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Abstract

Error correction is widely used in automatic
speech recognition (ASR) to post-process the
generated sentence, and can further reduce
the word error rate (WER). Although multi-
ple candidates are generated by an ASR sys-
tem through beam search, current error correc-
tion approaches can only correct one sentence
at a time, failing to leverage the voting effect1

from multiple candidates to better detect and
correct error tokens. In this work, we pro-
pose FastCorrect 2, an error correction model
that takes multiple ASR candidates as input
for better correction accuracy. FastCorrect 2
adopts non-autoregressive generation for fast
inference, which consists of an encoder that
processes multiple source sentences and a de-
coder that generates the target sentence in par-
allel from the adjusted source sentence, where
the adjustment is based on the predicted du-
ration of each source token. However, there
are some issues when handling multiple source
sentences. First, it is non-trivial to leverage the
voting effect from multiple source sentences
since they usually vary in length. Thus, we
propose a novel alignment algorithm to max-
imize the degree of token alignment among
multiple sentences in terms of token and pro-
nunciation similarity. Second, the decoder can
only take one adjusted source sentence as in-
put, while there are multiple source sentences.
Thus, we develop a candidate predictor to de-
tect the most suitable candidate for the de-
coder. Experiments on our inhouse dataset and
AISHELL-1 show that FastCorrect 2 can fur-
ther reduce the WER over the previous cor-
rection model with single candidate by 3.2%
and 2.6%, demonstrating the effectiveness of
leveraging multiple candidates in ASR error
correction. FastCorrect 2 achieves better per-

∗This work was conducted at Microsoft. Corresponding
author: Xu Tan, xuta@microsoft.com

1See the second paragraph in Section 1.

formance than the cascaded re-scoring and cor-
rection pipeline and can serve as a unified post-
processing module for ASR.

1 Introduction

Error correction has been applied in automatic
speech recognition (ASR), which post-processes
the outputs of the ASR system to achieve lower
word error rate (WER) (Ringger and Allen, 1996;
Cucu et al., 2013; D’Haro and Banchs, 2016;
Tanaka et al., 2018). Taking the recognized sen-
tence from the ASR system as source and the
ground-truth sentence as target, ASR correction can
be formulated as a sequence-to-sequence problem
and modeled with autoregressive (Mani et al., 2020;
Liao et al., 2020) or non-autoregressive (Leng et al.,
2021) generation.

The key challenge in ASR error correction is
to detect and correct the error tokens. Current ap-
proaches only correct one sentence at a time, which
might be sub-optimal since the correction model
can only guess the error token based on the con-
text information of a single sentence. Considering
that beam search is commonly used in ASR, multi-
ple candidates are usually generated and available
for error correction. We argue that multiple can-
didates contain the voting effect, which refers to
that the tokens from multiple sentences can verify
the correctness with each other. For example, if
the beam search candidates with 3 sentences are
“I have cat”, “I have hat”, “I have bat”, then the
first two tokens are likely to be correct since they
are the same among all beam candidates. The in-
consistency on the last token shows that: 1) this
token may need correction, and 2) the pronuncia-
tion of the ground-truth token may end with "æt".
This voting effect can be utilized to boost the ASR
correction by helping the model detect error token
and giving some clues about the pronunciation of
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ground-truth token.
In this paper, we propose FastCorrect 2, an er-

ror correction model that takes multiple ASR can-
didates as input to leverage this voting effect for
better correction accuracy. In order to satisfy the
latency constraint for industrial deployment, we
leverage non-autoregressive (NAR) generation (Gu
et al., 2019; Lee et al., 2018; Guo et al., 2019, 2020;
Leng et al., 2021) for fast inference. FastCorrect
2 consists of an encoder that processes multiple
source sentences, a duration predictor to predict
the number of target tokens corresponding to each
source token, and a decoder that generates the tar-
get sentence in parallel from the adjusted source
sentence, where the adjustment is based on the pre-
dicted duration of each source token. We describe
the challenges when supporting multiple candidates
and introduce our corresponding designs to address
these challenges as follows.

• Since the lengths of multiple candidates usually
vary and the tokens from different sentences are
not aligned by position, it is non-trivial to align
these candidates by tokens in order to leverage
the voting effect. If we simply use left or right
padding to ensure the same length for alignment,
the information of each position in different can-
didates is not aligned, and thus the voting effect
does not exist. For example, if a sentence con-
tains an extra word at the beginning while other
sentences do not, naive left padding will cause se-
vere dislocation and every position will contains
misaligned tokens, making it hard for the model
to detect the error tokens. To take the advantage
of the voting effect, we propose a novel align-
ment algorithm based on token matching score
and pronunciation similarity score, which can en-
sure the tokens on the same position are matched
as much as possible, and ensure the pronuncia-
tions of tokens on the same position as similar as
possible if tokens are not matched. The aligned
candidates are mapped to embedding, concate-
nated by position and fed into the encoder of the
correction model.

• There are multiple candidates as source sen-
tences, while the decoder can only take one ad-
justed source sentence as input2. Thus, how to
choose the appropriate source sentence to ad-
just and take as input to the decoder is neces-

2Since the predicted duration might be different in different
candidates during inference, it is intractable to feed all adjusted
candidates with different length into the decoder.

sary. Therefore, we design a candidate predictor
to decide the most appropriate source sentence.
Specifically, we choose the candidate that can
yield the smallest loss (i.e., the easiest candidate
to correct) in the correction model.

We conduct experiments on internal ASR
datasets and public AISHELL-1 datasets to ver-
ify the effectiveness of FastCorrect 2. Experi-
ment results show that our method 1) achieves
better correction accuracy over previous non-
autoregressive correction model on single sentence,
and 2) achieves better performance than the conven-
tional cascaded re-scoring and correction pipeline
and can serve as a unified post-processing module
for ASR.

The contributions of FastCorrect 2 are summa-
rized as follows:

• We introduce multiple candidates generated by
ASR beam search to help the error correction
model, which can better detect the error tokens
and determine the pronunciations of the ground-
truth tokens, and thus can significantly improve
the correction accuracy. Moreover, by utilizing
all the beam search results, additional re-scoring
procedure is not needed, which is time-efficient.

• We develop a novel alignment algorithm based
on token matching score and pronunciation simi-
larity score to align the beam search candidates
with variant lengths. We modify the architecture
of the encoder and introduce a candidate predic-
tor into non-autoregressive correction model to
handle multiple candidates.

2 Background

In this section, we briefly review the two post-
processing methods for ASR: error correction and
re-scoring.

2.1 Error Correction
In ASR, error correction has been widely used as
a post-processing method to improve the quality
of recognized text (Tanaka et al., 2018; Anantaram
et al., 2018; Shivakumar et al., 2019). Considering
that the input and output domain of ASR correction
are both text, utilizing sequence-to-sequence tech-
nologies becomes a popular direction. Cucu et al.
(2013) leveraged statistic machine translation and
D’Haro and Banchs (2016) used phrase-based ma-
chine translation system for ASR correction. With
the development of attention mechanism, Mani
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et al. (2020) trained an autoregressive correction
model with Transformer (Vaswani et al., 2017) ar-
chitecture. Liao et al. (2020) further incorporated
pre-training method into ASR correction. In order
to meet the latency requirements for industrial ap-
plications of ASR, Leng et al. (2021) proposed a
non-autoregressive model to accelerate the correc-
tion without performance deterioration.

In general, current correction methods can only
correct errors of a single sentence by leveraging
the context information of this single sentence. In
this work, to further reduce the word error rate of
ASR while satisfying the latency requirements for
industrial deployment, we propose FastCorrect 2 by
taking advantage of the voting effect in the multiple
candidates of ASR, which can help better detect
the error tokens and thus benefit error correction.

2.2 Re-scoring

Re-scoring is used as a post-processing technology
for ASR to select the best candidate from the mul-
tiple candidates generated by beam search with an
external neural language model. The selection cri-
teria is the ranking score, which is a weighted linear
combination of the acoustic model score from ASR
system and the external language model score.

Given that the correction model focuses on im-
proving the quality of one candidate and the re-
scoring involves choosing the best candidate, these
two post-processing methods are not mutually ex-
clusive and can be combined sequentially to further
improve the ASR quality. Since FastCorrect 2 takes
multiple candidates as input, it is not necessary to
add an additional re-scoring procedure, showing
that FastCorrect 2 can serve as a time-efficient uni-
fied post-processing method for ASR.

3 FastCorrect 2

In this section, we introduce FastCorrect 2 in detail.
In order to leverage the voting effect in multiple
candidates, we first propose an alignment algorithm
to align the length-variant candidates into the same
length while maximizing the token and pronunci-
ation similarity on each alignment position. Then
we introduce the detailed architecture of our model,
consisting of an encoder with a Pre-Net to handle
the multiple candidates input, a duration predictor
to predict the number of target tokens correspond-
ing to each source token in each candidate, and a
candidate predictor to find out the easiest candidate
to correct, which is then adjusted according to the

predicted duration and used as the decoder input
for parallel generation. We introduce the alignment
algorithm and the correction model in the following
subsections.

3.1 Alignment for Multiple Candidates

In general, when aligning n candidates
{b1, b2, ..., bn}, we first randomly select a
candidate b1 as the anchor candidate, and then
align the remaining candidates with it, resulting
in n − 1 alignments {a12, a13, ..., a1n}. The
final alignment on all candidates can be obtained
by merging n − 1 alignments. The core of the
proposed alignment algorithm includes how to
align two candidates and how to merge alignments,
which are discussed in detail as follows.

Alignment for Two Candidates As shown in
Figure 1a, we can calculate the edit distance3 be-
tween two candidates and enumerate all possible
edit paths (i.e., sequences of operations including
insertion, deletion and substitution) with the mini-
mum edit distance. For insertion and deletion op-
eration, a special token “Ø” is added indicating an
empty token, which can help derive the alignment
from the edit path (e.g., path X/Y/Z in Figure 1a).

We select the final alignment by calculating the
token matching score and the pronunciation sim-
ilarity score of each path. Specifically, the token
matching score is the number of positions whose
tokens are all the same. The pronunciation simi-
larity score of a path is the sum of pronunciation
similarity score of all the token pairs, which is de-
fined as the negative value of edit distance between
their phoneme sequence. The paths with highest
token matching score are first selected, and among
which the path with the highest pronunciation sim-
ilarity score is chosen. The token matching score
has higher priority than the pronunciation similarity
score when choosing the paths because the same
token has the same pronunciation.

Merging Alignments For the n− 1 alignments
{a12, a13, ..., a1n} obtained from the above step,
we can merge them to get a final alignment for all
the candidates. Considering that every token in an-
chor candidate b1 appears in the n− 1 alignments,
we can merge the alignments by regarding the to-
kens in b1 as anchor points. If the anchor candidate

3The edit distance of two sequence is the minimum num-
ber of operations needed to edit one sequence to match the
other sequence. The operation includes insertion, deletion and
substitution.
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Figure 1: The proposed alignment method to align multiple candidates. Sub-figure (a) shows the detailed procedure
when aligning the first candidate “B B D E F” with the second candidate “b B C D F”. Each character stands for
a token, and we denote “b” as a different token from “B” but with similar pronunciation. We enumerate all edit
paths between two candidates with the smallest edit distance, then we calculate the token matching score and
pronunciation similarity score of each path, selecting the path with highest token matching score first and then
highest pronunciation similarity score. Taking path Z as an example, the token matching score G is 3 because it
contains 3 positions with the same token (i.e., “B D F”) and the pronunciation similarity score P of a path is the
sum of all pronunciation similarity score of each position, which is shown in pronunciation similarity score table.
Sub-figure (b) shows the comparison between the proposed alignment method and the naive alignment (padding to
right), which shows that the proposed alignment can keep the token and pronunciation consistent on each position
(in contrast to the 4th position in naive padding alignment which consists of 3 different tokens “E D F”).

b1 contains an empty token, which is introduced in
the above step to help for the alignment, this empty
token will also be regarded as an anchor token.

Figure 1b illustrates the advantages of the pro-
posed alignment method compared to the naive
alignment method (padding to right). Our align-
ment method can 1) align the same tokens (“B”,
“D” and “F”) at the same position, 2) isolate the
additional token occurred only in one candidate
(“C”), and 3) keep the pronunciation similarity of
the tokens on the same position as high as possible,
which can help the correction model to detect the
error token and infer the ground-truth pronuncia-
tion of the token.

3.2 Proposed Model Architecture

In this section, we provide a detailed description
of the architecture of FastCorrect 2, as shown in
Figure 2. The backbone of FastCorrect 2 is based
on FastCorrect (Leng et al., 2021), which is fast
and accurate for ASR error correction. FastCorrect
utilizes a duration predictor to predict the duration
of each source token (i.e., the number of target
tokens corresponding to a certain source token),
based on which the source toke is adjusted and fed
into decoder for parallel generation. We follow
the algorithm in FastCorrect to extract the duration
of each source token (Leng et al., 2021), and set
the duration of empty token “Ø” as 0. To enable

the correction model to benefit from the multiple
candidates, we introduce or modify some modules
in FastCorrect architecture as follows.

Encoder Since the aligned candidates have high
token matching score and pronunciation similarity
score on each position, the encoder should handle
the tokens on the same position together to make
fully use of the voting effect. So, we add a Pre-Net
in the Transformer encoder, which concatenates the
token embedding of all candidates on each position
and uses a linear layer to reshape the concatenated
feature to the encoder hidden size.

Duration Predictor Although the candidates
has been aligned to the same length, the number of
target tokens corresponding to each source token
in different candidates still varies4. Therefore, it
is sub-optimal to directly use duration predictor to
predict the token duration of different candidates
based on the encoder output containing merged in-
formation of all candidates. To ensure the duration
predictor to be more discriminative, we concatenate
the encoder output and the original encoder input
(different for each candidate) on each position and
take them as input to the duration predictor.

4As shown in Figure 2, the duration of token “D” in the
first candidate is 1 but that in the second candidate is 2.
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Figure 2: Model architecture. The aligned beam search
results are concatenated along position, reshaped by a
linear layer and then fed into encoder. The encoder
output is concatenated with the original token embed-
ding and fed into predictor to predict the duration of
each source token (by duration predictor) and the loss
of candidate (by candidate predictor). The source to-
ken is adjusted according to the duration predictor and
then fed into decoder. Finally, the loss of the decoder
is used as the label of candidate predictor. Please note
that the encoder input is the merged information of all
candidates while the duration and candidate predictor
is applied on every candidate, respectively.

Candidate Predictor We introduce a candidate
predictor to enable model to choose the easiest can-
didate for correction. The candidate predictor is
trained to predict the loss of correction model on
each candidate, whose label is the cross-entropy
loss of decoder output. The input of candidate pre-
dictor is the same as duration predictor, which is a
concatenation of encoder output and corresponding
candidate embedding.

Decoder We use the same Transformer decoder
architecture as FastCorrect, which takes the ad-
justed source token of one candidate as input and
generates the corrected sentence in parallel.

4 Experiment Settings

In this section, we show the datasets, ASR models,
settings of FastCorrect 2, as well as the baseline
systems used in experiments.

4.1 Dataset
We evaluate FastCorrect 2 on two datasets, the pub-
lic dataset AISHELL-1 (Bu et al., 2017)5 and an

5https://openslr.org/33

inhouse dataset. The AISHELL-1 dataset is a Man-
darin speech corpus with 178 hours training data,
10 hours validation data and 5 hours test data. Our
inhouse dataset is a large industrial ASR dataset
consisting of 75K hours Mandarin speech, the size
of validation and test set are both 200 hours. Once
the ASR models are trained on these datasets, the
models are used to transcribe the training corpus,
where the transcribed sentences and the ground-
truth sentences construct the training corpus for
ASR correction model. The beam size used in tran-
scribing is set to 4, which means that FastCorrect
2 takes the aligned 4 beam candidates as model
input.

From the previous work (Leng et al., 2021), cor-
rection model can hardly achieve good correction
ability on a small-scale dataset (e.g., AISHELL-
1) without pretraining on pseudo data. We crawl
400M unpaired text from the internet and randomly
add noise (insertion, deletion or substitution with a
homophone dictionary) to the text to construct the
pseudo dataset for AISHELL-1 pretraining. The
ratio of noise and the probability distribution of
noise type (insertion, deletion and substitution) are
determined by the word error rate (WER) and statis-
tics of the training corpus for correction, which is
constructed by using an ASR model to transcribe
the AISHELL-1 training set as mentioned in the
above paragraph.

We use SentencePiece (Kudo and Richardson,
2018) to learn subword and apply to all the text
above. The dictionary size is set to 40K.

4.2 ASR Model

We use the ESPnet (Watanabe et al., 2018) toolkit
to train an ASR model on AISHELL-1 dataset. In
order to verify FastCorrect 2 in a competitive set-
ting, we utilize several advanced techniques to train
a strong ASR model, including Conformer architec-
ture (Gulati et al., 2020), SpecAugment (Park et al.,
2019), and speed perturbation data augmentation.
The language model used in inference is a strong
Transformer-based model trained on the crawled
400M dataset. The ASR model achieves a state-of-
the-art character error rate (CER) of 4.03 and 4.31
on the validation and test set of AISHELL-1.

For inhouse dataset, we train an industrial ASR
model with highly competitive accuracy, where
the acoustic model is a latency-controlled BLSTM
(Zhang et al., 2016) with 6 layers and 1024 hidden
units in each layer. We use the inhouse dataset to
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show that FastCorrect 2 can 1) meet the industrial
requirements, 2) still be effective when the training
corpus is large.

4.3 FastCorrect 2 Model
In FastCorrect 2, the layer number and hidden size
of Transformer is 6, 512, respectively. The duration
predictor consists of 5 layers of 1D convolutional
network with ReLU activation and 2 linear layers
to output a scalar, all of which has a hidden size of
512. Each convolutional layer is followed by layer
normalization (Ba et al., 2016) and dropout. The
kernel size of the convolutional network is 3. The
candidate predictor additionally contains a global
mean pooling layer to predict the candidate loss.

We train all correction models on 8 NVIDIA
V100 GPUs, with a batch size of 6000 tokens. We
use standard training hyper-parameters of Trans-
former in Fairseq (Ott et al., 2019). To simulate the
industrial scenario, we test the inference speed of
correction models in three conditions: 1) NVIDIA
P40 GPU, 2) 1-core CPU, and 3) 4-core CPU6. The
test batch size is set to 1 to simulate the online
serving condition.

4.4 Baseline Systems
We compare FastCorrect 2 with several correction
models based on both autoregressive architecture
and non-autoregressive architecture. Since FastCor-
rect 2 takes advantage of beam search candidates,
we also compare with the cascaded pipeline of cor-
rection and re-scoring.

FastCorrect We train the FastCorrect baseline
following the setting in Leng et al. (2021), the layer
number and hidden size are set to be the same as
FastCorrect 2.

Autoregressive Correction Model We train an
autoregressive correction model, whose architec-
ture is the same as FastCorrect 2 except that AR
model has no candidate predictor and duration pre-
dictor.

Cascaded Pipeline There are two versions of
cascade pipeline: 1) R+FC, where we re-score mul-
tiple candidates first and then perform correction on
one candidate. 2) FC+R, where we perform correc-
tion on all candidates first and then use re-scoring
to choose the best candidate.

Roughly speaking, the latency of FC+R is n
times larger than R+FC, where n is the beam size,

6Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

since the correction in FC+R is applied to all n
candidates, while in R+FC, correction is only ap-
plied to 1 candidate. Meanwhile, the accuracy of
C+R is likely to be higher because the re-scoring is
performed on candidates with higher quality. The
language model used in re-scoring is the same as
that in section 4.2, which is a 12-layer Transformer
encoder with a hidden size of 512.

5 Results

In this section, we first report the accuracy and la-
tency of FastCorrect 2 for ASR error correction,
and then perform ablation study to verify the effec-
tiveness of each module in FastCorrect 2.

5.1 Accuracy and Latency

In Table 1, we report the correction accuracy and
inference latency of different correction models,
from which we have the following observations:

First, compared with the FastCorrect baseline,
FastCorrect 2 can improve the correction accuracy
by 2.55% and 3.22% in terms of WER reduction
on AISHELL-1 and internal dataset, respectively,
which shows the effectiveness of utilizing multi-
ple candidates information. Moreover, FastCorrect
2 is 5 times faster than the autoregressive model,
indicating the inference efficiency of FastCorrect
2.

Second, FastCorrect 2 has a better performance
than the fast cascaded pipeline (i.e., “Re-score +
FC”). Compared with the slow cascaded pipeline
(i.e., “FC + Re-score”), FastCorrect 2 achieves bet-
ter accuracy on internal dataset and comparable
accuracy on AISHELL-1, however, the latency of
FastCorrect 2 is 3 times faster than the slow cas-
caded pipeline. The results suggest that FastCor-
rect 2 can unify the two post-processing methods
of ASR, in a faster and better way.

5.2 Ablation Study

In this section, we conduct ablation study to verify
the effectiveness of the alignment algorithm and
the candidate predictor.

Alignment Algorithm We perform ablation
study on our alignment algorithm by first remov-
ing pronunciation similarity score and then further
removing token matching score. Once both pronun-
ciation similarity score and token matching score
are removed, our algorithm fails back to choose
the path based on its operations, whose priority is
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Table 1: The correction accuracy and inference latency of different correction models. We report the word error
rate (WER), word error rate reduction (WERR) and latency of the autoregressive correction moddel (AR Correct),
FastCorrect and FastCorrect 2, as well as the two versions of the cascaded pipeline. “R + FC” stands for re-scoring
firstly and then correcting by FastCorrect. “FC + R” stands for performing correction by FastCorrect firstly and
then re-scoring, which is slower than “R + FC”.

AISHELL-1
Test Set Dev Set Latency (ms/sent) on Test Set

WER WERR WER WERR GPU CPU*4 CPU

No correction 4.31 - 4.03 - - - -
AR Correct 3.85 10.67 3.61 10.42 149.5 (1×) 248.9 (1×) 531.3 (1×)

FastCorrect 3.95 8.35 3.69 8.44 21.2 (7.1×) 40.8 (6.1×) 82.3 (6.5×)

R + FC 3.93 8.82 3.65 9.43 35.7 (4.2×) 63.0 (4.0×) 124.0 (4.3×)

FC + R 3.83 11.14 3.56 11.67 99.3 (1.5×) 185.4 (1.3×) 370.9 (1.4×)

FastCorrect 2 3.84 10.90 3.50 13.15 30.1 (5.0×) 50.0 (5.0×) 106.9 (5.0×)

Internal Dataset
Test Set Dev Set Latency (ms/sent) on Test Set

WER WERR WER WERR GPU CPU*4 CPU

No correction 11.17 - 11.24 - - - -
AR model 10.22 8.50 10.31 8.27 191.5 (1×) 336 (1×) 657.7 (1×)

FastCorrect 10.27 8.06 10.35 7.92 21.5 (8.9×) 42.4 (7.9×) 88.6 (7.4×)

R + FC 10.18 8.86 10.26 8.72 36.2 (5.3×) 65.2 (5.2×) 132.4 (5.0×)

FC + R 10.14 9.22 10.23 8.99 100.7 (1.9×) 192.4 (1.7×) 398.2 (1.7×)

FastCorrect 2 9.91 11.28 9.99 11.12 32.4 (5.9×) 57.1 (5.9×) 118.7 (5.5×)

Table 2: Ablation study of alignment algorithm.

Internal Dataset WER WERR

FastCorrect 2 9.91 11.28
- Pronunciation score 9.94 11.01
- Token matching score 9.97 10.74

Naive padding 10.04 10.11

set to “Identity > Substitution > Insertion > Dele-
tion”. Moreover, we include the naive padding
(padding to right, as shown in the Figure 1b) into
ablation study, whose results are in Table 2. Due
to the computational cost of pretraining, we per-
form the comparison without pre-training, and we
only report the results on the internal dataset be-
cause pre-training is necessary to obtain reasonable
results on AISHELL-1. From this table, it can
be seen that FastCorrect 2 outperforms the naive
padding, showing that FastCorrect 2 can exploit
more information in multiple candidates and thus
improve the correction accuracy. The results also
show that pronunciation similarity score and token
matching score are useful to ensure the correction
accuracy.

We also conduct an additional experiment to ver-

Table 3: The effectiveness of our alignment algorithm
on autoregressive correction model. The last row is the
AR model with our alignment algorithm.

Model
AISHELL-1 Internal

Dataset Dataset

No correction 4.31 11.17

AR Correct 3.85 10.22

Re-scoring + AR 3.84 10.10
AR + re-scoring 3.73 9.99

AR + alignment 3.75 9.79

ify the effectiveness of our alignment algorithm
by improving the accuracy of autoregressive cor-
rection model, and show the results in Table 3. It
can be seen that the proposed method can also re-
duce the WER of autoregressive correction model,
which is better than the combination of correction
and re-scoring on internal dataset, indicating that
our alignment algorithm is a general method to
exploit voting effect and improve the correction
accuracy.
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Table 4: Ablation study of candidate predictor.

Choosing beam by
AISHELL-1 Internal

Dataset Dataset

No correction 4.31 11.17

Candidate predictor 3.84 9.91
WER predictor 3.88 10.01
First beam 3.89 10.08
Random 3.99 10.09

Candidate Predictor The core function of can-
didate predictor in FastCorrect 2 is to find out
the easiest beam candidate for decoder to correct.
We compare the candidate predictor with 3 other
candidate-selection methods: 1) For each beam
candidate in training set, we calculate the WER
between that candidate and target. Then we train
a WER predictor to predict which beam candidate
has the smallest WER with the target. 2) We simply
choose the first beam candidate scored by the ASR
model and perform correction. 3) We randomly
choose a beam candidate to correct.

The comparisons are shown in Table 4, in which
the candidate predictor outperforms the baseline
methods on both datasets. Using a WER predictor
is better than choosing the first beam candidate
but worse than the candidate predictor because the
beam candidate with lowest WER sometimes is not
the easiest one for decoder to correct, showing the
advantage of candidate predictor which explicitly
models the correction difficulty of decoder.

5.3 Comparison with Data Augmentation

A straightforward method to leverage the multiple
candidates from beam search is using candidates
as data augmentation. By pairing every candidate
with its corresponding ground-truth text, we can
construct a new dataset to train FastCorrect base-
line. The size of new dataset is n times larger,
where n is the beam size. We compare the accu-
racy of data augmentation and FastCorrect 2 in
difference beam sizes, and the results are shown in
Figure 3. We have several observations:

First, simply using multiple candidates as data
augmentation cannot yield better result comparing
with only using the best multiple scored by ASR
model, showing that the key component to benefit
from multiple candidates is to take advantage of
voting effect rather than the total data amount. Sec-
ond, FastCorrect 2 yields better result with more
candidates introduced into model, which can be ac-

counted by voting effect. When the beam size is 2,
since the candidate number is too small for a vote,
FastCorrect 2 only leads to slightly accuracy im-
provement. In constrast, once we have large beam
size, FastCorrect 2 can be aware of the clue of error
token and ground-truth token pronunciation, and
thus reduces the baseline WER by a large margin.

In summary, the comparison with data augmenta-
tion shows that it is necessary to use aligned beam
candidates to exploit the voting effect, so as to fur-
ther boost the model performance.

Figure 3: The WER of model with respect to candidate
size on the internal dataset. The red line without mark
is the WER without correction (i.e., WER=11.17). The
blue line with square mark is the WER when using mul-
tiple candidates as data augmentation. The orange line
with dot mask is the WER of FastCorrect 2.

5.4 Comparison with Other Methods

We compare FastCorrect 2 with two baselines
which also leverage multiple candidates in this sec-
tion.

ROVER ROVER (Fiscus, 1997) is a traditional
baseline7 to make use of multiple candidates, which
aligns multiple candidates first and then votes for
the final token on each position by occurrence
(Amith et al., 2021). In our experiments, we try
both the default open-source alignment method and
our proposed alignment method.

Fusion Fusion is another method for utilizing
multiple candidates (Liu et al., 2021; Lohrenz et al.,
2021). Specifically, Fusion uses a shared encoder
to extract the representation of each candidate and

7https://github.com/usnistgov/SCTK/blob/20159b580249f
1598caa35ab469bd1acdb3dd86c/doc/rover.htm
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Table 5: Comparison with other methods.

Model
AISHELL-1 Internal

Dataset Dataset

No correction 4.31 11.17
FastCorrect 3.95 10.27

ROVER 5.24 11.53
+ our alignment 4.91 11.40

Fusion 3.92 10.17
FastCorrect 2 3.84 9.91

multiple encoder-decoder attentions to fuse the en-
coder output of each candidate into decoder, which
has no need on alignment algorithm or candidate
predictor.

The comparison results of FastCorrect 2 with
the above two baselines are shown in Table 5. The
results show that ROVER cannot boost the per-
formance of ASR (even worsen the performance).
However, our proposed alignment method outper-
forms the default alignment method of ROVER,
demonstrating the effectiveness of our alignment
method. When it comes to Fusion, it has an accu-
racy slightly superior to FastCorrect, demonstrating
that it can make use of the information in multiple
candidates to some extent. However, FastCorrect
2 outperforms Fusion by a larger margin, showing
the effectiveness of our alignment algorithm and
candidate predictor.

6 Conclusion

In this work, we propose FastCorrect 2 to lever-
age multiple candidates for ASR error correction,
where the candidates are generated by the ASR
model through beam search and contain voting ef-
fect to help better detect and correct error tokens.
In order to leverage this voting effect from mul-
tiple candidates, we propose a novel alignment
algorithm to align the multiple candidates while
maximizing the token matching score and pronun-
ciation similarity score on each alignment position.
Accordingly, we make several modifications on a
previous non-autoregressive error correction model
to make it suitable for the input with multiple can-
didates, including an encoder with a Pre-Net to
handle the concatenation of multiple candidates, a
duration predictor to predict the token duration of
each candidate, and a candidate predictor to choose
the easiest candidate as the decoder input for cor-
rection. Experiment results show that FastCorrect
2 improves the correction accuracy over previous

non-autoregressive correction model with single
candidate, demonstrating the effectiveness of mul-
tiple candidates for error correction. Besides, Fast-
Correct 2 can be used as a unified post-processing
module for ASR, achieving comparable or better ac-
curacy with the cascaded post-processing pipeline
(correction and re-scoring) while speeding up for 3
times.
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