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Abstract

Improving Transformer efficiency has become
increasingly attractive recently. A wide range
of methods has been proposed, e.g., prun-
ing, quantization, new architectures and etc.
But these methods are either sophisticated
in implementation or dependent on hardware.
In this paper, we show that the efficiency
of Transformer can be improved by combin-
ing some simple and hardware-agnostic meth-
ods, including tuning hyper-parameters, bet-
ter design choices and training strategies. On
the WMT news translation tasks, we im-
prove the inference efficiency of a strong
Transformer system by 3.80× on CPU and
2.52× on GPU. The code is publicly avail-
able at https://github.com/Lollipop321/mini-
decoder-network.

1 Introduction

Standard implementation of Transformer (Vaswani
et al., 2017) is not efficient for inference. Re-
searchers have explored more efficient architec-
tures (Zhang et al., 2018; Xiao et al., 2019; Li et al.,
2021) or break the auto-regressive constraint in se-
quence generation (Gu et al., 2017). But most of
these require significant updates of the model or
hardware-dependent designs. It is still natural to
ask whether the Transformer system can be opti-
mized in a simple way (Hsu et al., 2020; Kasai
et al., 2020; Kim et al., 2019; Wang and Tu, 2020).

In this paper we show that Transformer can be
optimized for efficiency by a bag of techniques.
These techniques are easy to implement and some
of them have been tested in related studies. Here
we focus on using them in combination for Trans-
former speedup which has not been well inves-
tigated. In particular, our work is based on the
following facts:
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Module
Time (s)

Baseline MDN

Encoder
Attention 5.81 16.93
FFN 5.53 18.79

Decoder
Attention 223.55 8.74
FFN 38.26 0.00
Output 48.51 8.61

Table 1: Profiling results of the Transformer baseline
and our model on WMT14 En-De (FFN: the feedfor-
ward network, Output: the output projection).

• The default Byte-Pair Encoding (BPE) setting
(Sennrich et al., 2016) has a great impact on
efficiency but is generally not optimal.

• A shallow decoder (with a deeper encoder) is
preferred for a fast system (Kasai et al., 2020).

• The attention model does not need to be multi-
headed in some cases (Behnke and Heafield,
2020).

• The feedforward network sub-layer is remov-
able (Hsu et al., 2020).

• Knowledge Distillation (Hinton et al., 2015)
is crucial to squeeze out the last potential.
Removing some regularization measures like
label smoothing (Szegedy et al., 2016) also
helps when training such models.

All these methods are compatible with popular
Transformer codebases. In this work, we imple-
ment them on the decoder side because it occupies
the inference time in many sequence generation
tasks (Hsu et al., 2020; Kim et al., 2019). The end
result is a simplified and fast Transformer decoder
(see Table 1) - Mini-Decoder Network (MDN). Ex-
periments on the WMT14 En-De, WMT14 En-
Fr and NIST12 Zh-En machine translation (MT)
benchmarks demonstrate that the improved system
achieves a 3.80× speedup on CPU and a 2.52×
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Figure 1: The number of BPE merge operations vs.
BLEU and speedup on WMT14 En-De (Detailed setup
could be found in Section 3.1).

speedup on GPU with performance on par with
the baseline. The speedup obtained is available
on most modern hardware, as it does not depend
on specific hardware or library, e.g., quantization
(Chung et al., 2020) and unstructured pruning (Hoe-
fler et al., 2021) require the support of the latest
hardware-dependent and acceleration libraries.

2 Methods

2.1 Byte-Pair Encoding

Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
breaks words into subword units. It starts from
the alphabet and merges characters into the most
frequent subword units, then segments words in
sentences by these merged subword units. BPE
reduces the risk of out-of-vocabulary words with
a small vocabulary, but comes with the cost of
longer sentences. If more merge operations are
employed, the resulting sentences will be shorter,
yet the vocabulary is larger as more subword units
are presented. This leads to a tradeoff between
sentence length and vocabulary size, and both of
them have an impact on the efficiency. In Fig. 1,
the green line denotes the BLEU referencing the
left axis. The red line denotes the speed change
on CPU, the blue line denotes the speed change
on GPU, they are both referencing the right axis.
As shown in Fig. 1, tuning this hyper-parameter
provides a considerable speedup without loss in
performance, though most previous work simply
adopts the default setting (32K). In our experiments
we choose 10K because it is sufficient for good
performance.

2.2 Model Structure Updates

Inspired by the observations in Table 1, the Trans-
former decoder can be improved for each of its
components. In this section, we describe how to

Transformer
Encoder

Source Embedding Target Embedding

1×

Self-Attention

Scaled Dot-Product
Attention

Cross-Attention

Scaled Dot-Product
Attention

FFN

Softmax

Output Probabilities

Figure 2: The model structure of our method (MDN).

simplify Transformer in a systematic way as shown
in Fig. 2. Table 2 summarizes the contributions of
each adopted method. We choose Baseline1 in Ta-
ble 2 to analyze how each method in “Model Struc-
ture Updates” influences the model performance
and inference speed after applying techniques from
“Byte-Pair Encoding”.

Shallow Decoder. Recent work has shown that the
deep encoder and shallow decoder architecture is
promising in system speedup (Kasai et al., 2020; Li
et al., 2021). In this work we follow the same idea
by restricting the decoder to a 1-layer network and
stacking more encoder layers until the total number
of parameters matches the baseline.

Pruning Heads. Researchers have found that most
heads could be safely pruned and leaving the per-
formance intact (Voita et al., 2019; Michel et al.,
2019). So we retain only one head in decoder at-
tentions.

Dropping FFN. Hsu et al. (2020) suggests that
FFN is the least important component in the de-
coder. So we drop all FFNs in the decoder. After
dropping FFN, there are only attentions and no
other non-linearity except layer normalization in
the model.

Factorizing Output. The weight matrix W
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System BLEU
Speed (sent./s)
CPU GPU

Baseline1 27.45 7.72 149.01
+ Shallow Decoder 26.46 19.44 247.04
+ Pruning Heads 26.62 12.91 172.25
+ Dropping FFN 26.91 8.58 189.86
+ Factorizing Output 27.14 7.92 168.21

Table 2: Results of adding each trick from Section 2.2
independently on WMT14 En-De (sent./s: translated
sentences per second. Baseline1 is the baseline with
10K BPE merge operations).

used in the output projection is significantly over-
parameterized (Grave et al., 2017), especially when
other components are compressed. To address this,
we employ the low-rank approximation (Lan et al.,
2020) for this matrix W = ABT to help to re-
duce the computation cost, where A ∈ RV×E ,
B ∈ RH×E , V is the vocabulary size, E is the
desired rank and H is the hidden size. We choose
E = 64 in our experiments.

2.3 Training Strategies

In our work, the methods presented in Section 2.2
can make an extremely small decoder that contains
only 0.3% of the overall parameters. But we find
that the model learned from scratch using the stan-
dard setting is much worse than the baseline (see
Table 2). For better training, some methods are
necessary. Table 3 illustrates how each proposed
strategy contributes to reaching performance on par
with the baseline. We choose Baseline2 in Table
3 to analyze how each method in “Training Strate-
gies” influences the results after we have changed
the BPE merge operations and simplified the model
structure.

Deep Configuration. Because our model is deep,
we follow the deep model training setup provided
in Wang et al. (2019).

Weight Distillation. We also adopt a simplified
version of weight distillation (WD) for training
(Lin et al., 2020). This method initializes the stu-
dent model with the corresponding weights from
the teacher model, e.g., the first layer in the teacher
encoder is reused in the first layer in the student
encoder. Then it trains the student as in stan-
dard knowledge distillation (Hinton et al., 2015).
Since our encoder is much deeper than the baseline,
we initialize it in a round-robin manner. For the
decoder, we randomly select one head from the

System BLEU
Speed (sent./s)
CPU GPU

Baseline2 22.83 23.19 291.00
+ Deep Configuration 23.78 24.21 305.03
+ WD 26.97 24.56 352.09
- Decoder Dropout 23.25 24.51 277.38
- Label Smoothing 23.22 24.42 286.54

Table 3: Results of adding each trick from Section 2.3
independently on WMT14 En-De (sent./s: translated
sentences per second. Baseline2 is the baseline with
10K BPE merge operations and tricks from Section
2.2).

teacher model for initialization, and the low-rank
approximation of output projection is initialized
by the SVD result of the teacher output projection
(Golub and Reinsch, 2007).

Weak Regularization. Because our decoder is
small, we do not need to impose a strong regular-
ization on it. We remove the dropout in the decoder
and label smoothing. Dropout and label smooth-
ing indeed do not have impacts on the inference
speed. But changing them will train different mod-
els, which are unlikely to have exactly the same
behavior. So some deviations in the inference speed
are expected.

3 Experiments

3.1 Setup

We evaluate our methods on the WMT14 En-De,
WMT14 En-Fr and NIST12 Zh-En machine trans-
lation tasks. We tokenize every sentence using a
script from Moses and segment every word into
subword units using BPE (Sennrich et al., 2016).
The number of the BPE merge operations is set to
32K in the baseline and 10K for the target language
in our model. In addition, we remove sentences
with more than 250 subword units (Xiao et al.,
2012).

We choose Transformer-base (Vaswani et al.,
2017) as our baseline. The hyper-parameters of
the Mini-Decoder Network (MDN) are the same as
the baseline except for those mentioned in Section
2.3. To produce consistent results for distillation,
we choose the baseline with 10K BPE merges as
the teacher model, which has the same vocabu-
lary as MDN. We also compare our system with
some recent proposed fast Transformer variants,
e.g., AAN (Zhang et al., 2018), SAN (Xiao et al.,
2019) and CAN (Li et al., 2021). Their settings are
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System Test Valid Speed (CPU) Speedup Speed (GPU) Speedup #Params
E

n-
D

e
Baseline 27.21 25.53 7.17 sent./s 1.00× 129.02 sent./s 1.00× 96M
+ BPE 10K 27.45 25.60 7.72 sent./s 1.08× 149.01 sent./s 1.15× 76M
AAN 27.05 25.11 9.82 sent./s 1.37× 147.11 sent./s 1.14× 96M
SAN 26.88 24.99 9.10 sent./s 1.27× 179.49 sent./s 1.39× 80M
CAN 27.20 25.23 8.00 sent./s 1.12× 279.39 sent./s 2.17× 100M
MDN 27.23 25.37 23.52 sent./s 3.28× 326.78 sent./s 2.53× 96M

E
n-

Fr

Baseline 40.70 46.74 5.80 sent./s 1.00× 130.56 sent./s 1.00× 111M
+ BPE 10K 40.52 46.51 6.50 sent./s 1.12× 143.21 sent./s 1.10× 81M
AAN 40.44 46.43 8.00 sent./s 1.38× 140.66 sent./s 1.08× 96M
SAN 40.70 46.44 7.48 sent./s 1.29× 157.50 sent./s 1.21× 80M
CAN 40.16 46.40 6.40 sent./s 1.10× 194.67 sent./s 1.49× 100M
MDN 40.58 46.43 22.86 sent./s 3.94× 352.79 sent./s 2.70× 100M

Z
h-

E
n

Baseline 45.84 50.98 4.09 sent./s 1.00× 90.87 sent./s 1.00× 102M
+ BPE 10K 45.34 51.41 4.35 sent./s 1.06× 91.79 sent./s 1.01× 79M
AAN 44.87 51.26 5.00 sent./s 1.22× 91.30 sent./s 1.00× 102M
SAN 44.82 50.73 4.99 sent./s 1.22× 123.18 sent./s 1.36× 102M
CAN 40.11 46.25 6.09 sent./s 1.49× 168.89 sent./s 1.86× 107M
MDN 44.51 51.43 17.07 sent./s 4.17× 211.31 sent./s 2.33× 99M

Table 4: Results on the WMT14 En-De and En-Fr tasks (sent./s: translated sentences per second).

followed from their papers.
We report case-sensitive tokenized BLEU scores.

For all experiments, we test on the model ensemble
by averaging the last 5 checkpoints. For inference,
we use a batch size of 64 and a beam width of 4.
All models are evaluated on the NVIDIA TITAN
V GPU and Intel(R) Xeon(R) Gold 5118 CPU.

3.2 Results

Table 4 shows the results of various systems. In
both tasks, our method (MDN) has nearly the same
performance as the baseline, but its speed is 3.80×
and 2.52× faster on average for CPU and GPU. We
find the baseline with 10K BPE merges is about
1.09× faster than the original baseline but with
a similar performance, which suggests this BPE
hyper-parameter is far from optimal for the base-
line.

As for the recent work, i.e., AAN, SAN and
CAN, all of them achieve performance similar
to the baseline and are faster than the baseline
(1.24×∼1.32× speedup on CPU) as reported
in their papers. But our method outperforms
these methods and runs consistently faster (3.80×
speedup on CPU). Although the acceleration of our
method in GPU (2.52× speedup) is not as obvi-
ous as it in CPU (3.80× speedup), it still outper-
forms CAN by 1.40×, which is highly optimized
for GPU.

System BLEU
Speed (sent./s)
CPU GPU

Baseline 27.21 7.17 129.02
+ Merge Operations 27.45 7.72 149.01
+ Shallow Decoder 26.46 19.44 247.04
+ Pruning Heads 24.47 21.99 243.42
+ Dropping FFN 23.26 22.36 268.01
+ Output Factorization 22.83 23.19 291.00
+ Deep Configuration 23.78 24.21 305.03
+ WD 27.09 22.96 344.21
- Decoder Dropout 27.18 23.53 334.40
- Label Smoothing 27.23 23.52 326.78

Table 5: Ablation study on WMT14 En-
De. The colors refer to Byte-Pair Encoding ,

Model Structure Updates and Training Strategies
(sent./s: translated sentences per second).

4 Analysis

4.1 Ablation Study

Table 5 summarizes and compares the contribu-
tions of each proposed tricks described in Section
2. Each row of Table 5 is the result of applying the
current trick to the system obtained in the previous
row. This way helps to illustrate the compound
effect of these tricks.

We observe that using any structure simplifica-
tion trick brings a significant performance degra-
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System Test Valid Speed(CPU) Speedup Speed(GPU) Speedup

de
ep

Baseline 29.43 27.82 6.02 sent./s 1.00× 121.57 sent./s 1.00×
+ BPE 10K 29.67 27.68 6.19 sent./s 1.03× 126.06 sent./s 1.04×
MDN 29.02 27.64 15.00 sent./s 2.49× 254.25 sent./s 2.09×

Table 6: Results of Transformer-deep on WMT14 En-De (sent./s: translated sentences per second).
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Figure 3: Batch size and beam width vs. speedup of
MDN on WMT14 En-De.

dation but a considerable speedup. However, our
training strategies can make up for the performance
loss. Among them, WD is most effective and has a
boost of more than 3 BLEU points. Interestingly,
we find that pruning attention heads does not have
any speedup on GPU. This is because the paral-
lelism of GPU decouples the computation cost of
attention heads from the head number.

4.2 Experiments on Larger Networks
Table 6 shows the results of the Transformer-deep
model with a 48-layer encoder. The phenomenon
here is similar to that in Table 4. The accelera-
tion on Transformer-deep is less obvious than on
Transformer-base, as a deeper encoder consumes
more inference time. Moreover, compared with
such a strong Transformer-deep teacher, MDN can
still obtain a 2.49× speedup on CPU and a 2.09×
speedup on GPU.

4.3 Sensitivity Analysis
We study the impact of two commonly tuned hyper-
parameters at inference on our method, i.e., the
batch size and the beam size. The left part of Fig. 3
shows that the speedup over the baseline decreases
as the batch size increases, especially for GPU.
This is because our shallow decoder trick exploits
the parallelism of the encoder for speedup, which
is not available if the batch size is large. This
phenomenon is also observed by Li et al. (2021).
The right part of Fig. 3 shows that the speedup is
more obvious with a larger beam width. The reason
is that the encoder occupies a larger portion of the

System BLEU
Speed (sent./s)
CPU GPU

AAN 27.05 9.82 147.11
+ Ours 27.21 19.32 259.10
CAN 27.20 8.00 279.39
+ Ours 27.25 10.62 293.43

Table 7: Combining the proposed tricks with AAN and
CAN on WMT14 En-De (sent./s: translated sentences
per second).

inference cost at a small beam width and our work
only save the cost of the decoder.

4.4 Combining with Other Models
Our method is a bag of generic tricks and can be
applied to other models. We choose AAN and
CAN for testing, because AAN runs the fastest on
CPU and CAN runs the fastest on GPU accord-
ing to Table 4. Table 7 shows that both AAN and
CAN benefit from techniques presented in this pa-
per. Without loss in performance, AAN obtains a
1.97× speedup on CPU and CAN obtains a 1.05×
speedup on GPU. It shows that AAN and CAN
eventually have a similar BLEU score and speed
as MDN, indicating that a highly optimized Trans-
former baseline already a strong candidate by itself.

5 Conclusion

In this work, we present a bag of tricks to opti-
mize the efficiency of the standard Transformer.
The resulting model achieves a 3.61× speedup on
CPU and a 2.62× speedup on GPU without loss in
performance.
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