training on Devanagari Hindi does not neces-
sarily translate its ability to understand the cross-
scripted and usually Romanized CS texts.

e Performance at switch-points: We further inves-
tigated the performance at switch-points which dis-
tinguishes CS from monolingual texts. We demon-
strate this for EnHi-Tw-P in Figure 1, where the
validation accuracy of switching from English to
Hindi (en — hi) is relatively much lower com-
pared to switching from Hindi to English (hi —
en). We observe this pattern to be consistent across
the datasets in Table 3 and propose a solution to
address this in the next section.

4 Switch-Point biased Self Training

As observed in the previous section, performance
of the models deteriorates at the switching points
(Chatterjere et al., 2020) in CS. This motivates our
approach to tackle this problem which can be stated

concretely as:
The pre-trained model favors embedded-to-matrix
over matrix-to-embedded language switching
points despite majority of training data in the
former pattern.

We demonstrate this by comparing Figure 1(a)
and Figure 1(b) for the case of EnHi-Tw-P. They

= en->hi
Bm hi->en
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s hi->en
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Figure 1: (a) Count and (b) accuracy over val set for
different portions or percentages of training data (EnHi-
Tw-P) for both switch-points (SP)

present the counts and val accuracy with the in-
creasing percentage of train set on the x-axis to
demonstrate the consistency of this pattern. As we
can observe, the number of samples with switch
points from en — hi is higher than that of hi — en
(Fig 1(a)). However, the performance on switch
points from en — hi is relatively much lower than
the counter part (Fig 1(b)).

Algorithm 1 Switch-Point biased Self Training (selfTr)

Input: Annotator Model A(#), Labeled Data D!, Unlabeled
Data D

Output: Trained End-Task Model £ (qb/)

. Fine-tune &£(¢) on D

2. s < Identify the low-performing switch-point

3. DY < Sub-sample data from D* with higher ratio of s

4. D¥! + Annotate D with A(G,)

5. A(Gl) < Fine-tune A(#) on D! + D'

6

7

—_

. 8((;3/) 4+ Train £(¢) on D! + D'
. Repeat Steps 2 to 6 by updating A(@l) and 5((;5/)

We posit that a switch point specific fine-tuning is
required to combat this imbalance. Our proposed
approach is depicted in Algorithm 1. The baseline
for each task is the char-BERT model fine-tuned on
the task-specific data, which is referred as end-task
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Biased Overall X —en en — X
Model Annotator | Acc. F1 Acc. F1 Acc. F1
POS-en-hi - 89.84 8521 | 8791 86.11 | 82.62 80.23
POS -en-hi-random | - 89.29 85.11 | 88.78 87.23 | 82.40 80.11
POS-en-hi-selfTr en — hi 8991 85.16 | 87.27 86.34 | 84.38 85.01
POS-en-es - 96.88 96.25 | 93.82 90.97 | 88.59 85.38
POS -en-es-random | - 96.91 96.21 | 94.10 90.12 | 88.04 84.32
POS-en-es-selfTr en — es 97.05 96.41 | 95.51 9342 | 90.6 88.12
NER-en-hi - 9545 75.18 | 96.92 84.84 | 93.21 77.41
NER-en-hi-random | - 9542 75.12 | 97.05 86.12 | 93.09 76.65
NER-en-hi-selfTr en — hi 9541 75.02 | 95.89 78.78 | 95.02 80.70
NER-en-es - 93.00 65.72 | 83.28 47.73 | 93.35 58.19
NER-en-es-random | - 93.10 6595 | 84.25 49.22 | 94.10 59.67
NER-en-es-selfTr es — en 93.12 66.34 | 86.13 56.62 | 94.58 62.29

Table 3: Results of our switch point biased self training (selfTr). Here the annotator model is trained on subset of
data which is more biased towards lower-performing switch point. The biased annotator model is trained using a
subset of the data with the switch point shown in the table. X refers to the language which is mixed with English.

model £(¢).

Our first step is to compute switch point ratios.
We computed the percentage of switch points from
En->X (say a) and from X->En (say b) on the unla-
beled data. We then compute s=a/b. If s<1, we bias
our annotator model by training with the sentences
that has ‘s greater than 1’ i.e biased to En->X data,
otherwise, we train it with the sentences that has ‘s
lesser than 1’ i.e biased to X->En data. In this way,
our annotator model is biased to favor annotations
on low-performing switch-point and is further used
to annotate the unlabeled dataset.

We then identify the low-performing switch
point and derive the Annotator Model A(f) with
the labeled subset of the low-performing switch
point (s) from the dataset. This annotator model
is now biased to favor annotations on this s to in-
crease its bias for further annotations. We leverage
a vast amount of unlabeled dataset D*. The un-
labeled data is gathered from the validation and
test subsets of the standard datasets (from Table
1) without considering the true labels. We use the
raw samples i.e., sentences and annotate them us-
ing the annotator model. Based on the amount of
samples available, we iteratively annotate and add
samples to our original training dataset with our
switch-point bias based self training.

The underlying annotator model can be any of
the large scale pretrained models that we experi-
mented with in the previous section. We choose to
use char-BERT as our annotator model. This an-
notator model is used to annotate the subset of the
unlabeled data with sequence tags. This weakly an-
notated noisy data is now augmented to the labeled
dataset. Both the annotator model and the end-
task model are now finetuned with this augmented

dataset. This iterative data augmentation process
repeats until the performance stops degrading.

4.1 Results

Adding the annotated data via switch point based
self training helps the model better learn at low-
performing code switching points. In Table 3,
we evaluate this technique on 4 different datasets
where we train both our model and annotator by
fine-tuning a character-BERT model (as we ob-
served improvements with this model in Section
3.2). Note that X refers to the language which is
mixed with English. We can see that among the
char-BERT baseline (first row in each segment of
the table), the performance is highly biased both
in terms of F1 and accuracy towards: (i) switch-
ing to English (X — en switch point) in the first
3 segments, and (ii) switching to Spanish (en —
X switch point) in the last segment. Accordingly
we train annotator models described above and
augment the training data. To evaluate the effec-
tiveness of our approach, we also compare these
results to the case when annotator model is up-
dated by training with augmented data selected ran-
domly of the same size. It can be seen that our bias
based approach performs better than uninformed
random data augmentation for training. Our ap-
proach demonstrates consistent improvements at
the low-performing switch points. The difference
in switch-point F1 scores between X — en F1 and
en — X F1 compared between the baseline char-
BERT and our approach is reduced by a margin
of 5%, 3%, 6% and 5% on POS English-Hindi
(Singh et al., 2018a), POS English-Spanish (Al-
Ghamdi et al., 2019), NER English-Hindi (Singh
et al., 2018b) and NER English-Spanish (Aguilar
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Sentence enjoying garam

LID en hi

Ground Truth Labels verb adj

Random Annotator verb adj

Switch-point Biased Annotator | verb adj

garam

hi
adj
adj

adj

alu paratha and kullad ki chai

hi hi en hi hi hi

noun noun conj noun adp noun

noun noun conj adj adp noun

noun noun conj noun adp noun

Figure 2: Example of model predictions from Random Annotator model and Switch-point biased Annotator model. (Meaning
of the example sentence: Enjoying hot potato bread and kullad tea.)

et al., 2019) respectively. In this way, we also
improved the overall accuracy and F1 in 3 and 2
datasets respectively, while the scores remained al-
most the same for 1 and 2 datasets correspondingly.
Figure 2 presents an example sentence from
Hindi-English code-switched POS data along with
language ids along with ground truth labels and
predictions. The random annotator model incor-
rectly predicts ‘kullad’ as adj when transitioning
from English to Hindi (en — X). Our switch-point
biased based model correctly labels this word.

Analysis: An inspection of pretrained models re-
vealed different types of errors: (a) Errors on NUM
when the numerals were in Hindi and (b) Confu-
sion between the classes PROPN and N (c) Errors
due to misspelled words and (d) logical errors due
to ambiguous sentences. In general we observed
some noise in the dataset labels itself.

We also conducted a categorical error analysis
of the performance on one of the language pairs
that is Hindi-English data. In this language mix-
ing, for example, we noticed that when switching
from X — En, the errors are significantly higher for
Proper Nouns (~99%) and Interjections (~99%)
as compared to other POS tags, while the reverse
is the case for Determiners (~98%) and Particles
(~94%). The numbers in the brackets indicate the
‘absolute difference’ of accuracies between En —
X and X — En for predictions of the corresponding
POS tag. This means that Proper Nouns and In-
terjections are more difficult to tag when switched
from Hindi to English, but the same pattern is not
observed when switched from English to Hindi.

5 Conclusions

CS, despite being a natural and prevalent form of
communication is still vastly understudied in em-
pirical research. This mainly stems from the (1)
lack of efforts in re-purposing the celebrated pre-
trained models to CS scenarios and (2) lack of
annotated resources. We tackle precisely these 2

problems with the main focus on evaluating and
improving how these models fare at switch points
between languages. First, we benchmark a suite
of monolingual and multilingual pretrained models
on CS and identify that particular switch points
fare poorly. We propose a novel switch point bias
based self training method to strategically use unla-
beled data to enhance performance at switch points.
While improving or retaining the overall perfor-
mance compared to finetuning char-BERT and mul-
titasking, we show that our approach improves the
performance of underperforming switch points as
well. We believe that this bias based augmentation
technique particularly helps in scenarios with less
annotated data.

6 Broader Impact

We believe that this work is a step towards effac-
ing the hesitation of utilizing large scale pretrained
mono and multilingual models for code-switched
scenarios. We were able to successfully demon-
strate the utility of a switch point based annota-
tor model to perform biased data augmentation.
We do not foresee any immediate ethical concerns
branching directly from our work. However, we
cautiously advise anyone using or extending our
work for their application or research to bear in
mind that we inherit any kinds of biases and tox-
icity and privacy concerns that the pretrained lan-
guage models bear. Although our end tasks are not
directly affected forthwith due to these, we still rec-
ommend caution when our self training approach is
used for other tasks especially with user interaction
such as dialog response generation etc., to ensure
the model does not predict toxic content. Overall,
we expect the users to benefit from our research to
prospectively apply this to scenarios where there is
a dearth of annotated resources, thereby economiz-
ing on annotations cost and efforts and enabling
scaling up to a wealth of crawled data, if available
in those language-pairs.
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A Experimental Setup

In the majority of our approaches, we perform task
adaptive fine-tuning on BERT, mBERT , XIL.M-
Roberta and character BERT for few epochs on
an Nvidia GeForce GTX 1070 GPU. We primarily
used Pytorch and Huggingface library for imple-
menting different models. We experiment with

e batch sizes of 8,16, and 32

e learning rates between le-5 and 5Se-5.

For some models, we observed variation in per-
formance on test set based on subset of data used
for training. To overcome this, we did 5 fold cross
validation where there were no pre-defined train,
dev and test data splits.

B Comparing pre-trained Models

Distillation seems to help compared to the corre-
sponding full model. When finetuned for CS cases,
distilled variants of BERT and mBERT performed
significantly better than their pre-trained counter-
parts. We plan to investigate the reason behind the
mixed results in future work.

C Benchmarking Arabic-English

We observed a similar trend in the benchmark-
ing experiments for Arabic-English code-switching
case as well. We performed NER using the dataset
by (Molina et al., 2019). These results are shown in
Table 4. We observe that a finetuned BERT model
is already much better than the previous state-of-
the-art model on the dataset. The M-BERT model
further improves this score. However, distilled M-
BERT did not show the same improvements as was
shown on some other datasets. The trend with dis-
tilled models does not seem to be consistent (as
discussed in Section B), and we believe that further
investigation is needed to understand the reasons
behind this performance. We do not include this
in the results for benchmarking in Table 2. This
is because we could not comprehensively compare
the multitasking model with the rest of the models
due to the lack of gold label annotations for this
dataset (The remaining datasets compared in Table
2 were annotated with lexical level language ids as
well). Finally, while char-BERT showed improve-
ments both over the state of the art model and the
finetuned BERT, it did not give the same improve-
ment over the latter. We believe this needs further
investigation as well.

Model Named Entity Recognition
msa-ea-N
Baseline 71.61
eng-BERT 74.13
M-BERT 79.73
Distill M-BERT | 77.28
XLM-ROBERTa | 77.68
char-BERT 74.46

Table 4: Performance of different multilingual models
on MSA-EA (Molina et al., 2019) dataset.

D Self-Training Experiment Details

We show incremental model performance as we
augment training data with batches of un-annotated
data in Table 5. As we can observe from the table,
the performance of the models increase and then
decline after a point when further augmented. We
believe the reason behind this is that we are overly
biasing the model with this switch point beyond a
certain level when the performance starts flipping
towards decline. The optimal point of this iterative
augmentation with self training is achieved before
the flip in the overall performance.
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Biased Sentences Overall X —en en — X
Model Annotator | Added Acc. F1 Acc. F1 Acc. F1
POS-en-hi - - 89.84 85.21 | 87.91 86.11 | 82.62 80.23
POS-en-hi-selfTr | en — hi +400 89.89 85.32 | 87.727 86.23 | 83.13 82.11
POS-en-hi-selfTr | en — hi +400 89.91 85.16 | 87.27 86.34 | 84.38 85.01
POS-en-es - - 96.88  96.25 | 93.82 90.97 | 88.59 85.38
POS-en-es-selfTr | en — es +150 97.01 96.29 | 94.15 91.02 | 89.66 87.01
POS-en-es-selfTr | en — es +150 97.05 96.41 | 95.51 9342 | 90.6 88.12
NER-en-hi - - 9545 75.18 | 96.92 84.84 | 9321 77.41
NER-en-hi-selfTr | en — hi +100 9571 77.44 | 96.92 83.11 | 93.66 77.96
NER-en-hi-selfTr | en — hi +100 95.57 77.01 | 96.41 83.87 | 94.57 80.70
NER-en-hi-selfTr | en — hi +100 9541 75.02 | 95.89 78.78 | 95.02 80.70
NER-en-es - - 93.00 65.72 | 83.28 4773 | 93.35 58.19
NER-en-es-selfTr | es — en +500 93.32 65.84 | 83.89 50.62 | 9398 60.29
NER-en-es-selfTr | es — en +500 9343 66.14 | 84.75 53.54 | 93.5 60.89
NER-en-es-selfTr | es — en +500 93.12 66.34 | 86.13 56.62 | 94.58 62.29

Table 5: Results from Switch point biased self training. X refers to the language which is mixed with English.
Iteratively # number of sentences are added to training set.
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