
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4057–4065
November 7–11, 2021. ©2021 Association for Computational Linguistics

4057

Graph-Based Decoding for Task Oriented Semantic Parsing

Jeremy R. Cole† Nanjiang Jiang‡∗ Panupong Pasupat† Luheng He† Peter Shaw†

†Google Research
{jrcole,ppasupat,luheng,petershaw}@google.com

‡The Ohio State University
jiang.1879@osu.edu

Abstract
The dominant paradigm for semantic pars-
ing in recent years is to formulate parsing
as a sequence-to-sequence task, generating
predictions with auto-regressive sequence de-
coders. In this work, we explore an alterna-
tive paradigm. We formulate semantic parsing
as a dependency parsing task, applying graph-
based decoding techniques developed for syn-
tactic parsing. We compare various decoding
techniques given the same pre-trained Trans-
former encoder on the TOP dataset, including
settings where training data is limited or con-
tains only partially-annotated examples. We
find that our graph-based approach is compet-
itive with sequence decoders on the standard
setting, and offers significant improvements
in data efficiency and settings where partially-
annotated data is available.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage queries to structured meaning representa-
tions, remains an important challenge for applica-
tions such as dialog systems. To support composi-
tional utterances in a task oriented dialog setting,
Gupta et al. (2018) introduced the Task Oriented
Parse (TOP) representation and released a dataset
consisting of pairs of natural language queries and
associated TOP trees. As illustrated in Figure 1,
TOP trees are hierarchically structured representa-
tions consisting of intents, slots, and query tokens.

We propose a novel formulation of semantic
parsing for TOP as a graph-based parsing task,
presenting a graph-based parsing model (hereafter,
GBP). Our approach is motivated by the success of
such approaches in dependency parsing (McDon-
ald et al., 2005; Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017; Kulmizev et al., 2019)
and AMR parsing (Zhang et al., 2019). Recently,
sequence-to-sequence (seq2seq) models have be-
come a dominant approach to semantic parsing

∗Work done while on internship at Google.

IN:GET_DIRECTION

SL:DESTINATION

IN:FIND_EVENT

SL:CATEGORY

party

’sSL:ORGANIZER

John

directions to

Figure 1: An example TOP (Gupta et al., 2018) tree.

(e.g., Dong and Lapata 2016, Jia and Liang 2016,
Wang et al. 2019a), including on TOP (e.g., Ron-
gali et al. 2020; Aghajanyan et al. 2020; Shao et al.
2020). Unlike such approaches that predict out-
puts auto-regressively, GBP decomposes parse tree
scores over parent-child edge scores, predicting all
edge scores in parallel.

First, we compare GBP with seq2seq and other
decoding techniques, within the context of a fixed
encoder and pretraining scheme: in this case,
BERT-Base (Devlin et al., 2019). This allows us
to isolate the role of the decoding method. We
compare these models across the standard setting,
as well as additional settings where training data
is limited, or when fully annotated examples are
limited but partially annotated examples are avail-
able. We find that GBP outperforms other methods,
especially when learning from partial supervision.
Second, we compare GBP with seq2seq models
that additionally leverage pretrained decoders. We
find that GBP remains competitive, and continues
to outperform in the partial supervision setting.

2 Task Formulation

We present a novel formulation of the TOP seman-
tic parsing task as a graph-based parsing task. Our
goal is to predict a TOP tree y given a natural lan-
guage query x as input. The nodes in y consist
of intent and slot symbols from a vocabulary of
output symbols V and the tokens in x. However,
y cannot be predicted directly by a conventional



4058

directions to John ’s party SL:CAT1 IN:FIND1 SL:ORG1 SL:DEST1 IN:GET_D1 IN:GET_E1 SL:DATE1

ROOT UNUSED UNUSED

Figure 2: The graph-based model predicts parent assignments across a set of nodes consisting of query tokens,
output symbols for intents and slots, and special UNUSED and ROOT symbols. This is the corresponding parse tree
for the TOP tree shown in Figure 1. Not all output symbols are drawn; omitted symbols are attached to UNUSED.
Intent and slot names are abbreviated.

graph-based approach (McDonald et al., 2005) for
two reasons. First, given x, we do not know the
subset of intent and slot1 symbols that occur in y.
Second, intent and slot symbols can occur more
than once in y.2

To address this, let us consider a parse tree z
in a space of valid trees defined as Z(x). The
parse tree z can be deterministically mapped to
and from y. The parse tree z consists of: (1) the
tokens in x, (2) every symbol in V replicated up to
a maximum number of occurrences3 and assigned
a corresponding index, and (3) a special UNUSED

node in addition to the standard ROOT node. Let
N (x) be this set of nodes which all trees in Z(x)
consist of. When mapping from y to z, output
symbols occurring multiple times are indexed fol-
lowing a pre-order traversal, and any output symbol
that does not occur in y is assigned to the UNUSED

node in z. For example, Figure 1 illustrates an
example TOP tree, y, and Figure 2 illustrates a
corresponding parse tree, z.

3 Scoring Model

Given that the mapping between y and z is de-
terministic, our goal is to model p(z | x). We
follow a conventional edge-factored graph-based
approach (McDonald et al., 2005), decomposing
parse tree scores over directed edges between par-
ent and child node pairs (p, c) in z:

p(z | x) =
∏

(p,c)∈z

exp(φ(p, c,x))∑
p′∈N (x) exp(φ(p

′, c,x))
,

1Note that one could imagine instead treating slots as edge
labels instead of nodes, but as the set is large (36 slots for 25
intents), little advantage would be expected.

2See Figure 5 in Appendix for an example.
3The number of repetitions per output symbol is deter-

mined from the training data. If a symbol has a maximum of
k occurrences in a TOP tree in the training data, it will have
k + 2 replications. See Appendix C for more information.

where edge scores, φ(p, c,x), are computed simi-
larly to the model of Dozat and Manning (2017):

φ(p, c,x) = (epx)
ᵀUecx + (epx)

ᵀu,

where epx and ecx are contextualized vector represen-
tations of the nodes p and c, respectively, andU and
u are a parameter matrix and vector, respectively.4

Node representations are computed differently
for each node type in N (x). Encodings for token
nodes are based on the output of a BERT (Devlin
et al., 2019) encoder; replicated output symbols are
embedded based on their symbol and index; ROOT

and UNUSED nodes likewise have a unique embed-
ding. All nodes are then jointly encoded with a
Transformer (Vaswani et al., 2017) encoder, which
produces the contextualized node representations
ex

p and exc which are used in the above equations
to produce the factored edge scores.

The scoring model is trained using a standard
maximum likelihood objective.

4 Parsing Algorithm

Chu-Liu-Edmonds Algorithm
The Chu-Liu-Edmonds (CLE) algorithm is an op-
timal algorithm to find a maximum spanning ar-
borescence over a directed graph (Chu and Liu,
1965; Edmonds, 1965). It has commonly been used
for parsing dependency trees from edge-factored
scoring models (e.g., McDonald et al. 2005; Dozat
and Manning 2017). Note that in an arborescence
(hereafter tree), each node can have at most one
‘parent’, or incoming edge. Thus, the algorithm
first chooses the highest scoring parent for each
node as the initial best parent. It is possible these
initial best parents already form a tree; however, it

4For computational efficiency and to prevent invalid trees,
we consider the score for assigning a token node as a parent
for any other node to be a fixed value of −∞.



4059

may instead produce a graph with cycles. In that
case, CLE recursively breaks the cycles until the
optimal tree is found. Note that CLE takes the in-
dex of the root of the tree as an input, and begins
by deleting all incoming edges to enforce this con-
straint. Conventionally, in dependency parsing, the
root of the tree is the special ROOT node.

This algorithm is optimal for dependency pars-
ing; however, our formulation differs due to ad-
ditional constraints based on how TOP trees are
mapped to and from dependency trees. First, by
convention, the parent of the UNUSED subtree must
be ROOT. Second, the UNUSED subtree must be of
depth 2: it cannot have any grandchildren. Finally,
as valid TOP trees have only one root, the ROOT

node must have only one ‘child’, or outgoing edge.

Unused Node Preprocessing
As stated, our UNUSED subtree must only have
depth 2 to follow our task formulation. Other-
wise, the final tree score will be computed incor-
rectly when translating to a TOP tree, as the entire
UNUSED subtree is effectively discarded. Thus,
we first preprocess the UNUSED subtree to ensure
depth 2. In practice, simply using the initial best
parents will result in UNUSED subtrees with depth
3 or greater about 1% of the time.

We resolve such cases by making a decision for
each node a whose initial best parent is UNUSED

and has children itself. One option is to delete the
edge to a from UNUSED, making the next highest
scoring edge the new best parent of a. The cost of
this action is equal to the difference in scores be-
tween the corresponding edges. Alternatively, we
can take a similar action on each child of a: delete
the edge from a, making the next highest scoring
edge the new best parent. The cost of this action is
equal to the difference in the corresponding edges
summed over every child of a. We iterate over the
children of UNUSED that have children, selecting
the action with the lower cost, until the constraint
is met. Then, we no longer allow further modifica-
tions to the UNUSED subtree, effectively deleting
it for the remaining stages of the algorithm.

Note that this algorithm is not necessarily opti-
mal: the order in which we consider the children of
UNUSED can affect the final result. However, we
find this approximation to work well in practice.

Multiple Root Resolution
Our second modification to the CLE algorithm con-
cerns the ROOT node. Valid TOP trees are single-

rooted: in our formalism, this means the ROOT

node can only have a single child. To enforce this
constraint, we want to choose the single child of
ROOT that results in the highest scoring tree. We
then provide this child’s index to the CLE subrou-
tine and delete all edges from ROOT, effectively
discarding it. To find the best root, we start with the
set of nodes whose initial best parent is the ROOT

node. If this set is a singleton, we simply choose
that node as the tree’s root, providing its index to
the CLE subroutine. In about 0.5% of trees, there
is more than one node. In that case, we run the
CLE algorithm with each node as the given root
index, taking the highest-scoring tree. This is still
not guaranteed to be optimal: the optimal choice of
the root node could have a different initial best par-
ent than ROOT. However, this was not observed in
our experiments and trying every node drastically
increases the computation.

5 Experiments

The TOP dataset consists of trees where every to-
ken in the query is attached to either an intent (pre-
fixed with IN:) or slot label (prefixed with SL:).
Intents and slot labels can also attach to each other,
forming compositional interpretations. We evalu-
ate several models on the standard setup of the TOP
dataset. We also devise new setups comparing the
abilities of several models to learn from a smaller
amount of fully annotated data, both with and with-
out additional partially annotated data. Models
are compared on exact match accuracy. Following
Rongali et al. (2020); Einolghozati et al. (2018),
and Aghajanyan et al. (2020), we filter out queries
annotated as unsupported5, leaving 28414 train ex-
amples and 8241 test examples.

5.1 Standard Supervision

We use standard supervision to refer to settings
where all training examples contain a complete
output tree. We also evaluate data efficiency, by
comparing the performance when training data is
limited to 1% or 10% of the original dataset.

5.2 Partial Supervision

We use partial supervision to refer to settings
where we discard labels for certain nodes in the
output trees of some or all training examples. Such
partially annotated examples could arise in prac-
tice; for instance, when there is annotator disagree-

5We include results on the full set in Appendix D.



4060

Standard Supervision Partial Supervision

Decoder (BERT-Base encoder) 100 10 1 10/90/0 10/0/90 1/99/0 1/0/99 2/49/49

PTRGEN (Rongali et al., 2020) 83.13 — — — — — — —
PTRGEN (our implementation) 85.00 76.84 51.85 13.24 26.68 4.39 0.00 4.43
FSP (Pasupat et al., 2019) 85.12 79.44 57.95 68.94 — 42.94 — —
GBP (proposed) 86.14 79.43 56.89 84.55 84.14 81.52 73.94 85.01

Table 1: Results for various decoders with BERT-Base as encoder. For standard supervision, column headers de-
note the percentage of training data used. For partial supervision, column headers S/T/N denote the percentage of
training examples with standard supervision (S), terminal-only supervision (T), and nonterminal-only supervision
(N), respectively.

IN:GET_DIRECTION

directions to

SL:ORGANIZER

John

IN:FIND_EVENT

’s

SL:CATEGORY

party

Figure 3: The TOP example from Figure 1 with
terminal-only supervision.

IN:GET_DIRECTION

SL:DESTINATION

IN:FIND_EVENT

SL:CATEGORYSL:ORGANIZER

Figure 4: The TOP example from Figure 1 with
nonterminal-only supervision.

ment on part of the output tree, or when changes to
the set of possible slots or intents render parts of
previously annotated trees obsolete.

As semantic parsing datasets normally require
expert annotators, extending fully annotated exam-
ples with additional partial annotation can be an
effective strategy. For instance, Choi et al. (2015)
scaled their semantic parsing model with partial on-
tologies, and Das and Smith (2011) used additional
semi-supervised data for their frame semantic pars-
ing model. We consider two types of partially an-
notated output trees described below.

Terminal-only Supervision For this type of par-
tial supervision, only the labels of each token (i.e.,
terminal) are preserved. See Figure 3 for an exam-
ple. The label for each individual token is known,
but the full set of intents and slots, and their tree
structure, is unknown. This is similar to utilizing
span labels that do not have full trees available.

Nonterminal-only Supervision For this type of
partial supervision, token (i.e., terminal) labels are
discarded. This is equivalent to deleting all of the
token nodes from the tree. See Figure 4 for an
example. This provides the opposite type of super-
vision as the terminal-only supervision case. The
complete set of intents and slots and their tree struc-
ture is known, but their anchoring to the query text
is unknown. For instance, if a query is known to
have the same parse as a fully annotated query, its
grounding may still be unknown.

5.3 Results

Comparisons with Fixed Encoder We first
compare GBP with other methods using the same
pre-trained encoder (BERT-Base; Devlin et al.
2019). We compare with a standard sequence
decoder (a pointer-generator network; Vinyals
et al. 2015; See et al. 2017) implemented using
a Transformer-based (Vaswani et al., 2017) de-
coder (PTRGEN). We report the previous results
from Rongali et al. (2020) and new results from
an implementation based on that of Suhr et al.
(2020), which provides a slightly stronger base-
line. We also compare with the factored span
parsing (FSP) approach of Pasupat et al. (2019).
Notably, we report new results for FSP using
a BERT-Base encoder, which are significantly
stronger than previously published results which
used GloVe (Pennington et al., 2014) embeddings
(85.1% vs.81.8%).

Results can be found in Table 1. We evaluate
these models across both the standard and partial
supervision settings. Notably, GBP can incorpo-
rate partial supervision in a straightforward way
because scores for parse trees are factored over
conditionally-independent scores for each edge.
Training proceeds as described in Section 3; how-
ever, the loss from the edges that are not given by



4061

the example is masked. Additional training details
can be found in Appendix B. For PtrGen, each
type of partial supervision is given a task-specific
prefix; details are in Appendix A. Similar to GBP,
FSP factors parse scores across local components,
but also considers chains of length > 1. There-
fore, terminal-only supervision uses only length 1
chains; there is no trivial way to use nonterminal-
only supervision without very substantial changes.

GBP is the highest-performing of the BERT-base
models on the standard setup. Both GBP and FSP
show better data efficiency than PtrGen. Only GBP
appears to effectively benefit from partially anno-
tated data in our experiments; the other models
perform worse when incorporating this data.

Comparisons with Pretrained Decoders Re-
cently, sequence-to-sequence models with pre-
trained decoders, such as BART (Lewis et al., 2019)
and T5 (Raffel et al., 2020), have demonstrated
strong performance on a variety of tasks. Careful
comparisons isolating the effects of model size and
pretraining tasks are limited by the availability of
pretrained checkpoints for such models. Regard-
less, we compare GBP (with BERT-Base) directly
with such models. On the standard setting for TOP,
Aghajanyan et al. (2020) report SOTA performance
with BART (87.1%), outperforming GBP. We also
report new results comparing GBP with T5 on both
the standard supervision and partial supervision
settings in Table 2.

Notably, T5 is able to leverage partially-
annotated examples much more effectively than
PTRGEN, which is also a Transformer-based
sequence-to-sequence model but does not have a
pretrained decoder. While T5 outperforms GBP on
the standard setting, GBP outperforms T5 on the
data efficiency and partial supervision settings.

6 Related Work

The most recent state of the art on TOP has focused
on applying new methods of pretraining; (Rongali
et al. 2020; Shao et al. 2020; Aghajanyan et al.
2020) all use seq2seq methods, enhanced by bet-
ter pretraining from BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and BART (Lewis
et al., 2020) while using similar model architec-
tures. In this work, we instead investigate the
choice of decoder. While the FSP model (Pasu-
pat et al., 2019) similarly uses a factored approach,
its approach is more specific to TOP, as its trees
must be projective and anchored to the input text.

T5-Base GBP (BERT-Base)

S/T/N Acc Relative Acc Relative

100 86.26 — 86.14 —

10 77.70 — 79.43 —
10/90/0 83.44 7.39% 84.55 6.45%
10/0/90 81.63 5.06% 84.14 5.93%

1 48.96 — 56.89 —
1/99/0 74.31 51.78% 81.52 43.29%
1/0/99 56.22 14.83% 73.94 29.97%

2/49/49 82.00 — 85.01 —
0/50/50 — — 85.03 —

Table 2: Comparison of T5 and GBP on data efficiency
and partial supervision. Relative refers to the abso-
lute increase in accuracy when incorporating partially-
annotated examples compared to using only fully an-
notated data. S/T/N denotes the percentage of training
examples with standard supervision (S), terminal-only
supervision (T), and nonterminal-only supervision (N),
respectively.

In dependency parsing, the performance of
graph-based and transition-based parsing is com-
pared in both Zhang and Clark (2008) and Kul-
mizev et al. (2019). Graph-based parsing has also
been used in AMR parsing (Zhang et al., 2019),
which translates sentences into structured graph
representations. Similar methods have also been
used in semantic role labeling (He et al., 2018),
which requires labeling arcs between text spans.
This work is the first to adapt graph-based parsing
to tree-like task-oriented semantic parses.

7 Conclusions

We propose a novel framing of semantic parsing
for TOP as a graph-based parsing task. We find that
our proposed method is a competitive alternative
to the standard paradigm of seq2seq models, espe-
cially when fully annotated data is limited and/or
partially-annotated data is available.

Acknowledgements

We thank Timothy Dozat, Terry Koo, and Philip
Massey for their feedback as we developed this
project and for their comments on earlier versions
of the manuscript. We also thank the broader
Google Language Research organization for their
support of the project. Finally, we thank the anony-
mous reviewers for their helpful suggestions.



4062

Ethical Considerations

We fine-tune all models using 32 Cloud TPU
v3 cores6. Additional training details are in Ap-
pendix A and Appendix B. We reused existing pre-
trained checkpoints for both BERT and T5, reduc-
ing the resources needed to run experiments. Our
evaluation focuses on the existing TOP dataset: the
details of the collection can be found in Gupta et al.
(2018). TOP is an English-only dataset, which lim-
its our ability to claim that our findings generalize
across languages. A deployed dialog system has
additional ethical considerations related to access,
given their potential to make certain computational
functions faster, easier, or more hands-free.

References

Armen Aghajanyan, Jean Maillard, Akshat Shrivas-
tava, Keith Diedrick, Michael Haeger, Haoran Li,
Yashar Mehdad, Veselin Stoyanov, Anuj Kumar,
Mike Lewis, and Sonal Gupta. 2020. Conversational
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5026–5035, Online. As-
sociation for Computational Linguistics.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettlemoyer.
2015. Scalable semantic parsing with partial on-
tologies. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1311–1320, Beijing, China. Association for
Computational Linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Scientia
Sinica, 14:1396–1400.

Dipanjan Das and Noah A. Smith. 2011. Semi-
supervised frame-semantic parsing for unknown
predicates. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 1435–1444,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

6https://cloud.google.com/tpu/

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Jack Edmonds. 1965. Paths, trees, and flowers. Cana-
dian Journal of mathematics, 17:449–467.

Arash Einolghozati, Panupong Pasupat, Sonal Gupta,
Rushin Shah, Mrinal Mohit, Mike Lewis, and Luke
Zettlemoyer. 2018. Improving semantic parsing for
task oriented dialog. In Conversational AI Work-
shop at NeurIPS.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 364–369, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the

https://www.aclweb.org/anthology/2020.emnlp-main.408
https://www.aclweb.org/anthology/2020.emnlp-main.408
https://doi.org/10.3115/v1/P15-1127
https://doi.org/10.3115/v1/P15-1127
https://www.aclweb.org/anthology/P11-1144
https://www.aclweb.org/anthology/P11-1144
https://www.aclweb.org/anthology/P11-1144
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277


4063

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2755–2768, Hong Kong,
China. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98.

Panupong Pasupat, Sonal Gupta, Karishma Mandyam,
Rushin Shah, Mike Lewis, and Luke Zettlemoyer.
2019. Span-based hierarchical semantic parsing
for task-oriented dialog. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1520–1526, Hong Kong,
China. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Bo Shao, Yeyun Gong, Weizhen Qi, Guihong Cao, Jian-
shu Ji, and Xiaola Lin. 2020. Graph-based trans-
former with cross-candidate verification for seman-
tic parsing. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):8807–8814.

Peter Shaw, Philip Massey, Angelica Chen, Francesco
Piccinno, and Yasemin Altun. 2019. Generating log-
ical forms from graph representations of text and
entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 95–106, Florence, Italy. Association for Com-
putational Linguistics.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems-Volume 2, pages 2692–
2700.

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson. 2019a.
Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019b. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 5377–5384.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1163
https://doi.org/10.18653/v1/D19-1163
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1609/aaai.v34i05.6408
https://doi.org/10.1609/aaai.v34i05.6408
https://doi.org/10.1609/aaai.v34i05.6408
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059


4064

A Baseline Model Training Details

A.1 T5 Training Details
We use the base version of the T5.1.1 model (220M
parameters)7 for finetuning with default learning
rates. We also experimented with T5-large in pre-
liminary experiments but did not observe visible
difference in performances. The multitask exper-
iments are finetuned for 5000 steps, and the rest
are finetuned for 2000 steps, all with batch_size =
4096. We use greedy decoding at inference time.
All experiments are ran once.

We use 32 Cloud TPU v3 cores for training and
8 TPU cores for inference. Training each model
takes about 4 hours, and inference takes about 2
minutes on the entire TOP test set.

For the multitask experiments, we follow Raf-
fel et al. (2020) by appending task prefixes to the
input sequence. Specifically, we used “span:” for
examples with terminal-only partial supervision,
“ungrounded:” for examples with nonterminal-only
partial supervision, and “full:” for examples with
full supervision.

A.2 PtrGen Training Details
Following Suhr et al. (2020), we started with the
hyperparameters of (Shaw et al., 2019). We then
tuned the learning rate over 3 runs to be 1e−4. We
use a BERT-Base encoder and the Transformer de-
coder consists of 4 layers with 8 attention heads,
64 dimensions, and 256 feed-forward hidden layer
dimensions. The model is trained for 30K steps,
with the pre-trained BERT parameters frozen for
the first 4K steps. Task prefixes are prepended in
the same manner as T5.

A.3 FSP Training Details
Hyperparameters were reused from Pasupat et al.
(2019), except for the initial learning rate which
changes to 0.00001 to make it more suitable for
fine-tuning BERT. For partially supervised exam-
ples, we only define the loss on the spans that are
labeled in the example, and re-weight the loss by a
factor of 0.01 (tuned on development data).

B GBP Training Details

The model takes BERT wordpieces from a publicly
available BERT-base checkpoint8 (Devlin et al.,

7https://github.com/google-research/text-to-text-transfer-
transformer

8https://huggingface.co/google/bert_uncased_L-12_H-
768_A-12

Model Acc

T5 (Raffel et al., 2020) 85.22

GBP (Proposed) 85.17
FSP (Pasupat et al., 2019) 84.53
PTRGEN (Ours) 85.08

Table 3: Accuracy results for the TOP dataset evaluated
on the validation set. Note all models besides T5 are
initialized from BERT-Base

Parameter Start End Incr. Num

Node Encoder Dim 128 2048 x2 5
Biaffine Hidden Dim 128 2048 x2 5
Learning Rate 0.0001 0.01 x10 3
Number of Heads 2 8 x2 3
Warmup 2000 4000 x2 2
Number of Layers 1 8 x2 4

Table 4: Hyperparameter sweep for GBSP.

2019). Intents have slots have randomly initialized
768-dimensional embeddings. The Transformer
encoder uses 4 layers of cross-attention (Vaswani
et al., 2017) with 4 attention heads and 768 dims
and a dropout rate of 0.3.

We use a hidden size of 1024 for computing
edge scores similarly to Dozat and Manning (2017).
Cross entropy loss is minimized with the optimizer
described in Devlin et al. (2019).

For partial supervision experiments, the loss is
masked for unsupervised edges.

The model is trained over 20000 steps with a
learning rate of 0.0001 and 2000 warmup steps. All
hyperparameters are chosen based on validation set
exact match accuracy performed by a grid search.
BERT-base has approximately 110M parameters,
and GBSP introduces approximately 13M addi-
tional parameters, for a total of approximately
123M parameters. Note that larger versions of
BERT did not lead to performance improvements
in our experiments.

Note a comparison on validation performance
can be found in Table 3 (the validation set without
unsupported has 4032 examples). All tested values
for hyperpameters can be found in Table 4. We
estimate approximately 1,000 total training runs
during the development cycle. After tuning hyper-
parameters on the full set, no re-tuning occurred:
partial supervision and data efficiency experiments
used the same setup. Model training takes approxi-
mately 45 minutes.

https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
https://huggingface.co/google/bert_uncased_L-12_H-768_A-12


4065

IN:GET_EVENT

SL:DATE_TIME

this weekend

eventsSL:DATE_TIME

Holiday

Figure 5: Example TOP tree with two occurrences of
SL:DATE_TIME. When mapping from TOP trees to
the parse trees predicted by our model, each instance
of SL:DATE_TIME is assigned an index based it its
preorder position in the TOP tree.

C Repeated Nodes

See Figure 5 for an example of a TOP tree with
repeated nodes.

We chose to pad occurrences based on the obser-
vation that certain nodes can occur more times than
they do in the training set. About half of the nodes
only ever occur once. On the validation set, 2 ad-
ditional replications was the highest value before
performance degraded.

There are many alternatives to our handling of
repeated nodes. For instance, Zhang et al. (2019)
had a slightly different task, but we could have
adopted their approach of generating the node set
auto-regressively. Unfortunately, this would have
complicated our method of partial supervision. An-
other method would be to use a fixed number of
duplications: this worked slightly worse in practice,
based on validation set performance. Alternatively,
the model could have learned a regression, which
has been used in non-autoregressive machine trans-
lation (e.g., Wang et al. 2019b). We leave trying
such an approach to future work.

D Full Data

Results on the full dataset (including unsupported
intents) can be found in Table 5. Note that most
recent work does not report on this setting. For
this setting, we train on every example in train
(31279 examples) and evaluate on every example
in test (9042 examples). Note that the full dataset
is available at http://fb.me/semanticparsingdialog;
unsupported intents were excluded manually with
string matching.

Model Acc

RNNG (Dyer et al., 2016) 78.51
GTCV (Shao et al., 2020) 82.51

T5 (Raffel et al., 2020) 84.11
GBP (Proposed) 83.31

Table 5: Accuracy results for the TOP dataset evaluated
on all test examples, including those with unsupported
intents.

http://fb.me/semanticparsingdialo

