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Abstract

Meta-learning algorithms such as MAML,
Reptile, and FOMAML have led to improved
performance of several neural models. The
primary difference between standard gradient
descent and these meta-learning approaches is
that they contain as a small component the
gradient for maximizing dot-product between
gradients of batches, leading to improved gen-
eralization. Previous work has shown that
aligned gradients are related to generalization,
and have also used the Reptile algorithm in a
single-task setting to improve generalization.
Inspired by these approaches for a single task
setting, this paper proposes to use the finite
differences first-order algorithm to calculate
this gradient from dot-product of gradients, al-
lowing explicit control on the weightage of
this component relative to standard gradients.
We use this gradient as a regularization tech-
nique, leading to more aligned gradients be-
tween different batches. By using the finite dif-
ferences approximation, our approach does not
suffer from O(n?) memory usage of naively
calculating the Hessian and can be easily ap-
plied to large models with large batch sizes.
Our approach achieves state-of-the-art perfor-
mance on the Gigaword dataset, and shows
performance improvements on several datasets
such as SQuAD-v2.0, Quasar-T, NewsQA and
all the SuperGLUE datasets, with a range of
models such as BERT, RoBERTa and ELEC-
TRA. Our method also outperforms previous
approaches of Reptile and FOMAML when
used as a regularization technique, in both sin-
gle and multi-task settings. Our method is
model agnostic, and introduces no extra train-
able weights.

1 Introduction

Meta-learning algorithms such as MAML (Finn
et al.,, 2017), FOMAML, and Reptile (Nichol
et al., 2018), which modify gradient descent by
effectively differentiating through it, have lead
to performance improvements on several datasets
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such as MinilmageNet (Vinyals et al., 2016), Om-
niglot (Lake et al., 2011) and Java Github Cor-
pus (Allamanis and Sutton, 2013). When used
in a single-task setting, the only significant differ-
ence between these algorithms and standard SGD
is that the meta-gradient from these algorithms also
contains as a component the gradient for maximiz-
ing the dot-product between gradients for exam-
ples/batches, as was theoretically proven in the
Reptile paper.

The Reptile algorithm has also been lever-
aged to improve single-task performance across
a range of models and tasks, such as in Kedia
and Chinthakindi (2021). Second-order meth-
ods for aligned gradients have been explored be-
fore in the context of continual learning, such as
in Riemer et al. (2019), Lopez-Paz and Ranzato
(2017), Chaudhry et al. (2018). Some recent work,
such as Fort et al. (2019), Chatterjee (2020), and
Yu et al. (2020) have also shown that aligned gra-
dients are related to improved generalization and
model performances. We conjecture that aligned
gradients in single-task settings will also improve
learning across examples, enabling better transfer
from one example to another, similar to as often
done in continual/multi-task approaches such as
Riemer et al. (2019).

However, a naive approach to directly maximize
the dot-product of gradients requires a calculation
of the Hessian Matrix, which scales as O(n?) in
memory usage where n is the number of model pa-
rameters. This approach also fails to work with gra-
dient accumulation, leading to a hard limit on the
batch size, reducing training accuracy. Even though
some recent works such as Anil et al. (2020) have
tried to make this tractable using large distributed
environments, the computation costs are extremely
high for any reasonably large model. Approaches
like the Hessian-Vector Product (Pearlmutter, 1994)
also do not work with gradient accumulation.

Inspired by the above approaches and to fix the
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aforementioned issues, we propose to explicitly cal-
culate the gradient for maximizing the dot product
between batches using a first-order approximation.
We use this gradient as a regularizing term, and
show that it results in improved performance across
a range of models and tasks. Our main contribu-
tions are-

» Use the first-order finite differences method
(Smith et al., 1985) to explicitly calculate the
gradient from the dot-product of gradients.

* Utilize the above gradient to regularize the
training of models in single task settings.

* Leads to significant performance improve-
ments across a wide range of tasks and
datasets such as SQuAD-v2.0, Quasar-T and
all SuperGLUE datasets. Achieves State-of-
the-art performance on Gigaword.

* Outperforms previous approaches such as
Reptile and FOMAML in single-task as well
as multi-task setting.

* Is model agnostic, with no extra trainable
weights.

* Improves performance across a range of
model sizes and pre-training, such as BERT,
ELECTRA, RoBERTa, and for small, base
and large models.

2 Proposed Method

2.1 Background on Reptile and MAML
Algorithms

MAML The MAML algorithm, initially in-
tended for multi-task few-shot learning, proposed
to do k steps of “inner” gradient updates, after
which the loss was computed and minimized on the
(k1) batch, with respect to the original weights
before the £ inner steps. The gradient from this loss
is then used for an “outer” update to the original
weights. This requires differentiating through the
optimizer, and is a second order method.

FOMAML The authors of MAML also pro-
posed FOMAML, which is a first order approx-
imation of MAML bypassing the differentiation
through the optimizer. This method also achieves
significant improvement compared to vanilla learn-
ing algorithms.

Reptile The Reptile algorithm is similar to FO-
MAML, and also does k inner steps of gradient
updates. For the outer update, Reptile uses the dif-
ference between the original weights and the inner
weights as the gradient. The Reptile paper showed

P =, - G
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e

Figure 1: Our proposed algorithm: Calculating the
gradient for maximizing dot product using finite-
differences approximation, and using it for regulariza-
tion of standard gradient.

that the gradient for all these 3 approaches is simi-
lar to vanilla SGD, except for a small component
which maximizes dot-product between batches -

GReptile - (k>Gavg - (%k(k - 1))Glnner
where G4 is the expected SGD gradient from
a batch, « is the inner-step size, and Gpper 1S
the gradient for maximizing dot-product between
batches. The gradient is similar for MAML and
FOMAML, only differing in the constants. But
this approximation is only valid for small c, which
reduces the ability of G,per to regularize the train-
ing. By computing Gnner explicitly, we aim to
overcome this limitation.

2.2 Our Approach: Meta DotProd

Our proposed regularization scheme is inspired by
the inner loop of the Reptile algorithm, and uses
the finite-differences method to approximate the
Hessian-vector product. Algorithm 1 shows how to
calculate the gradient for maximizing the dot prod-
uct of gradients using the finite differences method
applied to an SGD optimizer. Essentially, we calcu-
late the gradients G and G5 from batches b; and
ba, and then temporarily update the network param-
eters with o x G1. Then we calculate Go,1 with
batch bs again with the new network parameters
and use this gradient to calculate the dot product
gradient G1Gb.

Once this gradient of dot product is calculated,
unlike Reptile and FOMAML, we can explicitly
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control its relative weight by adjusting the hyper-
parameter LRg, G, -

Algorithm 1: META DOTPROD
Input: Batches B = {by, b1, . ..
LR = Learning Rate
LRg, g, = Weight of G1.Go grad
00,0 = Network Weights
« = A small constant
Output: Final fine-tuned ¢
fori < 0to |n/2] do
G1 < grad from 6; o(bix2)
G2 < grad from 6; o(bix2+1)
91‘71 — 92'70 — Qv k CTl
G271 — grad from Hi,l(bi*QJrl)
GlGQ — ((GQJ — GQ)/O&)
G (71 + (TQ + LRG1G2 * G1G
9i+1,0 — 01‘70 —LR+G

return 6, /5|41 0

;on}

The last line of the algorithm is the SGD up-
date, which can be substituted by any other op-
timizer. In our experiments, we use the origi-
nal model’s default optimizer, which range from
SGD to Adam (Kingma and Ba, 2015) to AdaFac-
tor (Shazeer and Stern, 2018).

Gradient accumulation, if any, can be stored in
G1, G2 and Ga 1 before applying this algorithm.
The compute and storage needed for our method
scales linearly with model size (approx. 50%), al-
lowing us to apply this to large models such as
BERT, with significantly smaller overhead com-
pared to calculating the Hessian. This overhead
can be reduced to 10% without significantly im-
pacting our method, as we show in subsection 6.3.

3 Theoretical Analysis

In this section, we provide a theoretical analysis of
our meta update of the Meta Dot Prod algorithm.
We generalize the Taylor expansion approach as
used in Nichol et al. (2018), and show how our
approach maximizes inner product of gradients be-
tween different mini-batches. This approach is
essentially the expectation of the finite differences
method over stochastic mini-batch sampling for cal-
culating the Hessian-Vector product, but we present
it here for clarity.

We consider two input batches by, by at the be-

ginning of i* step. For j € {0, 1} we define -

0;.0 = network weights before ith step,
L; 1 = loss function corresponding to b,
Gjp1= L1 (0),
Git1 = L; 4+1(0i0), (gradient at initial point)
Hjy1 = L5, (0:5), (Hessian of b;)
Hj1 = L} 1(0i0),

« = A small constant,

(gradient of b;)

(Hessian at initial point)

Then, our update rules are -

0;1 = 0;0—axGy, (D
Goq = Ga(0;1) = Ga(bi0 —axGy)  (2)

Using the first order Taylor expansion of G4, we
get -

G2 =Gy —aGiHy +0(a®),  (3)
G211 — Ga S
(2’1a2) = —G1H; + O(0), @)
For small o, we can ignore the terms involving
O(ca?) in (3). This term becomes O(«) in (4), but
it is still @« = le~7 times smaller than G Hy and
hence can be safely ignored.
Under the expectation of stochastic mini-batch
sampling, E[G1Hs] = E[G2H;], and the above
equation (4) becomes -

giving exactly the gradient for maximizing the dot
product between the gradients.

Note that the above approximation relies on «
being a small enough value - If « is too large, the
approximation breaks down, and the performance
improvement decreases. This is particularly rele-
vant as the relative weight of G1.G> component in
the Reptile and FOMAML algorithms is directly
proportional to this « - limiting the ability to ad-
just the importance of G1.Go, and hence limiting
performance, as we will show in section 5.
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Corpus | Task | |Train| | [Dev]|
BoolQ | QA | 94K |3.2K
CB NLI | 250 57
COPA QA 400 100
MultiRC | QA 5.1K 953
ReCoRD | QA 101K 10K
RTE NLI | 25K 278
WiC WSD | 6K 638

Table 1: Description of datasets in SuperGLUE.

Corpus Task |Train| | |Test|
SQuAD v2.0 MRC 130K 12K
NewsQA MRC | 97K 5.4K
Quasar-T Long | MRC 263K | 2.1K
Quasar-T Short | MRC 254K | 2K
Gigaword Summ. | 3.8M 1.9K
Omniglot Img. 24K 8.4K
Mini-Imagenet | Img. 38K 12K

Table 2: Description of NLP and image datasets. For
SQuAD and Quasar-T, column 4 refers to validation.

4 Experimental Setup

4.1 Benchmark Datasets

We describe the dataset size and tasks for each of
our datasets in Table 1 and Table 2, and give a short
description below.

SuperGLUE A popular NLP benchmark, which
attempts to test various capabilities of language
understanding. It itself consists of 8 datasets -
Boolean Questions (Clark et al., 2019), Commit-
ment Bank (De Marneffe et al., 2019), Choice of
Possible Alternative (Gordon et al., 2012), Multi-
Sentence Reading Comprehension (Khashabi et al.,
2018), Reading Comprehension with Common-
sense Reasoning (Zhang et al., 2018), Recogniz-
ing Textual Entailment (a combination of datasets
from Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009; Po-
liak et al., 2018), Word-in-Context (Pilehvar and
Camacho-Collados, 2019) and Winograd Schema
Challenge (Levesque, 2011). We omit WSC in our
results as both BERT and RoBERTa gave trivial
degenerate results.

SQuAD v2.0 A popular span-style QA dataset,
consisting of passages from Wikipedia, with ques-
tions and corresponding answer spans and unan-
swerable questions.

Model Params | Speed
Conv-4 351K ~1K
Electra-small 16M 125
BERT-base-uncased 110M 45
BERT-large-uncased 340M 20
RoBERTa-large 340M 20
Pegasus-large 568M 10

Table 3: Models, number of network parameters, and
training speeds in examples/second on a V100 GPU.

Gigaword Gigaword (See et al., 2017) is an En-
glish summarization dataset with single-line input
documents from news sources, and the task is to
generate headlines.

Quasar-T An MRC retrieval dataset from Dhin-
gra et al. (2017), it consists of cloze-style queries
constructed from definitions on the website Stack
Overflow. It is split into queries with smaller con-
text documents (Quasar-T Short) and with longer
context (Quasar-T Long). We only use the subset
of the dataset in which the answer is an exact span.

Omniglot A dataset containing 20 hand-drawn
samples of characters from 50 different alphabets,
similar to the popular MNIST (Deng, 2012) dataset.
Similar to Finn et al. (2017), we use the first 1200
classes as train and the others as test.

Mini-Imagenet A dataset containing 100 ran-
dom classes from the ImageNet dataset (Deng et al.,
2009), resized to 84x84 images, each class having
600 examples.

4.2 Models

We describe the model size and speeds of all our
models in Table 3 and give a short description be-
low.

BERT BERT (Devlin et al., 2019) is a trans-
former (Vaswani et al., 2017) model, and its
derivatives and improvements are the backbone
of most state-of-the-art models in NLP. We use
the BERT-large-cased official implementation from
Jiant (Wang et al., 2019) for SuperGLUE, and the
official implementation of BERT-base-uncased and
BERT-large-uncased from Rajpurkar et al. (2018)
for SQUAD, and re-use the same for QUASAR-T.

RoBERTa Roberta is a model with the same ar-
chitecture as BERT, but the pre-training objectives
and parameters are selected more carefully, and
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Corpus | Metric BERT +Reptile | +DotProd | RoBERTa +Reptile | +DotProd
BoolQ Acc 77.5+0.1 | 77.0+ 0.2 | 80.0 +0.1 | 87.3+0.1 | 87.3+0.1 | 87.3 £ 0.1
CB F1 93.74+0.1 | 93.0+1.1 | 9424+0.1 | 87.7+£45 | 91.0+£3.2 | 975+ 1.0

Acc 93.8+0.5]935+0.7|952+06|926+1.8 | 940+1.5|97.7+0.8
COPA Acc 70.7+£13 | 708+14 | 734+ 14 75.5% | Diverged* 81.0*
MultiRC Fla 70.3+£0.2 | 70.0+£2 708+ 0.2 | 782+04 | 782£0.4 | 79.0 £ 0.1

EM 259403 [ 2474+05 (271404 | 440+£1.0 | 440+£1.0 | 455+03
ReCoRD F1 7204+0.2 | 7054+0.5 | 7254+0.2 | 88.0+0.1 | 879+ 0.1 | 879+ 0.1

EM 711 +£02 1 69.8+05 | 71.7+0.2 | 8.5+0.1 | 87.3+0.1 | 87.4 + 0.1
RTE Acc 734+03 | 73.8+05|741+04 | 82.7+15]783+53|854+04
WwiC Acc 739402 ] 7394+02 | 7394+0.1 | 726 £02 | 729+ 03 | 729+ 0.3

Table 4: Results on SuperGLUE datasets dev sets, with BERT-Large and RoBERTa-Large models, with BERT
hyper-parameters. * 7/8 runs of baseline ROBERTa did not converge for COPA, so we report the (only) best score.

with larger pre-training data. We use the offi-
cial checkpoints and hyper-parameters from Liu
et al. (2019) for SQuAD, and re-use the same for
Quasar. As the hyper-parameters for SuperGLUE
for Roberta are not available, we re-use the official
BERT hyper-parameters.

ELECTRA Electra (Clark et al., 2020) pre-
trains a BERT-like transformer model to discrimi-
nate between real and fake input tokens generated
by another smaller network. Models deriving from
ELECTRA achieve state-of-the-art performance on
arange of NLU tasks. We use the ELECTRA-small
official implementation for SQuAD.

Pegasus A state-of-the-art model for summariza-
tion tasks, Pegasus model has the standard base
architecture of encoder-decoder transformer, but is
pre-trained at the task of generating missing sen-
tences. We use the official model and parameters
(Zhang et al., 2020) for Pegasus for Gigaword.

Conv-4 A convolution network, with 4 blocks of
conv2d, batch normalization and relu activation,
followed by a dense layer with heads for classifica-
tion. We use the official model from Nichol et al.
(2018) for all our experiments on Omniglot and
Mini-ImageNet.

4.3 Implementation Details

We train each corresponding model 8 times on each
dataset’s training set (5 on SQuAD) and report the
mean and standard error of these scores. We use
one Nvidia V100 for all our experiments (8 for
gigaword). As our algorithm is first order, it incurs
a linear performance overhead compared to the
original model. All experiments run in less than
a day, except for Gigaword, MultiRC, ReCoRD

and Omniglot-20-way, which run in a few days.
As the test sets are hidden for SuperGLUE and
SQuAD, we provide results on the dev set instead.
We provide dev set results on Quasar-T as well as
we use only the subset mentioned above. We only
evaluate once on the Gigaword test set, and hence
no standard error is provided.

Hyper-parameters Details of all default/official
model hyper-parameters for each model/dataset,
can be found in their source codes, whose links
are available in the supplemental material. Wher-
ever official hyper-parameters are not available, we
have re-used hyper-parameters from other similar
models/datasets, as described in subsection 4.2.

Except in the ablation study for LRg, g,, we use
a fixed value of o as le™" and LRg, g, as 0.1 for
all our experiments. o was chosen as this value as
it has to be small for the first order approximation
to hold. LR¢, ¢, was chosen as 10% of the stan-
dard gradient so as to not overshadow the standard
gradient for the task, while still providing enough
gradient to maximize dot product. We keep k for
Reptile and FOMAML as 4.

5 Results

5.1 Results on SuperGLUE datasets

As shown in Table 4, our method consistently
improves the performance of both BERT and
RoBERTa models on all SuperGLUE datasets. For
the BERT model, we show performance gains of
2.5, 1.5, 2.7 and 0.7 in accuracy on BoolQ, CB,
COPA and RTE, and 1.2, 0.6 in EM on MultiRC
and ReCoRD. With RoBERTa model, we also ob-
serve significant performance improvement of 5
and 3 in accuracy on CB and RTE, and 1.5 in EM
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Corpus Metric Baseline  +Reptile +DotProd RoBERTa +Baseline +DotProd

SQUAD F1 80.6£02 81.0+02 819+02 88.6+0.1 88.7+0.1 889+0.1
EM 77702 780%+0.1 789+£0.1 853+£0.1 855+0.1 85.7+0.1
Table 5: Results on the SQUAD v2.0 with BERT and RoBERTa models respectively.

Metric Pegasus +Reptile +DotProd show the results of using DotProd on Electra-small,

R-1 39.7 39.8 40.6 BERT-base and RoBERTa-large on SQuAD dataset.

R-2 20.5 20.5 21.0 Our method improves performance across the en-

R-L 36.9 37.0 37.0 tire range of models with varying pre-training

Table 6: Results on Gigaword test set with PEGASUS.
R-1, R-2 and R-L refer to ROUGE-1, ROUGE-2 and
ROUGE-L respectively.

Dataset F1 EM
Quasar-T Long 753 +02 71.7+0.2
+DotProd 761+ 0.1 72.7+0.1
Quasar-T Short 81.9+0.2 78.14+0.2
+DotProd 82.6 £ 0.1 789 +0.1
NewsQA 62.6 £0.1 52.6+0.2
+DotProd 63.1+0.1 529+0.1

Table 7: Results on the QUASAR-T Long with BERT,
Quasar-T short with RoBERTa, and NewsQA with
BERT models respectively.

on MultiRC, with minor improvements on other
datasets.

5.2 Results on other datasets

As shown in Table 5, our method shows perfor-
mance gains of 1.3 in FI, and 1.2 in EM on
SQuAD with the BERT model. Our approach also
achieves state-of-the-art performance on the Giga-
word dataset, as shown in Table 6. Our approach
when applied on the baseline PEGASUS model
results in improvement of 0.9 in ROUGE-1, 0.5
in ROUGE-2 and 0.1 in ROUGE-L metrics. We
also show performance improvements on Quasar-T
dataset, of 0.8 in F1, and 1.0 in EM on the Quasar-
T (long) dataset compared to the baseline model
of BERT, and of 0.7 in F1, and 0.8 in EM on the
Quasar-T (short) dataset compared to the baseline
model of ROBERTa as we show in Table 7. Our
method also improves the score of the BERT model
on the NewsQA dataset by 0.5 in F1.

5.3 Results on varying model size and
pre-training

To demonstrate the effect of varying model size,
as well as improving pre-training, in Table 9 we

strategies and sizes. Furthermore, our method is
applicable on even larger models such as Pegasus
as shown previously, and on even smaller models
such as Conv-4, as we will show in the next section.

5.4 Comparison to other Meta-Learning
Methods - Few-Shot Multi-task Learning

While the focus of our approach is specifically on
single-task learning, we also evaluate our method
on few-shot multi-task learning on Omniglot and
Mini-Imagenet datasets as done in the Reptile and
MAML papers, to see the effectiveness of a higher
(G1 G5 compared to Reptile and MAML. As shown
in Table 8, our method shows consistent improve-
ments against Reptile and FOMAML on the Mini-
Imagenet dataset, with a performance gain of 2.53
and 2.77 in 1-shot 5-way and 5-shot 5-way classifi-
cation respectively against Reptile, and an improve-
ment of 1.53 and 2.36 in 1-shot 5-way and 5-shot
5-way classification against FOMAML.

We also observe consistent performance im-
provements of 2.19, 0.68, 1.81 and 0.87 against
the Reptile approach on 1-shot 5-way, 5-shot 5-
way, 1-shot 20-way and 5-shot 20-way classifica-
tions respectively on Omniglot dataset. When com-
pared against the FOMAML approach our method
achieves a performance gain of 0.38 and 0.55 in
5-shot 5-way and 1-shot 20-way classifications re-
spectively on Omniglot dataset. Note that the Rep-
tile scores and our Dot Prod scores are without
trasduction, whereas FOMAML reported scores
are transductive, which boosts FOMAML scores.

6 Ablation Studies

6.1 Comparison to other Meta-Learning
Methods - Single Task

In Table 10, we compare our method against the
Reptile algorithm and FOMAML, on SQuAD-v2.0
dataset with BERT-large model. Note that the dot-
product gradient component in Reptile and FO-
MAML is directly proportional to «, but o has to
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Method Mini-Imagenet Omniglot
1-shot 5-w | 5-shot 5-w | 1-shot 5-w | 5-shot5-w | 1-shot 20-w | 5-shot 20-w
Reptile 47.07+£0.26 | 62.74+0.37 | 95.39+0.09 | 98.9+0.10 | 88.14+0.15 | 96.65+0.33
FOMAML | 48.07£1.75 | 63.15+0.91 98.3+0.5 99.2+0.2 89.4+0.5 97.9+0.1
Dot Prod 49.60+0.18 | 65.51+0.26 | 97.58+0.08 | 99.58+0.02 | 89.95+0.05 | 97.52+0.05
Table 8: Few-shot Multi-task classification comparison of our method. n-W in the heading refers to n-way

classification. Note that FOMAML scores are with transduction, which boosts the scores. All scores are official

reported scores.
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Figure 2: Effect of infrequent regularization and re-
duced computation overhead on our method, with
BERT-large on SQuAD-v2.0 dataset.
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Figure 3: Effect of LR, ¢, on scores of BERT model
on SQuAD-v2.0 dataset. Note that the x-axis is on a
logarithmic scale.

Method F1 EM
Electra-small 71.5£0.1 | 68.9+0.1
+DotProd 71.9 + 0.1 | 69.3 £0.1
BERT-base 76.8+0.2 | 73.9 £0.2
+DotProd 774 +0.1 | 744 £ 0.1
RoBERTa-large | 88.6 £0.1 | 85.3 £ 0.1
+DotProd 88.9+0.1 | 85.7 £ 0.1

Method F1 EM
BERT 80.6£02 | 77.7£0.2
Reptile 81.0£0.2 | 78.0£0.1
FOMAML | 809 +£0.1 | 77.9 £ 0.1
DotProd 81.9+0.2 | 789 +0.2

Table 9: Effect of our method on varying the model
size and pre-training, from small to large, and from
BERT to Electra.

be small for the first-order approximation to hold,
representing a direct conflict which limits the per-
formance gains from these methods. Our method
does not suffer from this limitation, improving per-
formance.

6.2 Effectof LRg, g,

In Figure 3, we compare the effect of different
values of LRg, G, on SQUAD-v2.0 dataset with
BERT-large model. The ability to select a higher
weightage of G; G2 is indeed effective, improving
the performance of the model on both F1 and EM
scores. Furthermore, the performance improve-

Table 10: Comparison of our method to Reptile and
FOMAML methods on SQuAD with BERT-1arge.

ment is consistent over multiple orders of magni-
tudes of this parameter, from 0.1 to le~ 5, eliminat-
ing the need to fine-tune another hyper-parameter.

6.3 Effect of infrequent regularization

While algorithm 1 is first order, it introduces an
overhead of 50% in computation. In order to min-
imize this overhead, instead of computing G1Go
for every two batches, an alternative is to use stan-
dard gradient updates for some batches, and only
apply this regularization infrequently for a smaller
number of batches. We study the effect of this on
performance on SQuAD dataset with BERT-large
model, by applying our method every 2, 3, 5, 8 and
10 batches, with overheads 50%, 33%, 20%, 12%,
and 10% respectively. Even with only 10% over-
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Figure 4: Dot Product between Gradients of Batches.
Our algorithm significantly boosts the dot product be-
tween the batches, especially earlier in the training.

head, our regularization still results in significant
performance gains of 1.0 F1 and 0.9 EM, with the
improvement decreasing only slightly with reduc-
ing overhead.

6.4 Analysis of Gradient Dot Products

In Figure 4, we directly demonstrate that our
method is indeed effective in boosting the dot-
product between gradients while training. We com-
pare two runs of BERT with the same seed on
SQuAD-v2.0, and we plot the dot-product between
gradients of batches. To minimize the effect of
noise, we smoothen the plot by using a moving
window of 100 batches, and remove outlier points
more than 100 away from the mean. During train-
ing, while dot-product naturally decreases to zero
as the model converges (as also shown previously
in Fort et al. (2019)), our approach significantly
boosts the dot-product compared to the baseline,
remaining consistently around 50 — 100% larger
the baseline throughout the training period.

6.5 Discussion of Effects on Training
Dynamics

Training stability remains unaffected on all mod-
els/datasets we tried, and even improves slightly
on Mini-Imagenet and Omniglot. Compared to our
algorithm, the reptile algorithm appears unstable,
perhaps due to larger . Our DotProduct method
does not appear to make the model converge faster,
with the rate of decrease of loss remaining almost
identical to the baseline, but it does converge to a
slightly lower loss. While the value of LR, q,,
was kept fixed at 0.1 in our experiments, model con-
vergence remains unaffected upto around a value

of 1.

Higher values of this hyper-parameter may be
helpful depending on the dataset. For example, we
observed the scores on the QUASAR-Long dataset
are ever higher with LRq, ¢, set at 0.5, but we
do not tune this parameter for different datasets in
this paper. Also, while our algorithm is essentially
the finite differences method to calculate the Hes-
sian Vector product, we use the one-sided rather
than centered version of finite differences to reduce
compute overhead of our method.

7 Related Work
7.1 Transformer Models

Transformer models (Vaswani et al., 2017) are
the backbone of most state-of-the-art NLP models.
Models and pre-training techniques such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
ELECTRA (Clark et al., 2020) and Pegasus (Zhang
et al., 2020) have made large improvements in the
performance of NLP models. See subsection 4.2
for a detailed discussion of these models.

7.2 Meta-learning

Several works have explored Meta-learning, di-
rectly modify the learning process, such as by
differentiating through the optimizer, such as
MAML (Finn et al., 2017), Reptile (Nichol et al.,
2018), Andrychowicz et al. (2016), Chen et al.
(2017), giving performance improvements across a
range of datasets and tasks. See subsection 2.1 for
detailed descriptions of some meta-learning algo-
rithms. While these approaches were initially pro-
posed for few-shot multi-task learning, Kedia and
Chinthakindi (2021) utilized the Reptile algorithm
in single-task learning to improve generalization.
Our approach is inspired from Reptile, but unlike
Reptile, it gives us direct, explicit control over the
importance of gradients’ dot product.

7.3 Aligned Gradients

Previous works have explored alignments of gradi-
ents in the field of multi-task learning and continual
learning, such as in Riemer et al. (2019), Lopez-
Paz and Ranzato (2017), Chaudhry et al. (2018).
Unlike these approaches, our method is First Or-
der and does not require storing previously seen
examples. Some recent works such as Fort et al.
(2019) and Chatterjee (2020) also show that aligned
gradients between examples is related to improved
generalization and model performance.
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PCGrad (Yu et al., 2020) proposes to minimize
conflicting gradients by projecting only conflict-
ing gradients to a normal place, while leaving
aligned gradients unmodified, achieving signifi-
cant improvements in multi-task supervised and
RL tasks on image datasets. Fort et al. (2019) in
particular, proposed gradient alignment as a meta-
learning direction for future work, which this paper
explores.

8 Conclusion

We propose to use finite-differences to calculate
the gradient from the dot-product of gradients, and
demonstrate its effectiveness as a regularization
technique, leading to more aligned gradients be-
tween different batches. We leverage this approach
to show performance improvements on several
datasets such as SQuAD-v2.0, Quasar-T, and all the
SuperGLUE datasets, and achieves state-of-the-art
performance on Gigaword. Our method is effective
over a range of models and model sizes, such as
BERT, RoBERTa and Electra. Our method out-
performs the Reptile and the FOMAML algorithm
in single-task and few-shot multi-task settings, is
first-order, is model-agnostic, and can be used with
large models and large batches.
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A Comparison to Previously Published
Scores

A1 SQuAD

BERT The BERT paper reports scores of best-
performing model. The mean score is a more ro-
bust measure, given the significant variation when
fine-tuning BERT models, and hence we choose to
report mean scores. Below are the results of our
best performing model.

Method F1| EM

BERT (Devlin et al., 2019) | 81.9 | 78.7

+DotProd 83.16 | 80.28
Table 11: Comparison of our scores to published

scores on SQuAD with BERT.
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RoBERTa The RoBERTa paper reports a score
of 86.5 EM and 89.4 F1 on SQuAD. Using the
official parameters listed in the RoBERTa paper
and their official checkpoint, while using the of-
ficial SQuAD implementation of BERT, none of
our 5 runs crossed 86.0 EM score. This is likely
due to differences in handling unanswerable ques-
tions, long sequence length documents, etc. We
report our reproduced scores in our main paper us-
ing the official SQuAD implementation of BERT
with RoBERTa hyperparameters.

ELECTRA The Electra paper does not report
SQuAD scores for Electra small. We report the
reproduced scores using the official Electra github
source code with default hyper-parameters. Note
that Electra github reports a median score of 70.1
EM for Electra small, but none of our runs reached
this performance, even on running 15 runs using
fully official code and checkpoints.

A.2 SuperGLUE

Below we compare our reproduced BERT Super-
GLUE scores to scores published in previous work.

Method Score
BERT (our paper) 72.7
BERT (Du et al., 2021) 72.0
BERT (Pilault et al., 2020) 68.9
BERT + DotProd 73.9
RoBERTa (our paper) 79.6
BERT (Du et al., 2021) 81.5
BERT (Pilault et al., 2020) 76.5
BERT + DotProd 82.0
Table 12: Comparison of reproduced scores to pub-

lished scores on SuperGLUE.

A.3 Quasar-T

We only use the subset of the dataset in which the
answer is an exact span, as mentioned in our main
paper. As this is a non-standard subset, we report
our reproduced scores.

A4 Gigaword

We report the official scores from Pegasus github
for “Mixed & Stochastic” model as our baseline.
Note that these github scores are higher than those
reported in the Pegasus paper.

"The command used was - python3 run_finetuning.py

—data-dir DATADIR —model-name electra_small —hparams
‘{"model_size": "small", "task_names": ["squad"]}’

A.5 Omniglot and MinilmageNet

We report the official scores from the Reptile and
MAML papers.

B Links to Source code

For SuperGLUE, we use the Official Im-
plementation for BERT and RoBERTa avail-
able at https://github.com/nyu-mll/
jiant, along with the default pre-trained mod-
els.

For SQuAD, QUASAR and NewsQA, we
used the official implementation and pre-
trained models at https://github.com/
google-research/bert for BERT and
the official pre-trained models from https:
//github.com/pytorch/fairseq/
tree/master/examples/roberta for
RoBERTa.

For Pegasus, we used the official implemen-
tation and “Mixed & Stochastic” pre-trained
model weights at https://github.com/
google-research/pegasus.

For Omniglot and Mini-Imagenet,
we used the official code from Reptile
here https://github.com/openai/
supervised-reptile

The DotProd Optimizer is trivial to implement
in all of the above models following the pseudo-
code from our the main paper, by modifying the
Optimizer class used for each of the models.

C Links to Download Data

SuperGLUE can be downloaded from https://
super.gluebenchmark.com/.

SQuAD v2.0 can be downloaded from
https://rajpurkar.github.io/
SQuAD-explorer/.

GigaWord can be
https://www.tensorflow.org/
datasets/catalog/gigaword/.

QUASAR-T can be downloaded from https:
//github.com/bdhingra/quasar

downloaded using

Omniglot can be downloaded from
https://github.com/brendenlake/
omniglot/tree/master/python.

Mini-imagenet can be downloaded follow-
ing instructions from https://github.com/
yaoyao—-liu/mini-imagenet-tools.
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D Evaluation Metric code

We used the original evaluation metrics code for
all our models, available from source code and
datasets linked above.

E Dataset Details and Evaluation
Metrics

E.1 SuperGLUE

BoolQ Boolean Questions, a Question Answer-
ing (QA) dataset with short passages and yes/no
questions, with data from Wikipedia and Google
search engine queries.

CB Commitment Bank, consisting of passages
with labels for commitment of speakers of clauses
to said clause, framed as three-class NLI, with data
from WSJ, British National Corpus and Switch-
Board. Evaluated with unweighted average F1 and
accuracy.

COPA Choice of Possible Alternative, a dataset
to classify the cause/effect of a given premise from
two alternatives, with fully handcrafted data.

MultiRC Multi-Sentence Reading Comprehen-
sion, a QA dataset, with a list of multiple-
choice possible answers for each question to a
paragraph. Evaluated with F1 over all answer-
options(F'1,), and exact match of each question’s
set of answers(FEM).

ReCoRD Reading Comprehension with Com-
monsense Reasoning, a QA dataset consisting of
articles and Cloze-style questions with a masked
entity, scored on predicting the masked entity from
the entities in the article, with data from CNN and
Daily Mail. Scored with token-level F1 and EM.

RTE Recognizing Textual Entailment, as binary
classification of entailment or not entailment, with
data from Wikipedia and news.

WiC Word-in-Context, a word sense disambigua-
tion (WSD) dataset, tasked with binary classifica-
tion of sentence pairs based on the sense of a com-
mon polysemous word. Data is from WordNet and
Wiktionary.

WSC Winograd Schema Challenge, a corefer-
ence resolution task on resolving pronouns to a list
of noun phrases. As the models we tested only
predicted the majority class, we omit this dataset.

E.2 SQuAD v2.0

The Stanford Question Answering Dataset v2.0
is a popular span-style QA dataset, consisting of
passages from Wikipedia, labelled by annotators
for questions on the passages and corresponding
answer spans, along with unanswerable questions
as well. This dataset is evaluated with F1 and EM
scores of predicted answer spans.

E.3 GigaWord

Gigaword is a summarization dataset, with single-
line input documents from news sources, and task is
to generate headlines. The dataset is pre-tokenized
and number are replaced with #. Evaluation is
using ROUGE-1, ROUGE-2 and ROUGE-L (Lin,
2004) metrics.

E.4 Quasar-T

QUASAR-T is a large-scale dataset aimed at eval-
uating systems designed to comprehend a natural
language query and extract its answer from a large
corpus of text. It consists of open-domain trivia
questions and their answers obtained from vari-
ous internet sources. We only use those questions
whose answers can be extracted as a span for our
training and evaluation.

F Label Distributions for datasets

SuperGLUE datasets - The baseline scores by al-
ways predicting the most frequent class are 62.3
accuracy for BoolQ, 21.7/48.4 Avg. F1 / Accu-
racy for CB, 50.0 accuracy for COPA, 61.1/0.3
Fla/ EM for MultiRC, 33.4/32.5 F1 / Accuracy
for ReCoRD, 50.3 accuracy for RTE, and 50.0 ac-
curacy for WiC.

SQuAD v2.0 train set has a total of 130,319
questions of which 43,498 are unanswerable,
whereas the dev set has a total of 11,873 questions
of which 5,945 are unanswerable. The answer-span
location varies across the input.

NewsQA train set has a total of 97,313 questions
of which 20,753 are unanswerable, whereas the dev
set has a total of 5,456 questions of which 1,115
are unanswerable. The answer-span location varies
across the input.

Quasar-T Long train set has 24,499 questions
whereas the dev set contains 1,920 questions. The
answer-span location varies across the input.

Quasar-T Short train set has 20,533 questions
whereas the dev set contains 1,653 questions. The
answer-span location varies across the input.
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Gigaword train set has 3,803,957 articles, dev
set has 189,651 articles, and test set has 1,951 arti-
cles for summarization.

Omniglot has 1200 classes in Train, 423 in Test

with 20 images per class.
Mini-Imagenet has 64 classes in Train, 20 in
Test, with 600 images per class.
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