
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4118–4131
November 7–11, 2021. ©2021 Association for Computational Linguistics

4118

ARCH: Efficient Adversarial Regularized Training with Caching

Simiao Zuo†∗, Chen Liang†, Haoming Jiang2, Pengcheng He�, Xiaodong Liu�,
Jianfeng Gao�, Weizhu Chen� and Tuo Zhao†

†Georgia Institute of Technology 2Amazon �Microsoft
{simiaozuo,cliang73}@gatech.edu, jhaoming@amazon.com
{Pengcheng.H,xiaodl,jfgao,wzchen}@microsoft.com,

tourzhao@gatech.edu

Abstract

Adversarial regularization can improve model
generalization in many natural language pro-
cessing tasks. However, conventional ap-
proaches are computationally expensive since
they need to generate a perturbation for each
sample in each epoch. We propose a new ad-
versarial regularization method ARCH (adver-
sarial regularization with caching), where per-
turbations are generated and cached once ev-
ery several epochs. As caching all the per-
turbations imposes memory usage concerns,
we adopt a K-nearest neighbors-based strat-
egy to tackle this issue. The strategy only
requires caching a small amount of perturba-
tions, without introducing additional training
time. We evaluate our proposed method on
a set of neural machine translation and natu-
ral language understanding tasks. We observe
that ARCH significantly eases the computa-
tional burden (saves up to 70% of computa-
tional time in comparison with conventional
approaches). More surprisingly, by reducing
the variance of stochastic gradients, ARCH
produces a notably better (in most of the tasks)
or comparable model generalization. Our code
is publicly available.

1 Introduction

Adversarial regularization (Miyato et al., 2017) can
improve model generalization in many natural lan-
guage processing tasks, such as neural machine
translation (Cheng et al., 2019), natural language
understanding (Jiang et al., 2020), language model-
ing (Wang et al., 2019b), and reading comprehen-
sion (Jia and Liang, 2017). Even though the method
has demonstrated its power in many scenarios, its
computational efficiency remains unsatisfactory.

Conventional adversarial regularization (Miy-
ato et al., 2017) methods involve a min-max op-
timization problem. Specifically, a perturbation is

∗Corresponding author.

generated for each sample by solving a maximiza-
tion problem, and the model parameters are subse-
quently updated through a minimization problem,
subject to the generated perturbations. A popular al-
gorithm (Madry et al., 2018) for such optimization
is to alternate between several projected gradient
descent steps (PGD, for the maximization) and a
gradient descent step (for the minimization).

There are two drawbacks with the alternating gra-
dient descent/ascent method. First, the procedure
requires significant computational efforts. Suppose
we run PGD for S steps, then we introduce extra
S forward passes and extra S backward passes in
each iteration. As such, training with adversarial
regularization is significantly slower than standard
training. Second, optimizing the min-max prob-
lem is hard. This is because the perturbations are
model and data dependent, and thus, variance of
them is large. That is, the model needs to adapt to
drastically different “noisy data” (i.e., clean data
with perturbations), such that the stochastic gradi-
ents vary significantly during training. Such large
variance imposes optimization challenges.

We propose ARCH (Adversarial Regularization
with CacHing) that alleviates the aforementioned
issues by reusing perturbations. Recall that in con-
ventional adversarial regularization methods, a dif-
ferent perturbation is generated for each sample
in each epoch. In contrast to this, we propose to
generate perturbations less frequently. For exam-
ple, for a given sample, we can generate a new
perturbation every 20 epochs, and the sample’s per-
turbation remains unchanged in other epochs. We
call this method “caching”. The method has two
advantages. First, it alleviates the computational
burden. By reusing the perturbations, we avoid
the extra forward and backward passes caused by
PGD for most of the iterations. Second, caching
stabilizes the stochastic gradients. Notice that in
our method, the model is optimized with respect
to the same noisy data for multiple times, instead

4119

of only one. In this way, variance of the stochastic
gradients is reduced.

One caveat of the caching method is its memory
overhead. This is because a sample’s perturbation
is significantly larger than itself (the perturbation
has an extra embedding dimension). We propose a
K-nearest neighbors-based approach to tackle this
problem. Specifically, instead of caching pertur-
bations for all the samples, we only cache a small
proportion of them. Each uncached perturbation
can then be constructed using the cached ones in its
neighborhood. Such a construction procedure can
be executed in parallel with model training. There-
fore, training time will not be prolonged because
of this memory saving strategy.

We use a moving average approach to boost
model generalization. Specifically, when gener-
ating a new perturbation, we integrate information
from both the current model and the current per-
turbation. This is different from conventional ap-
proaches, where the new perturbation only depends
on the current model. The moving average ap-
proach has a smoothing effect that boosts model
generalization, as demonstrated both theoretically
and empirically by previous works (Izmailov et al.,
2018; Athiwaratkun et al., 2019; Jiang et al., 2020).

Arguably, the perturbations introduced by our
method may not constitute strong adversarial at-
tacks, because of the “staleness” caused by infre-
quent updates. However, we highlight that the
focus of this work is model generalization over
clean data, instead of adversarial robustness (abil-
ity to defend attacks). As we will demonstrate in
the experiments, the “weak” perturbations show no-
table improvement of model generalization. And
somewhat surprisingly, ARCH also exhibits on par
or even better robustness comparing with conven-
tional approaches.

We conduct extensive experiments on neural
machine translation (NMT) and natural language
understanding (NLU) tasks. In comparison with
conventional adversarial regularization approaches,
ARCH can save up to 70% computational time.
Moreover, in NMT tasks, our method improves
about 0.5 BLUE over baseline methods on seven
datasets. ARCH also achieves 0.7 average score
improvement on the GLUE (Wang et al., 2019a)
development set over existing methods.

We summarize our contributions as follows: (1)
We propose a caching method that needs drastically
less computational efforts. The method can also

improve model generalization by reducing variance
of stochastic gradient. (2) We propose a memory
saving strategy to efficiently implement the caching
method. (3) Extensive experiments on neural ma-
chine translation and natural language understand-
ing demonstrate the efficiency and effectiveness of
the proposed method.

2 Background
� Neural machine translation has achieved supe-
rior empirical performance (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). Re-
cently, the Transformer (Vaswani et al., 2017) ar-
chitecture dominates the field. This sequence-to-
sequence model employs an encoder-decoder struc-
ture, and also integrates the attention mechanism.
During the encoding phase, a Transformer model
first computes an embedding for each sentence, af-
ter which the embeddings are fed into several layers
of encoding blocks. Each of these blocks contain a
self-attention mechanism and a feed-forward neu-
ral network (FFN). Subsequently, after encoding,
the hidden representations are fed into the decod-
ing blocks, each constituted of a self-attention, a
encoder-decoder attention, and a FFN.
� Fine-tuning pre-trained language models (Pe-
ters et al., 2018; Devlin et al., 2019; Radford et al.,
2019; Liu et al., 2019b; He et al., 2020) is a state-
of-the-art method for natural language understand-
ing tasks such as the GLUE (Wang et al., 2019a)
benchmark. Adversarial regularization is also in-
corporated into the fine-tuning approach. For ex-
ample, Liu et al. (2020a) combines adversarial pre-
training and fine-tuning, Zhu et al. (2020); Jiang
et al. (2020) adopt trust region-based methods, and
Aghajanyan et al. (2020) aims for a more efficient
computation.
� Adversarial training was originally proposed
for computer vision tasks (Szegedy et al., 2014;
Goodfellow et al., 2015; Madry et al., 2018), where
the goal is to train robust classifiers. Such methods
synthesize adversarial samples, such that the classi-
fier is trained to be robust against them. This strat-
egy is also effective for tasks beyond computer vi-
sion, such as in reinforcement learning (Shen et al.,
2020). Various algorithms are proposed to craft the
adversarial samples, e.g., learning-to-learn (Jiang
et al., 2021) and Stackelberg adversarial training
(Zuo et al., 2021). Moreover, adversarial training is
also well-studied theoretically (Li et al., 2019). In
natural language processing, the goal is no longer
adversarial robustness, but instead we use adver-

4120

sarial regularization to boost model generalization.
Note that adversarial training and adversarial reg-
ularization are different concepts. The former fo-
cuses on defending against adversarial attacks, and
the latter focuses on encouraging smooth model
predictions (Miyato et al., 2017). These two goals
are usually treated as mutually exclusive (Raghu-
nathan et al., 2020; Min et al., 2020).

3 Method

Generating perturbations for natural language in-
puts faces the difficulty of discreteness, i.e., words
are defined in a discrete space. A common ap-
proach to tackle this is to work on the continu-
ous embedding space (Miyato et al., 2017; Sato
et al., 2019). Denote f(x, θ) a neural network pa-
rameterized by θ, where x is the input embedding.
Further denote y the ground-truth corresponding
to x. For example, in classification tasks, x is the
sentence embedding, and y is its label. In sequence-
to-sequence learning, x is the source sentence em-
bedding, and y is the target sentence. In both of
these cases, the model is trained by minimizing the
empirical risk over the training data, i.e.,

min
θ
L(θ) =

1

n

n∑
i=1

`(f(xi, θ), yi).

Here {(xi, yi)}ni=1 is the dataset, and ` is a task-
specific loss, e.g., cross-entropy loss for classifica-
tion and mean-squared error for regression.

3.1 Adversarial Regularization
Adversarial regularization (Miyato et al., 2017)
is a technique that encourages smoothness of the
model outputs around each input data point. Con-
cretely, we define an adversarial regularizer for
non-regression tasks as

`v(x, δ, θ) = KL
(
f(x, θ) || f(x+ δ, θ)

)
,

where KL(P || Q) =
∑
k

pk log
pk
qk
.

Here f(·, θ) is the prediction confidence, i.e.,∑
i[f(·, θ)]i = 1, δ is the perturbation of sample

x, and KL(·||·) is the Kullback–Leibler (KL) diver-
gence. In regression tasks, the model output f(·, θ)
is a scalar, and the adversarial regularizer is

`v (x, δ, θ) = (f(x, θ)− f(x+ δ, θ))2 .

We consider the worst-case perturbation to en-
courage the model to make smooth predictions.

Specifically, at epoch t, we solve

min
θt
L(θt) +

λ

n

n∑
i=1

max
‖δti‖≤ε

`v(xi, δ
t
i , θ

t). (1)

Here λ is the weight of the regularizer, ε is a pre-
defined perturbation strength, and ‖·‖ is either the
`2 norm or the `∞ norm. Notice that the perturba-
tion δti of sample xi is different in each epoch.

The min-max optimization problem in Eq. 1 is
notoriously difficult to solve. Previous works (Miy-
ato et al., 2017; Sato et al., 2019; Jiang et al., 2020;
Zhu et al., 2020) employ variations of alternating
gradient descent/ascent. That is, we first solve the
maximization problem using several iterations of
projected gradient ascent, and then we run a gra-
dient descent step on the loss function of the mini-
mization problem, subject to the generated pertur-
bations. The above procedures are run iteratively.

On major drawback of the alternating gradient
descent/ascent approach is that the stochastic gra-
dients are unstable. Specifically, norms of the
gradients vary significantly during training (Fig. 3).
This is because perturbations are generated based
on the current model parameters, i.e., by maximiz-
ing `v(xi, δti , θ

t), where θt changes in each epoch.
Therefore, the perturbations exhibit large variance.
This causes instability of the stochastic gradients,
because the model needs to adapt to drastically
different adversarial directions (i.e., δti).

3.2 Adversarial Regularization with Caching

To alleviate the gradient instability problem, we
propose to reuse the perturbations. Specifically,
instead of optimizing with respect to different per-
turbations {δti}ni=1 in each epoch, we optimize with
respect to the same ones for several epochs.

Concretely, the training objective is now

min
θt
L(θt) +

λ

n

n∑
i=1

`v(xi, δ
t
i , θ

t), (2)

δti =

{
δt−1i , t%Tc 6= 0,

αδt−1i + (1− α)∆t
i, t%Tc = 0.

where ∆t
i = max
‖δti‖≤ε

`v(xi, δ
t
i , θ

t).

Here, % is the mod operator, and Tc is a pre-defined
gap between re-computing the perturbations. No-
tice that we use an exponential moving average
(EMA) approach with parameter α when updating
the perturbations. The EMA strategy integrates

4121

past information into the current epoch, and in-
duces a smoothing effect that boosts model gener-
alization. This strategy has demonstrated its effec-
tiveness in many previous works (Izmailov et al.,
2018; Athiwaratkun et al., 2019; Jiang et al., 2020).

In comparison with Eq. 1, the formulation in
Eq. 2 indicates that the perturbations are generated
bT/Tcc times instead of T times when we train for
T epochs. As such, the model is optimized with
respect to {δi}ni=1 for Tc times, instead of only one
time. In this way, the model can better adapt to the
perturbed data, and thus, variance of the gradient
norms is reduced. Intuitively, this is because opti-
mization is more stable when the model is trained
on the same data for multiple epochs, in compar-
ison with trained on different noisy data in each
epoch. The algorithm to implement the caching
strategy is summarized in Algorithm 1.

In conventional adversarial regularization (e.g.,
SMART), we find the perturbations by optimiza-
tion algorithms such as projected gradient decent at
every iteration. Recently, R3F (Aghajanyan et al.,
2020) propose to use random perturbations instead,
i.e., they directly draw δ from a normal distribution,
and generalization of R3F can match SMART in
some cases. However, because the random noise
(as opposed to optimized perturbations) is not data-
dependent, generalization of R3F is subpar in some
scenarios, e.g., machine translation (see our exper-
iments). Our approach enjoys the advantages of
both of these two methods. Specifically, ARCH is
efficient since it remove the maximization problem
most of the time. Moreover, perturbations gener-
ated by our method are informative, unlike R3F.
Empirically, our proposed method is just as effi-
cient as R3F, and somewhat surprisingly, we find
that generalization of ARCH can not only match,
but even surpass conventional approaches in most
of the tasks (see our experiments).

3.3 Memory Saving with KNN

One caveat of Algorithm 1 is the increased memory
usage. For example, there are about 4.5 million sen-
tence pairs in the WMT’16 En-De dataset, so that
simply caching the adversarial samples takes about
100GB of memory. We propose a memory saving
strategy based on K-nearest neighbors (KNN) to
address this issue.

The idea is to only cache perturbations of some
samples, and perturbations of the other samples
are constructed using the cached ones on the fly.

Algorithm 1: Adversarial Regularization
with Caching.

Input: T : number of training epochs; Tc:
number of epochs between caching;
α: moving average parameter.

Initialize: Cache C = dict{};
for t = 0, · · ·T − 1 do

for each batch B do
// Find perturbations
if t%Tc == 0 then

Find δti for each xi ∈ B using
projected gradient ascent;
C[xi]← αC[xi] + (1− α)δti for

each xi ∈ B;
else

δti = C[xi] for each xi ∈ B;
end
// Update model
One-step gradient descent on Eq. 2;

end
end
Output: Trained model.

Algorithm 2: Memory Saving.
Input: W : word embedding matrix; n:

total number of training samples; p:
proportion of cached samples; K:
size of each neighbor.

// Before training
Compute {vi}ni=1 using W and Eq. 4;
Sample a cache set X ⊂ {1 · · ·n} such that
|X | = bnpc;

for i ∈ {1 · · ·n} \ X do
Find Ki ⊂ X for xi based on cosine
similarity among {vi}ni=1;

end
// In epoch t where t%Tc 6= 0
for i = 1, · · ·n do

if i ∈ X then
Retrieve δti from cache;

else
Compute δti using Ki and Eq. 3;

end
end

Specifically, whenever t%Tc = 0, i.e., we need to
re-compute and re-cache the perturbations, we only
cache δti such that i ∈ X . Here, X ⊂ {1 · · ·n}
is a pre-defined cache set and |X | � n. This

4122

strategy significantly reduces memory overhead.
Consequently, in each epoch t where t%Tc 6= 0,
perturbations δti such that i ∈ X are directly re-
trieved from the cache. And perturbations δti such
that i ∈ {1 · · ·n} \ X are defined as the following:

δti,` =
1

|Ki|
∑
j∈Ki

1

`j

`j∑
`′=1

δt−1j,`′ , ` = 1, · · · , `i. (3)

Here, `i be the length of sentence xi, δti,` ∈ Rd is
the perturbation for the `-th word in sentence xi,
and Ki is the nearest neighbor set for xi (which
we present later). We remark that constructing
the perturbations does not impose extra training
time, because we can perform such computation in
parallel with training.

We remark that each word has an identical per-
turbation in Eq. 3, i.e., δti ∈ R|`i|×d has identical
rows. We choose this design because a perturbation
in the neighbor of δti may have a different dimen-
sion, i.e., δtj ∈ R|`j |×d is in the neighbor of δti and
it is possible that |`i| 6= |`j |. To resolve this issue,
we compute the word-level mean of all the pertur-
bations in the neighbor of δti and assign it to each
row of δti .

The remaining is to find K nearest neighbors in
X for each sentence xi such that i ∈ {1 · · ·n} \ X .
Suppose we have a word embedding matrix W ∈
Rd×|V|, where |V| is the vocabulary size and d is
the embedding dimension. Note that W can be ob-
tained from pre-trained models such BERT (Devlin
et al., 2019). For each sentence xi, we compute its
sentence representation vi ∈ Rd as

vi =
1

`i

`i∑
`=1

Wxi,`. (4)

Here, xi,` ∈ R|V| is the one-hot vector of the `-th
word in sentence xi. Then, we can find K nearest
neighbors Ki for sample xi using the KNN algo-
rithm, where the distance between two samples is
defined as their cosine similarity. Notice that find-
ing {Ki}ni=1 is a pre-processing step, i.e., we can
find the neighbors before training the model.

The memory saving algorithm is summarized
in Algorithm 2, and an extended version that com-
bines caching and memory saving is presented in
Algorithm 3 in the appendix.

3.4 Computational Efficiency
Computational costs of various methods are sum-
marized in Table 1. In conventional adversarial

Forward Backward

Standard 1 1
FreeLB 1 + S 1 + S
SMART 1 + S 1 + S
R3F 2 1
ARCH 2 + (S − 1)/Tc 1 + S/Tc

Table 1: Computational cost of various methods. Here
S is the number of gradient ascent (PGD) steps, and
Tc is the number of epochs between caching. Forward
is the number of forward passes, and Backward is the
number of backward passes.

Figure 1: Wall time of different methods. Left:
training a Transformer-base model for 150 epochs on
IWSLT’14 De-En; Right: fine-tuning BERTBASE for 10
epochs on SST-2.

regularization algorithms, such as FreeLB (Zhu
et al., 2020) and SMART (Jiang et al., 2020), sup-
pose we solve the inner maximization problem for
S steps, then we impose extra S forward passes
and S backward passes in each iteration. In con-
trast, R3F (Aghajanyan et al., 2020) removes the
maximization problem, and directly samples per-
turbations from a normal distribution. Thus, R3F
only introduce one extra forward pass to compute
the regularization term. Using Algorithm 1, our
method shares similar efficiency as R3F. Specifi-
cally, suppose we cache the perturbations every Tc
epochs, then the average number of forward passes
and backward passes per iteration is 2+(S−1)/Tc
and 1 + S/Tc, respectively. In practice, S/Tc is
usually small, such that the computational cost be-
tween ARCH and R3F is close.

Wall time comparison is illustrated in Fig. 1. No-
tice that in the left subfigure, both our method and
R3F save about 70% computation time in compari-
son with FreeLB and SMART. In the right subfig-
ure, the time saving is about 50%. The absolute
time saving is more significant on large models
and large datasets. For example, when training
a Transformer-big model on the WMT’16 En-De
dataset, our method costs about 176 GPU hours,
while SMART uses 576 GPU hours.

4123

Models En-Vi Vi-En En-De De-En En-Fr Fr-En

Transformer (Vaswani et al., 2017) 30.3 28.7 28.3 34.7 39.3 38.2
R3F (Aghajanyan et al., 2020) 31.6 30.0 29.0 35.4 39.5 38.7
FreeLB (Zhu et al., 2020) 31.6 29.6 28.6 35.3 39.4 38.7
SMART (Jiang et al., 2020) 31.5 30.1 29.2 35.5 39.8 38.9

ARCH 32.0 30.4 29.4 36.1 40.3 39.3

Table 2: BLEU score on three low-resource datasets. All the baseline results are from our re-implementation. We
report the mean over three runs using different random seeds. ARCH saves about 70% computational time
comparing with SMART.

Models BLEU sacreBLEU

Transformer 29.1 28.4
R3F 29.4 29.0
FreeLB 29.3 29.0
SMART 29.8 29.1

ARCH 29.8 29.4

Table 3: BLEU and sacreBLEU score on the WMT’16
En-De dataset. All the baseline results are from our
re-implementation.

Data Source Train Valid Test

En-Vi IWSLT’15 133k 768 1268
En-De IWSLT’14 161k 7.2k 6.7k
En-Fr IWSLT’16 224k 1080 1133
En-De WMT’16 4.5m 3.0k 3.0k

Table 4: Dataset source and statistics. Here “k” stands
for thousand, and “m” stands for million.

4 Experiments

In all the experiments, we use PyTorch1 (Paszke
et al., 2019) as the backend. All the experiments
are conducted on NVIDIA V100 GPUs.

4.1 Baselines

We adopt several baselines in the experiments.

� Transformer (Vaswani et al., 2017) achieves su-
perior performance in neural machine translation.

� BERT (Devlin et al., 2019) exhibits outstanding
performance when fine-tuned on natural language
understanding tasks.

� FreeAT (Shafahi et al., 2019) enables “free” ad-
versarial training by recycling the gradient infor-
mation generated when updating the model.

1https://pytorch.org/

� FreeLB (Zhu et al., 2020) treats the intermedi-
ate perturbations during the projected gradient as-
cent steps as virtual batches. As such, the method
achieves “free” large batch adversarial training.

� SMART (Jiang et al., 2020) achieves state-of-the-
art performance in natural language understanding.
The method utilizes smoothness-inducing regular-
ization and Bregman proximal point optimization.

� R3F (Aghajanyan et al., 2020) replaces the maxi-
mization problem in conventional adversarial regu-
larization with random noise.

4.2 Machine Translation

Datasets. We use three low-resource datasets2:
English-German from IWSLT’14, English-
Vietnamese from IWSLT’15, and English-French
from IWSLT’16. We also use a rich-resource
dataset: English-German from WMT’16. Dataset
statistics are summarized in Table 4.

Implementation. In NMT tasks, we have the
source-side and the target-side inputs. We add per-
turbations to both of their embeddings (Sato et al.,
2019). This has demonstrated to be more effective
than adding perturbations to a single side. We use
Fairseq3 (Ott et al., 2019) to implement our algo-
rithms. For En-Vi and En-Fr experiments, we use
the Transformer-base architecture (Vaswani et al.,
2017). For En-De (IWSLT’14) experiments, we
modify4 the Transformer-base architecture by de-
creasing the hidden dimension size from 2048 to
1024, and decreasing the number of heads from
8 to 4 (while dimension of each head doubles).
For En-De (WMT’16) experiments, we use the
Transformer-big (Vaswani et al., 2017) architecture.
The training details are presented in Appendix B.1.

2https://iwslt.org/
3https://github.com/pytorch/fairseq
4https://github.com/pytorch/fairseq/

tree/master/examples/translation

https://pytorch.org/
https://iwslt.org/
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation

4124

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

BERTBASE 63.5 84.1/89.0 54.7 92.9 89.2/88.8 91.1 90.9/88.3 84.5/84.4 81.5
FreeAT 68.0 85.0/89.2 57.5 93.2 89.5/89.0 91.3 91.2/88.5 84.9/85.0 82.6
FreeLB 70.0 86.0/90.0 58.9 93.4 89.7/89.2 91.5 91.4/88.4 85.4/85.5 83.3
R3F 70.4 87.0/91.0 59.1 93.4 90.1/89.8 92.0 91.7/88.8 85.2/85.4 83.7
SMART 71.2 87.7/91.3 59.1 93.0 90.0/89.4 91.7 91.5/88.5 85.6/86.0 83.8
ARCH 72.2 88.0/91.6 61.1 93.6 90.6/90.2 92.2 91.9/89.1 85.6/86.0 84.5

Table 5: Evaluation results on the GLUE development set. We use the BERTBASE architecture for all the methods.
The best results on each dataset are shown in bold. Results of BERTBASE (Devlin et al., 2019), FreeAT (Shafahi
et al., 2019), FreeLB (Zhu et al., 2020), and R3F (Aghajanyan et al., 2020) are based on our re-implementation.
SMART results are from Jiang et al. (2020).

Results. Experimental results on the low-resource
datasets are summarized in Table 2. We can see
that ARCH outperforms all the baselines in all the
experiments. We remark that our method saves
about 70% computational time in comparison with
SMART and FreeLB, and has the save level of effi-
ciency comparing with R3F (Fig. 1). Even though
R3F is efficient by eliminating the maximization
problem, we can see that is does not generalize as
well as SMART, i.e., R3F has worse BLEU score
than SMART in 5/6 of the experiments.

Experimental results on the WMT’16 En-De
dataset are summarized in Table 3. We report both
the BLEU score and the sacreBLEU (Post, 2018)
score. The former is standard for machine transla-
tion tasks, and the latter is a detokenzied version
of BLEU. The absolute computational time saving
is more significant for larger datasets (e.g., WMT)
and larger models (e.g., Transformer-big). In the
experiments, ARCH uses about 176 GPU hours to
train, while it costs SMART about 576 hours. Per-
formance of ARCH is better or on par with all the
baselines. Notice that like in Table 2, performance
of R3F is worse than SMART.

4.3 Natural Language Understanding

Datasets. We conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019a), which is a col-
lection of nine natural language inference tasks.
The benchmark includes question answering (Ra-
jpurkar et al., 2016), linguistic acceptability (CoLA,
Warstadt et al. 2019), sentiment analysis (SST,
Socher et al. 2013), text similarity (STS-B, Cer
et al. 2017), paraphrase detection (MRPC, Dolan
and Brockett 2005), and natural language inference
(RTE & MNLI, Dagan et al. 2006; Bar-Haim et al.

2006; Giampiccolo et al. 2007; Bentivogli et al.
2009; Williams et al. 2018) tasks. Statistics of the
datasets are summarized in Table 8 (Appendix B.2).

Implementation. We implement our algorithm us-
ing the MT-DNN5 (Liu et al., 2019a, 2020b) and the
Transformers (Wolf et al., 2020) code-base. The
training details are presented in Appendix B.2.

Results. Table 5 summarizes experimental results
on the GLUE development set. We can see that
ARCH is on par or outperforms all the baselines in
all the tasks. Notice that generalization of R3F is
comparable with SMART. Our proposed method
shares the advantages of both efficiency (i.e., R3F)
and informative perturbations (i.e., SMART), and
thus, ARCH behaves better than both of these meth-
ods. We highlight that our method is 50%-70%
faster than SMART and FreeLB.

4.4 Parameter Study
�Moving average helps. As indicated in Fig. 2a,
without the exponential moving average, model per-
formance drops about 0.3 BLEU. Also, the model
is robust to the moving average parameter, as in-
creasing it from 0.01 to 0.1 does not change model
performance.

� Number of epochs between caching is impor-
tant. If we cache the perturbations too frequently
(i.e., 5 in Fig. 2b), the model cannot adapt to the
perturbations well; and if we cache the perturba-
tions too infrequently (i.e., inf in Fig. 2b), staleness
of the perturbations hinders model generalization.

� Robustness to the number of neighbors. In
Fig. 2c, notice that ARCH is robust to the number
of neighbors. We also examine a variant of the
KNN memory-saving strategy (R-1-NN): namely

5https://github.com/namisan/mt-dnn

https://github.com/namisan/mt-dnn

4125

(a) Moving average. (b) Epochs between caching.

(c) Number of neighbors. (d) Proportion of caching.

Figure 2: Parameter study on the IWSLT’14 De-En
dataset. Each error bar is based on three runs using
different random seeds. Each dashed line signifies the
SMART baseline. In (b), inf means we only cache once
during training. In (c), R-1-NN means we use 1-NN,
but the neighbor is randomly selected.

in Algorithm 1, the nearest neighbors set Ki for
sample xi is randomly constructed instead of based
on word embeddings. We can see that model per-
formance drops, and the method also exhibits dras-
tically larger variance.

� Robustness to the number of cached samples.
From Fig. 2d, notice that the model generalizes
well even caching only 1% of the perturbations
(i.e., only 1400 samples for the IWSLT’14 De-En
dataset). Moreover, the KNN memory-saving strat-
egy does not hinder model performance, i.e., the
BLEU score is consistent when caching all the sam-
ples and caching only 10% of the samples.

We highlight that in practice ARCH does not
need much tuning, because the method is robust
to the introduced hyper-parameters.

4.5 Analysis

� Caching reduces gradient norm variance. As
demonstrated in Fig. 3, variance of the gradi-
ent norms reduces significantly comparing with
SMART and R3F. This meets our expectation that
by reusing perturbations, the model can adapt to
the noisy data (i.e., clean data with perturbations)
better. Notice that R3F has even larger gradient
norm variance than SMART, which is because R3F
uses random noise instead of data-dependent ones.

� Adversarial robustness. We remark that the
focus of ARCH is model generalization. Never-

Figure 3: Norm of stochastic gradients during training.
Top: IWSLT’14 De-En; Bottom: IWSLT’15 En-Vi.

theless, we investigate model robustness on the
Adversarial-NLI (ANLI, Nie et al. 2020) dataset.
The dataset contains 163k data, which are collected
via a human-and-model-in-the-loop approach. Sur-
prisingly, from Table 6, we can see that R3F and
ARCH achieve on par robustness with SMART.
This indicates that reusing perturbations, or even
constructing random perturbations can increase ro-
bustness (than BERT) to the same level as comput-
ing optimized perturbations (i.e., SMART).

Dev
R1 R2 R3 All

BERTBASE 53.3 43.0 44.7 46.8
R3F 53.9 43.4 46.3 47.8
SMART 54.1 44.4 45.3 47.8
ARCH 54.0 46.1 46.0 48.5

Test
R1 R2 R3 All

BERTBASE 54.1 44.9 46.6 48.4
R3F 54.3 46.2 46.5 48.8
SMART 54.3 46.4 46.5 48.9
ARCH 53.8 46.6 47.4 49.2

Table 6: Experimental results on the ANLI dataset.
Model references: BERTBASE (Devlin et al., 2019), R3F
(Aghajanyan et al., 2020), SMART (Jiang et al., 2020).

4126

� Probing experiments. We first fine-tune a
BERTBASE model on the SST-2 dataset using differ-
ent methods, and then we freeze the representations
and only tune a prediction head on other datasets.
The probing method directly measures the quality
of representations generated by different models.
As illustrated in Fig. 4, ARCH consistently outper-
forms the baseline methods.

Figure 4: Probing experiments. Each violin plot is
based on 10 runs with different random seeds.

5 Conclusion

We propose a new caching method to speedup the
training of neural models with adversarial regular-
ization. By reusing the generated perturbations,
our proposed method significantly amortizes the
computational cost of the backward passes at each
iteration. Our thorough experiments show that the
proposed method not only improves the compu-
tational efficiency, but also reduces the variance
of the stochastic gradients, which leads to better
model generalization.

Broader Impact

This paper proposes a caching method to speedup
adversarial regularized training for NLP tasks. Our
proposed method provides a fundamental way to
address the efficiency issue that commonly exists
in conventional adversarial regularization methods.
We use publicly available data, to conduct neural
machine translation and natural language under-
standing experiments. Our framework is built us-
ing public code bases. We do not find any ethical
concerns.

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representa-
tional collapse. arXiv preprint arXiv:2008.03156.

Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and An-
drew Gordon Wilson. 2019. There are many consis-
tent explanations of unlabeled data: Why you should
average. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and
Danilo Giampiccolo. 2006. The second PASCAL
recognising textual entailment challenge. In Pro-
ceedings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual
Object Classification, and Recognizing Textual En-
tailment, MLCW’05, pages 177–190, Berlin, Hei-
delberg. Springer-Verlag.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

https://openreview.net/forum?id=rkgKBhA5Y7
https://openreview.net/forum?id=rkgKBhA5Y7
https://openreview.net/forum?id=rkgKBhA5Y7
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

4127

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1243–1252. PMLR.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1–9, Prague. Association
for Computational Linguistics.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, August 6-10,
2018, pages 876–885. AUAI Press.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and
Tuo Zhao. 2021. Learning to defend by learning
to attack. In The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021,
April 13-15, 2021, Virtual Event, volume 130 of Pro-
ceedings of Machine Learning Research, pages 577–
585. PMLR.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2177–2190, Online. Asso-
ciation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Yan Li, Ethan X Fang, Huan Xu, and Tuo Zhao.
2019. Inductive bias of gradient descent based ad-
versarial training on separable data. arXiv preprint
arXiv:1906.02931.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
2020a. Adversarial training for large neural lan-
guage models. arXiv preprint arXiv:2004.08994.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng,
Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, and
Jianfeng Gao. 2020b. The Microsoft toolkit of multi-
task deep neural networks for natural language un-
derstanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 118–126,
Online. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adver-
sarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Yifei Min, Lin Chen, and Amin Karbasi. 2020. The
curious case of adversarially robust models: More
data can help, double descend, or hurt generalization.
arXiv preprint arXiv:2002.11080.

Takeru Miyato, Andrew M. Dai, and Ian J. Good-
fellow. 2017. Adversarial training methods for
semi-supervised text classification. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/W07-1401
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
http://proceedings.mlr.press/v130/jiang21a.html
http://proceedings.mlr.press/v130/jiang21a.html
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441

4128

Linguistics, pages 4885–4901, Online. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang,
John C. Duchi, and Percy Liang. 2020. Understand-
ing and mitigating the tradeoff between robustness
and accuracy. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
7909–7919. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for

machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Motoki Sato, Jun Suzuki, and Shun Kiyono. 2019. Ef-
fective adversarial regularization for neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 204–210, Florence, Italy. Association for
Computational Linguistics.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu,
John P. Dickerson, Christoph Studer, Larry S. Davis,
Gavin Taylor, and Tom Goldstein. 2019. Adver-
sarial training for free! In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 3353–3364.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang,
and Tuo Zhao. 2020. Deep reinforcement learn-
ing with robust and smooth policy. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8707–8718. PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neu-
ral networks. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Pro-
ceedings.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Dilin Wang, ChengYue Gong, and Qiang Liu. 2019b.
Improving neural language modeling via adversarial
training. In Proceedings of the 36th International

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://proceedings.mlr.press/v119/raghunathan20a.html
http://proceedings.mlr.press/v119/raghunathan20a.html
http://proceedings.mlr.press/v119/raghunathan20a.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
http://proceedings.mlr.press/v119/shen20b.html
http://proceedings.mlr.press/v119/shen20b.html
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html

4129

Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 6555–6565. PMLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Simiao Zuo, Chen Liang, Haoming Jiang, Xiaodong
Liu, Pengcheng He, Jianfeng Gao, Weizhu Chen,
and Tuo Zhao. 2021. Adversarial training as stack-
elberg game: An unrolled optimization approach.
arXiv preprint arXiv:2104.04886.

https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

4130

A Detailed Algorithm

Algorithm 3: Adversarial Regularization
with Caching and Memory Saving.

Input: W : word embedding matrix from a
pre-trained model; T : number of
training epochs; Tc: number of
epochs between caching; α: moving
average parameter.

// Before training
Compute {vi}ni=1 using Eq. 4;
Sample a cache set X ⊂ {1, · · · , n};
for i /∈ X do

Find Ki ⊂ X for xi based on cosine
similarity among {vi}ni=1;

end
// During training
Initialize: Cache C = dict{};
for t = 0, · · ·T − 1 do

for each xi ∈ B in a batch B do
if t%Tc == 0 then

Find δti for each xi using
projected gradient ascent;

if i ∈ X then
C[xi]← αC[xi] + (1−α)δti ;

end
else

if i ∈ X then
δti = C[xi];

else
Compute δti using Ki, C, and
Eq. 3;

end
end
One-step gradient descent on Eq. 2

to update model parameters;
end

end
Output: Trained model.

B Training Details

B.1 Machine Translation Experiments
For the low-resource experiments, we use a batch
size of 64k tokens. For example, when running
the experiments on 4 GPUs, we set the tokens-per-
GPU to be 8k, and we accumulate gradients for 2
steps. We use Adam (Kingma and Ba, 2015) as the
optimizer, and we set β = (0.9, 0.98). The learn-
ing rate is set to be 1× 10−3 in all the experiments.

We choose the model with the best validation per-
formance to test on the test set. Other training
details are the same as Ott et al. (2019)6.

For the rich resource experiments, we use a batch
size of 450k tokens. That is, we set tokens-per-
GPU to be 7k with 8 GPUs, and we further accu-
mulate gradients for 8 steps. We set the learning
rate to be 1 × 10−3}. For other training setups,
please refer to Ott et al. (2018)7.

To implement our proposed method, we sample
the initial perturbation from a uniform distribution.
We use sentence-level `2 constraints on the per-
turbations, and we set the perturbation strength
ε = 0.1. We run a modified version of projected
gradient ascent for 3 steps to compute the pertur-
bations, and the learning rate is set to be 0.1. Con-
cretely, in each iteration to compute the perturba-
tions, we apply the following update rule

δ ← Π

(
δ + η

∇δ`v(x, δ, θ)
‖∇δ`v‖2

)
,

where η is the learning rate and Π denotes the pro-
jection into the `2 ball. We set the number of
epochs between caching to be 15, and the expo-
nential moving average parameter α = 0.01. We
cache 10% of perturbations, and we use the nearest
neighbor (i.e., 1-NN) to construct uncached pertur-
bations.

Inference settings are presented in Table 7.

Beam Len-Pen

En-Vi (IWSLT’15) 10 1.0
Vi-En (IWSLT’15) 15 0.3
En-De (IWSLT’14) 10 1.5
De-En (IWSLT’14) 9 1.5
En-Fr (IWSLT’16) 10 0.2
Fr-En (IWSLT’16) 10 2.0
En-De (WMT’16) 4 0.6

Table 7: Hyper-parameters for machine translation.
Here, Beam is the size of beam search, and Len-Pen
is the length penalty parameter during beam search.

6https://github.com/pytorch/fairseq/
blob/master/examples/translation/README.
md

7https://github.com/pytorch/fairseq/
blob/master/examples/scaling_nmt/README.
md

https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/scaling_nmt/README.md
https://github.com/pytorch/fairseq/blob/master/examples/scaling_nmt/README.md
https://github.com/pytorch/fairseq/blob/master/examples/scaling_nmt/README.md

4131

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 8: Summary of the GLUE benchmark.

B.2 Natural Language Understanding
Experiments

Statistics and descriptions of the GLUE benchmark
is summarized in Table 8.

We fine-tune a pre-trained BERTBASE model.
For each task, we choose the batch size from
{8, 16, 32, 64, 128}, and the learning rate from
{5 × 10−5, 8 × 10−5, 1 × 10−4, 2 × 10−4}. We
use a linear learning rate warm-up schedule for
10% of the training iterations. We set the dropout
rate of the task specific layer (i.e., the classification
head) to be 0.1, and the dropout rate of BERT is
chosen from {0.0, 0.1}. We train the model for 10
epochs. We report the best performance on each
dataset individually.

To implement the adversarial regularization
method, we sample the initial perturbation from a
normal distribution with mean 0 and standard devi-
ation 10−5. We use word-level `∞ constraints, and
the perturbation strength is set to be 1.0. We run
standard projected gradient ascent to compute the
perturbations, where the number of steps is chosen
from {1, 2}, and the learning rate is chosen from
{10−4, 10−5}. Because of the limited number of
training samples, we only cache the perturbations
once for fine-tuning tasks. We refer to the MT-DNN
code-base8 for other details.

8https://github.com/namisan/mt-dnn

https://github.com/namisan/mt-dnn

