Reconsidering the Past: Optimizing Hidden States in Language Models

Davis Yoshida

Kevin Gimpel

Toyota Technological Institute at Chicago, IL, USA, 60637
{dyoshida, kgimpel}@ttic.edu

Abstract

We present Hidden-State Optimization (HSO),
a gradient-based method for improving the per-
formance of transformer language models at
inference time. Similar to dynamic evaluation
(Krause et al., 2018), HSO computes the gradi-
ent of the log-probability the language model
assigns to an evaluation text, but uses it to up-
date the cached hidden states rather than the
model parameters. We test HSO with pre-
trained Transformer-XL and GPT-2 language
models, finding improvement on the WikiText-
103 and PG-19 datasets in terms of perplexity,
especially when evaluating a model outside of
its training distribution. We also demonstrate
downstream applicability by showing gains in
the recently developed prompt-based few-shot
evaluation setting, again with no extra parame-
ters or training data.

1 Introduction

Finetuning a pretrained transformer language
model (LM) (Vaswani et al., 2017; Radford et al.,
2018; Peters et al., 2018; Devlin et al., 2019) is now
the default method for attacking a task in modern
NLP. Due to the high cost of pretraining, much
research has been focused on how better to apply
the pretrained models, rather than just improving
pretraining itself. However, even finetuning can be
too costly, especially for models such as the 175
billion parameter GPT-3 (Brown et al., 2020). As
such, researchers have sought low cost alternatives,
such as finetuning a small set of auxiliary parame-
ters (Houlsby et al., 2019), or more recently leaving
the LM weights fixed and passing a textual context
designed to elicit the desired behavior via token
prediction, such as in Brown et al. (2020).

One direction for language modeling in particu-
lar is to leave the LM parameters fixed, but update
its intermediate quantities (e.g., Dathathri et al.,
2020 and Qin et al., 2020). In this paper, we intro-
duce Hidden-State Optimization (HSO), a method

that contributes to this line of work. HSO first com-
putes the language modeling loss as usual, then
modifies the LM hidden states using the gradient
of the loss (but critically reports the original loss).
This process is repeated for each window of 10-
25 tokens, updating the cached hidden states each
time. Attending to these modified hidden states
creates higher quality predictions for future tokens.

As an example of how future information can
help embed past tokens, consider the garden path
sentence: “The old man the boat.” The embedding
for “man” will only depend on “The”, “old”, and
“man”, so it will not reflect that “man” is being
used as a verb. HSO can be seen as a method of
incorporating future information into the represen-
tation of a context while still using a left-to-right
LM. BERT (Devlin et al., 2019) showed that bidi-
rectional information passing improves embedding
quality, which suggests that doing so should im-
prove performance on downstream tasks.

We demonstrate HSO in the setting of language
model evaluation on the WikiText-103 (Merity
et al., 2017) and PG-19 (Rae et al., 2020) corpora,
and find improvements in measured perplexity. In
order to demonstrate that this translates into value
for downstream applications we apply HSO to few-
shot classification with the 1.5B parameter GPT-2,
and find improvement in that setting as well.

2 Related Work

Learning during inference. HSO is related to
methods that perform learning on the test set. One
such method is dynamic evaluation (DE) (Krause
et al., 2018, 2019), which was the inspiration for
HSO. DE consists of using test inputs for learning
after evaluating on them, which means a larger
test set will result in a larger gain from its use.
This is not reflective of the small amount of text
present in a setting such as conditional generation
or few-shot classification, while using HSO for LM
evaluation is. HSO is also cheaper than DE because

4099

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4099-4105
November 7-11, 2021. ©2021 Association for Computational Linguistics

it differentiates with respect to hidden states rather
than the model parameters. See Section 4.2.2 for
more discussion and results on this point.

Gradient-Based Optimization of Hidden States.
Qin et al. (2020) proposed Delorean, a method
that incorporates future tokens into LM predictions
by using backpropagation into earlier intermediate
vectors. However, their goal is to produce better
generations for intermediate timesteps, using sam-
pled intermediate tokens and ground truth future
tokens. We instead use the LM loss to tune past
hidden states to allow better prediction of unseen
future tokens. They also only perform gradient
updates to logits while we update hidden states.

Plug-and-Play language models (PPLM;
Dathathri et al., 2020) modify the behavior of
pretrained LMs by updating hidden states at
inference time, but with the goal of controllable
generation (e.g., controlling sentiment) rather
than improved fidelity. Unlike HSO, PPLMs
require an attribute classifier which must be trained
with labeled data. Several methods have been
developed to more efficiently achieve the same
goal as PPLM (Madotto et al., 2020; Krause et al.,
2020), and these ideas could potentially be applied
in analogous ways to speed up HSO.

Alternatives to finetuning. Our method is re-
lated to those that reduce the computational cost
of finetuning by updating a smaller number of pa-
rameters or avoid finetuning altogether. Houlsby
et al. (2019) introduce adapter modules which are
finetuned in lieu of the full model. Li and Liang
(2021) introduce prefix-tuning, which adds a fixed
set of learnable vectors to the beginning of the input
sequence. The latter is related to using prompts for
contextual generation, which has gained popularity
both to extract information from language mod-
els (e.g., Radford et al., 2019, Jiang et al., 2020)
and perform tasks directly without updating any
model parameters (Brown et al., 2020). Follow-up
work has sought to understand the effectiveness of
prompting (Le Scao and Rush, 2021) and automati-
cally find or learn better prompts (Shin et al., 2020;
Liu et al., 2021; Qin and Eisner, 2021).

3 Method

Let f be a transformer language model computing
the distribution for token x; given tokens x1.;—1:

pe = f(T1:4-1)

In practice, one may cache the hidden states, h; €
R4 where ¢ is the number of layers and d is the
embedding size. We represent this by factoring
f into f3 which computes hidden states (possibly
depending on past hidden states) and f,, which com-
putes output probabilities from the hidden states:

hi = fn (z¢, h14-1) (D
bt = fp (ht)

Given a loss function L which takes as arguments
the ground truth next word and a distribution over
word types, one can then compute its gradient with
respect to both the present hidden states h;, and
with respect to the cached hidden states hy.;—1:

Gpresent = vhtL (SUt-&-la fp(ht))
Gcached = vhlzt,lL (xt-i-la fp(fh(xt) hl:t—l))

Denoting the concatenation of these two quantities
along the time axis as g; = [Geached; Gpresent|» We
can make a gradient update to the hidden states:

hit = his — ng; 2)

where 7 is the step size. We apply Adam (Kingma
and Ba, 2015) to this update, but with modifications
described in Section 3.1.

In practice, we use standard cross entropy as our
loss function L. So, intuitively, we are updating the
hidden states to make the actual word at position
t 4+ 1 more likely under the language model’s distri-
bution p; by altering only the previously computed
hidden states. Note that when we update the hidden
states with gradient-based updates, it will no longer
be the case that the set of hidden states follow the
feedforward procedure defined by the architecture
of the transformer language model.

While computing the hidden state for x4y, we
then substitute iLl;t into Eq. 1 in place of hy.;—1:

hiy1 = fn ($t+1, ﬁl:t)

Provided that the loss for timestep ¢ is computed
with the unmodified hidden state h; rather than h,
this may be done at test time without the loss being
improved by “looking into the future.” We continue
to update all hidden states at each step.!

In practice taking a gradient step after each token
is too costly, so we can process blocks of k tokens
(which we will refer to as a window size of k):

]izl;t is then a concatenation of hidden states which have
been updated between 1 and ¢ times.

4100

ht+1 = fn <$t+1, ill:t)
Pi+1 = fp (Peg1)
hito = f3 <$t+2, (Pig1:t41; Bl:t])

ht+k = fh <$t+k7 [ht+1:t+k—1; ill:t])
DPi+k = fp(ht+k)

This sequence of computations is done in a single
forward pass, but we have broken it up by token to
make clear how a mix of unmodified and modified
hidden states is used to embed each token in the
window. Once the loss function, L, is applied to
Tig2:4+k+1 and pyi1.44%, @ backwards pass is done
to compute the gradient of the sum of the losses
with respect to the hidden states, at which point the
modified hidden states ill:t-i—k are computed.

k has a twofold effect on computational cost, as
it controls both the number of gradient steps and
the number of tokens processed at a time. A very
small £ will require many more forward passes and
will not take advantage of GPU parallelism.

3.1 Modifications to Adam

One way of applying Adam to the HSO gradient
update would be to view the past hidden states as a
single T" X ¢ x d tensor, where 7" is the maximum
context size. This would allow use of just two
moment estimate tensors m,v € RT*¢Xd. This
version of Adam performs very poorly, as a given
value in the hidden state cache will not be consis-
tently associated with the same moment estimate.

Instead, we keep first and second moment esti-
mates m; and v; for each hidden state, discarding
them once the corresponding hidden states are fur-
ther in the past than the maximum attention length.
This also requires maintaining a different optimizer
step value for each block of k£ hidden states, as
Adam’s bias correction depends on how many up-
dates have been made to a moment estimate. In
terms of implementation, we do not actually keep
a separate vector for each hidden state, but pack
them into a tensor which is translated along with
the cached hidden state tensor.

4 Experiments

We demonstrate HSO with the Transformer-XL
(TXL) (Dai et al., 2019) and GPT-2? (Radford et al.,

For GPT-2, we backpropagate into the key and value
vectors rather than the full embeddings at each layer for ease

Method WT-103 PG-19
Baseline 21.3/22.4 166.4/164.2
HSO 20.7/21.7 140.0/145.7

Table 1: Language modeling validation/test perplexity
with Transformer-XL (pretrained on WT-103). Impor-
tantly, PG-19 is out of distribution for this model.

Method ~ WT-103 PG-19
Baseline 21.5/20.7 26.7/26.5
HSO 21.0/20.3 25.1/26.5

Table 2: Language modeling validation/test perplexity
with GPT-2 (345M parameters).

2019) models implemented using FLAX (Heek
et al., 2020) and Haiku (Hennigan et al., 2020), on
top of JAX (Bradbury et al., 2018). The TXL model
is initialized from the HuggingFace Transform-
ers (Wolf et al., 2020) model trained on WikiText-
103 (WT-103). The GPT-2 models are initialized
from the OpenAl checkpoints.

4.1 Language modeling

We test HSO with the TXL and 345M parame-
ter GPT-2 models on the pre-tokenized WikiText-
103 (Merity et al., 2017) and PG-19 (Rae et al.,
2020) datasets. As the TXL was trained on WT-
103, this covers both an in-distribution and out-of-
distribution (OOD) evaluation for it. We found that
TXL was not stable in the OOD setting, but that
resetting its hidden states to zeros upon reaching
its maximum context size reduced the baseline per-
plexity significantly. We do not do this for HSO
as it does not appear to need this stabilization. We
evaluate GPT-2 with non-overlapping contexts for
efficiency. The perplexities reported are per token,
which differs between GPT-2 and the word based
TXL. Out of vocabulary words are UNK-ed for
TXL, but GPT-2 has an open vocabulary.

We used a window size of k = 25, a learning
rate of 0.003, and 0.65/0.9 for Adam’s 8y and (35
parameters. We found that some HSO hyperparam-
eter settings gave better performance, especially
for GPT-2, but for the sake of parsimony report our
main results with consistent hyperparameters.

Our LM results are shown in Tables 1 and 2.
HSO yields about a half a point improvement in per-
plexity on WT-103 with both architectures. While
this is not a large improvement, recall that GPT-
2’s hidden states are reset every 1024 tokens, so

of implementation. They differ by only a linear transformation,
so we do not expect this to be a critical difference.

4101

Modifications Perplexity
None 25.1
n=3x10"*%p5 =08 23.8
present-only 23.6
k=10 24.4

= 10, present-only 22.1
SGD, n = 0.01, 24.7

SGD, n = 0.01, present-only 25.1

Table 3: GPT-2 (345M) perplexity on the PG-19 valida-
tion set. 7 is learning rate, k is window size, “present-
only” means only the last k£ hidden states are updated.

this represents improvement in prediction within
the context of one attention window, rather than
cumulative training on the test set as in DE.

On PG-19, the perplexity improvements are
larger for the most part: 1.6 points for GPT-2 on
the validation set and over 10 points for TXL (but
a <0.1 point increase for GPT-2 on the test set).
As we used the same hyperparameters for all LM
evaluations, HSO seems to be fairly robust to the
choice of architecture and dataset.

4.1.1 Modifying HSO

Table 3 shows the effect of various modifications
to HSO on GPT-2’s perplexity on the PG-19 vali-
dation set. Tuning Adam’s parameters decreases
perplexity by another point. Surprisingly, only
updating the most recent window’s hidden states
(“present-only”) improves perplexity on PG-19 (ini-
tial experiments on WT-103 did not find this to be
the case). This also requires significantly less com-
putation. Since Adam tries to estimate moments
over many steps this might seem to imply it is not
necessary. To investigate this, we tested stochastic
gradient descent (SGD) with several learning rates
but it performed worse than Adam for both full and
“present-only” updates.’

4.2 Few-shot classification

While HSO can give gains in perplexity, we would
like to see whether it benefits other tasks as well.
So, we consider few-shot learning from examples
in the LM’s context, as in GPT-3 (Brown et al.,
2020). Lacking GPT-3 access, we demonstrate our

30n the first step, Adam updates in the L. steepest de-
scent direction so it differs from SGD even for only one step.

“Due to the much higher running time for using dynamic
evaluation, these are partial results from running on a random
subset of the test set. The accuracy in parentheses is a hyper-
geometric 95% upper confidence bound. Future versions of
this paper will have the full results. Furthermore, we exclude
n = 6, 8 for AGNews due to running out of GPU memory on
those input sizes.

Dataset n Method
Baseline DE* HSO HSO-2
2 53.9 52.2(55.1) 59.5 64.0
SST2 4 58.3 55.6(58.8) 63.1 66.5
6 57.9 56.2(59.4) 680 69.2
8 58.4 599(61.8) 702 702
2 53.1 32.2(35.0) 526 543
4 77.8 52.2(55.2) 77.2 77.6
AGNews ¢ 48 _ 658 662
8 63.3 — 68.5 69.3

Table 4: Effect of updating hidden states on few-shot
classification accuracy of GPT-2-XL on SST-2 and AG-
News, where n is the number of examples per prompt.
Neither hidden states or weights are updated for the
baseline. HSO-2 is HSO with two gradient steps per
window of text.

method with the 1.5B parameter GPT-2-XL model.

We use the binary SST-2 (Socher et al., 2013)
and 4-way AGNews (Zhang et al., 2015) classifi-
cation datasets. We follow choices made by Zhao
etal. (2021), including their prompt formats, but we
made several changes to their procedure to reduce
computational requirements and variance. Most im-
portantly, we resampled a class-balanced prompt
for every test example (but kept the prompt fixed
between the baseline and HSO) rather than using a
fixed prompt.> We used a learning rate of 0.01 and
a window size of 10 tokens. Our experiments used
a 24GB NVIDIA Quadro RTX 6000 GPU.

We also test DE, as in contrast to the LM setting,
the amount of fine-tuning data will be the same
between DE and HSO. We found that the learning
rate of 0.01 led to the model collapsing to constant
predictions, so we use a learning rate of 10~% in-
stead. We update the model every 10 tokens as with
HSO, and recompute the hidden states after each
update since the weights which produced them are
no longer the model weights.

There are a few options to pick between when
deciding what it meant to apply DE to this setting.
One could choose to make a single gradient step
based on the entire prompt, update the weights ev-
ery 10 tokens but not recompute the hidden states,
or perform multiple updates on the whole prompt.
We chose what we believed was the closest compar-
ison between HSO and DE, but did not experiment

5Zhao et al. (2021) reported high variance based on prompt
choice, so we made this choice in order to only need to run
each evaluation once. The other two changes were to sample
1200 examples from the AGNews test set to expedite the
evaluation, and to only use examples with <35 tokens in our
prompts to reduce the required memory.

4102

with these other variations.

4.2.1 Results

Table 4 shows our results. HSO with a single gra-
dient step leads to consistent improvements in ac-
curacy across prompt sizes, and larger improve-
ment with more prompt examples. The exceptions
are AGNews with 2 and 4 example prompts, for
which there is a slight decrease in accuracy. DE
has similar performance to the baseline on SST-2,
and degrades significantly on AGNews.

A longer prompt means both more examples to
learn from and more gradient steps, so to disentan-
gle the effect, we also tried two gradient steps per
window (last column). This yields further improve-
ment in 7 out of 8 cases. Surprisingly, for the cases
where one gradient step was harmful, a second gra-
dient step increases accuracy rather than causing
further degradation. Also, a second gradient step
generally causes a larger increase in accuracy for
shorter prompts (e.g., for SST-2, two steps with
two examples beats one step with four examples).

4.2.2 Compute costs for HSO and DE

As we noted earlier, DE is not intended to be ap-
plied to a very small amount of text, so this is not
an apples-to-apples comparison of methods, but
can still help emphasize the differences between
the two. In this setting, DE uses a much smaller
amount of data (less than a single full GPT-2 win-
dow) to make updates to the entire transformer’s
weights. As such, it is not surprising it does not
improve greatly over the baseline.

In terms of memory, the parameters and Adam
moment estimates for DE of GPT-2-XL require
more than 18GB in total. As the parameters are
updated separately for each example, batching mul-
tiplies this overhead by the batch size, making DE
infeasible for use on prompts coming from different
distributions. HSO’s extra overhead is the moment
estimates for the hidden states, which cost ~1.2MB
per token of input, for a total of ~1.3GB on a maxi-
mum size input. Furthermore, DE requires storing
an additional copy of the model parameters, as they
must be reset after each example. To avoid storing
this extra copy on the GPU, we transferred it from
RAM to GPU memory each time.

While the primary performance advantage over
DE is reduced overhead and batching, we examine
runtimes for each method in Table 5. We addi-
tionally benchmark the 345M parameter GPT-2 for
a speed comparison without the extra parameter

transfer to the GPU. It is important to note that tak-
ing a single step per example instead of once per
k tokens would be much faster than either method,
as both DE and HSO require [%} backward passes
for a length IV input.

Method n GPT-2 parameters

345M 1558M
2 1.1 11.7
DE 8 33 30.6
2 04 22
HSO 8 1.0 6.6

Table 5: Seconds per example for few-shot evaluation
using HSO and DE on SST-2. Because DE with GPT-2-
XL requires copying the parameters from RAM to GPU
memory every step, we also include speeds for GPT-2-
medium which does not have that additional overhead.

5 Conclusion and Future Work

We presented a method that optimizes transformer
language model hidden states, which improves LM
perplexity and prompt-based few-shot classifica-
tion, without additional parameters or data.
Future work will explore improving the cost of
HSO by further investigation into updating only
a subset of hidden weights, and approximation of
the exact gradient update. Other directions we will
explore are its application to conditional generation
by improving the representation of the context, and
its interaction with other methods for improving
prompt-based few-shot classification.

Acknowledgements

Thank you to the reviewers for their time and feed-
back, which helped us to improve the paper.

References

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

4103

http://github.com/google/jax
http://github.com/google/jax

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978-2988, Florence, Italy.
Association for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language mod-
els: A simple approach to controlled text generation.
In International Conference on Learning Represen-
tations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor
Babuschkin. 2020. Haiku: Sonnet for JAX.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423—438.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference for Learning Repre-
sentations (ICLR).

Ben Krause, Akhilesh Deepak Gotmare, Bryan Mc-
Cann, Nitish Shirish Keskar, Shafiq R. Joty, Richard
Socher, and Nazneen Fatema Rajani. 2020. GeDi:
Generative discriminator guided sequence genera-
tion. CoRR, abs/2009.06367.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and
Steve Renals. 2018. Dynamic evaluation of neural
sequence models. In International Conference on
Machine Learning, pages 2766-2775. PMLR.

Ben Krause, Emmanuel Kahembwe, lain Murray,
and Steve Renals. 2019. Dynamic evaluation
of transformer language models. arXiv preprint
arXiv:1904.08378.

Teven Le Scao and Alexander Rush. 2021. How many
data points is a prompt worth? In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2627-2636, On-
line. Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. CoRR, abs/2101.00190.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-37 CoRR,
abs/2101.06804.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-play
conversational models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2422-2433, Online. Association for Compu-
tational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203-5212, Online. Association for Compu-
tational Linguistics.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 794-805, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

4104

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://github.com/google/flax
http://github.com/google/flax
http://github.com/deepmind/dm-haiku
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.naacl-main.208
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
Chloe Hillier, and Timothy P. Lillicrap. 2020. Com-
pressive transformers for long-range sequence mod-
elling. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4222-4235, Online. Association for Computational
Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631-1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-

ing Systems, 30:5998-6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing
Systems-Volume 1, pages 649—657.

Tony Z Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
arXiv preprint arXiv:2102.09690.

4105

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

