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Abstract

Tables provide valuable knowledge that can be
used to verify textual statements. While a num-
ber of works have considered table-based fact
verification, direct alignments of tabular data
with tokens in textual statements are rarely
available. Moreover, training a generalized
fact verification model requires abundant la-
beled training data. In this paper, we pro-
pose a novel system to address these prob-
lems. Inspired by counterfactual causality,
our system identifies token-level salience in
the statement with probing-based salience es-
timation. Salience estimation allows enhanced
learning of fact verification from two perspec-
tives. From one perspective, our system con-
ducts masked salient token prediction to en-
hance the model for alignment and reasoning
between the table and the statement. From the
other perspective, our system applies salience-
aware data augmentation to generate a more
diverse set of training instances by replac-
ing non-salient terms. Experimental results
on TabFact show the effective improvement
by the proposed salience-aware learning tech-
niques, leading to the new SOTA performance
on the benchmark. !

1 Introduction

Fact verification, the problem of determining
whether a statement is entailed or refuted by ev-
idence, has quickly become a critical problem in
NLP to combat information pollution (Rashkin
etal., 2017; Thorne et al., 2018; Zhang et al., 2019;
Zellers et al., 2019; Wadden et al., 2020). Success-
ful fact verification enables downstream tasks such
as misinformation detection, fake news identifica-
tion, factual error correction, and deceptive opinion
detection (Ott et al., 2011; Shu et al., 2017; Yoon
et al., 2019; Cao et al., 2020).

Recently, table-based fact verification (Chen
et al., 2020a; Zhong et al., 2020; Yang et al., 2020)

'Our code is publicly available at https://github.
com/luka-group/Salience—-aware-Learning

I Nickname

Binghamton University/  Bearcats

|

[Posf Universi’ry] ‘s[nickname]is fhe[Eagles].
1 T

Institution

1 1
1 1
team Bearcats

Figure 1: An example of table-based fact verification,
with green for entailed statements and red for refuted
statements. Alignment and reasoning are essential for
both table-based fact verification and masked salient to-
ken prediction (e.g. "Eagles”). Token replacement
may lead to similar (e.g. ”’ s” to "team”) or differ-
ent (e.g. "Eagles” to "Bearcats”) statements.

has garnered attention. As a ubiquitous and clean
format of semi-structured knowledge, tables are re-
garded as reliable sources of evidence to verify the
textual statements (Chen et al., 2020a). Leveraging
tabular data for fact verification requires identify-
ing relevant evidence in tables, and conducting log-
ical reasoning according to the selected evidence.
Prior studies have attempted to generate logical
programs to capture logical operations and rela-
tions between the statement and the table (Zhong
et al., 2020; Yang et al., 2020; Shi et al., 2020).
More recent work shows that Transformer-based
language models with general and task-specific pre-
training over textual and tabular data can achieve
SOTA performance without counting on explicit
logical programs (Eisenschlos et al., 2020; Dong
and Smith, 2021).

However, to provide a reliable solution to the
table-based fact verification task, several critical
challenges are still overlooked by prior studies.
One challenge is to effectively provide connections
among components of the statement and substruc-
tures of the table, and accordingly conduct the in-
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ference. Being unaware of such fine-grained con-
nections and logical relations could raise the risk
of misalignment, incorrect reasoning and ignoring
salient components of a statement, and therefore
leads to incorrect verification results. For example,
to verify the statement in Fig. 1, the model should
implicitly or explicitly infer all the five arrows accu-
rately. Although some works have tried to perform
token-level interactions and generate logical pro-
grams to connect statements and tables and conduct
logical reasoning (Zhong et al., 2020; Yang et al.,
2020), the supervision signals to guide the learning
process are typically sparse. Another challenge
is that training a well-generalized fact verification
model non-trivially requires abundant labeled train-
ing data. Limited training data can only cover
limited statement patterns and hinder robustness
and generalizability of model inference. Previous
works either trained on limited data (Zhong et al.,
2020; Yang et al., 2020) or augment training data
with specific statement generation templates (Eisen-
schlos et al., 2020). Yet, in real-world scenarios,
statements and evidences can be presented in very
diverse ways, and such diversity is difficult to be
comprehensively captured by specific templates.

To this end, we propose a novel salience-aware
learning system for table-based fact verification.
Starting from a TAPAS (Herzig et al., 2020) lan-
guage model fine-tuned on the TabFact dataset, our
system identifies salient and non-salient tokens in
statements with a probing-based salience estima-
tion method inspired by counterfactual causality
(Pearl, 2009) (§3.2). Then, the system leverages
the estimated salience information from two per-
spectives. From one perspective, to enhance the
model for capturing fine-grained connections and
supporting the reasoning between statements and
tables, the system conducts masked salient token
prediction as an auxiliary task (§3.3). More specifi-
cally, this task is to predict the masked salient token
in an entailed statement given the corresponding ta-
ble by reusing the embedding layer of TAPAS as a
language model head. The fact verification task can
receive indirect supervision from the auxiliary task,
as both of them requires table-text alignment and
logical reasoning. From the other perspective, to
improve the model robustness, instead of using tem-
plates for statement augmentation like prior work
(Eisenschlos et al., 2020), we develop a salience-
aware data augmentation technique (§3.4). Intu-
itively, replacing non-salient tokens provides un-

seen statements while preserving the meaning and
correctness of the original statement. This strat-
egy enhances the size and comprehensiveness of
the training data and further complements training
with more supervision signals.

The main contributions of this paper are three-
fold. First, we propose a probing-based salience
estimation method to evaluate the importance of
each token in a statement according to the coun-
terfactual causality theory. Second, we propose
a novel salience-aware learning system that helps
the fact verification model to find the connections
between the table and the statement, and enhance
the inference ability of the model with the auxiliary
task of masked salient token prediction. Third, to
complement with insufficient training signals and
improve the model robustness on heterogeneous
statements, we incorporate a probabilistic data aug-
mentation method driven by non-salient tokens. We
evaluate our system based on the TabFact bench-
mark, which shows promising performance on this
task and drastically outperforms prior methods. De-
tailed analysis demonstrates the effectiveness and
essentially of both masked salient token prediction
and salience-aware data augmentation techniques
for the improved performance.

2 Related Work

In this section, we provide a selected summary for
two related research topics.

2.1 Fact Verification

Fact verification have become an essential research
topic in recent years with the rising concerns of
misinformation (Vlachos and Riedel, 2014; Wang,
2017; Thorne et al., 2018; Khattar et al., 2019;
Zellers et al., 2019; Chen et al., 2020a). Early
works on fact verification are mainly based on un-
structured textual evidence (Yin and Roth, 2018;
Nie et al., 2019; Zhou et al., 2019).

Recently, much attention has been paid to table-
based fact verification (Chen et al., 2020a; Zhong
et al., 2020; Yang et al., 2020; Eisenschlos et al.,
2020; Shi et al., 2020; Dong and Smith, 2021).
Chen et al. (2020a) released the TabFact bench-
mark, and motivated two lines of research. Con-
sidering the importance of logical operations in
this task, some works introduce such inductive bias
by explicitly generating and capturing logical pro-
grams. Latent Program Algorithm (LPA) (Chen
et al., 2020a) collected potential program candi-
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Figure 2: Workflow of the proposed system. The system is composed of three parts. The arrows illustrate how
information is transferred. For tokens, a lighter background color indicates a lower salience score. For augmented
statements, a lighter background color indicates a smaller probability.

dates and execution results according to a search
algorithm, and then trained a Transformer-based
(Vaswani et al., 2017) model to assign a confidence
score to each program based on matching to the
statement. Through this line, later works have ex-
plored improved ways to generate and capture logi-
cal programs (Zhong et al., 2020; Yang et al., 2020).
LogicalFactChecker (Zhong et al., 2020) generated
logical programs using a sequence-to-action gener-
ation approach, where it applied neural module net-
works (Andreas et al., 2016) to capture the logical
structure of programs. HeterTFV (Shi et al., 2020)
learned to combine linguistic information and sym-
bolic information with a heterogeneous graph at-
tention network. ProgVGAT (Yang et al., 2020)
verbalized the execution processes of the generated
programs, and applied graph attention networks
(Velickovi¢ et al., 2017) to capture each execution
tree. Beside logical programs, other studies applied
pre-trained language models to linearized tables
and perform fact verification as natural language
inference (NLI) (Chen et al., 2020a; Eisenschlos
et al., 2020; Dong and Smith, 2021). Table-BERT
(Chen et al., 2020a) applied BERT (Devlin et al.,
2019) as an NLI model. Eisenschlos et al. (2020)
and Dong and Smith (2021) improve this strategy
by conducting task-specific pre-training to TAPAS
(Herzig et al., 2020), a Transformer-based language
model pre-trained on both textual and tabular data.

Our work takes advantages of both lines of re-

search on table-based fact verification, introducing
cross-structural alignment bias and logical reason-
ing bias to pre-trained language models. Besides,
previous works focus on significant words in state-
ments, while we apply data augmentation to im-
prove model robustness to insignificant words.

2.2 Counterfactual Causality in NLP

Counterfactual thinking and causal inference have
inspired several studies in natural language process-
ing, including counterfactual story rewriting (Qin
et al., 2019), paraphrasing diversification (Park
et al., 2019), measuring fairness in text classifica-
tion (Garg et al., 2019), debiasing in machine trans-
lation (Saunders and Byrne, 2020) and visual ques-
tion answering (Niu et al., 2021). This direction
has also developed data augmentation strategies in
various NLP tasks (Zmigrod et al., 2019; Kaushik
et al., 2019; Fu et al., 2020; Zeng et al., 2020).
Especially, counterfactual causality has been used
to measure the causal effects of specific inputs in
visual question answering (Niu et al., 2021).

Inspired by these applications, we apply the
thought of counterfactual causality on table-based
fact verification, and detect token-level salience in
statements in a probing manner.

3 Method

In this section, we describe the technical details of
the proposed system. Our system extends the NLI
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formulation of table-based fact verification (Eisen-
schlos et al., 2020) with the pretrained language
model TAPAS as the backbone (§3.1). As a prelimi-
nary step, our system estimates token-level salience
in a probing manner for each statement (§3.2). The
proposed salience-aware learning leverages the es-
timated salience information from two perspectives.
From one perspective, it enhances the main task
learning with an auxiliary task of masked salient
token prediction (§3.3). In this auxiliary task, our
system masks salient tokens in entailed statements
and requires the model to jointly solve the cloze
task along with the main task of fact verification.
From the other perspective, our system incorpo-
rates a probablistic data augmentation technique
(§3.4) by replacing non-salient tokens in statements
according to a pretrained masked language model
(MLM). This is followed by the technical details of
training and inference processes (§3.5). The overall
architecture of our system is shown in Fig. 2.

3.1 Base Model for Fact Verification

Our system adopts the TAPAS (Herzig et al., 2020)
model from the previous SOTA method as the base
model. In this way, we also formulate the main
task of table-based fact verification as an NLI task
following Eisenschlos et al. (2020).

For a brief description of TAPAS, it extends
BERT’s architecture (Devlin et al., 2019) with ad-
ditional positional embeddings to represent tabular
structure. Specifically, in addition to the embed-
dings used by BERT, the model applies column
and row embeddings to represent the column in-
dex and row index of the cell enclosing the token,
and rank embeddings to represent the numeric rank
of the cell referring to the token if the column is
sortable. It flattens the table into a sequence of
words and concatenates them with textual sequence
if any as input. The model is pre-trained using an
MLM objective. Eisenschlos et al. (2020) designed
task-specific intermediate pretraining tasks to im-
prove the model performance on table-based fact
verification. We use the model released by them
as our basic model. Following their setting, we
add a [CLS] token at the beginning of the input
sequence, and separate the statement and the lin-
earized table with a [SEP] token. Then, our sys-
tem adopts the TAPAS model to encode the input
sequence and model the probability of entailment
with a task-specific prediction head taking the fi-
nal representation of the [CLS] token as input.

Specifically, the task-specific prediction head is im-
plemented as an MLP with the sigmoid activation
fuction for binary classification, which is consistent
with Eisenschlos et al. (2020).

3.2 Probing-based Salience Estimation

Lexical tokens usually have different levels of im-
portance with regard to the overall content or pur-
pose of a description (Chiarcos et al., 2011; Liu
et al., 2018; Xiong et al., 2018). For example, in
the sentence “Post University has used
the Eagles as its nickname”, the to-
kens like “Eagles” and “nickname” are more
important than others such as “has used” and

“as” for determining if the sentence is refuted or

entailed. We refer to such highly important tokens
as salient tokens, and less important ones as non-
salient tokens. To make use of token-level salience
in the table-based fact verification task, the imme-
diate challenge is to estimate the salience of each
token in a statement.

Inspired by the counterfactual theories of cau-
sation (Pearl, 2009; Lewis, 2013), we address the
challenge with a probing-based salience estimation
method. Counterfactual causality has been widely
used in social science for measuring the causal ef-
fects of specific factors (Tetlock and Belkin, 1997;
Brady, 2008; Morgan and Winship, 2015), and has
also been introduced to deep learning (Tang et al.,
2020; Niu et al., 2021). In our context of fact veri-
fication, the intuition of counterfactual causation is
to testify that: If the model has not seen the token,
will it still make the same prediction? The coun-
terfactual lies between the fact that the token is
seen and the imagination that the token is masked.
The comparison between them naturally reflects
the effect of the token, because the token is the
only thing changed between the two situations.

Technically, to estimate the salience of a token in
a statement, we compare the confidence score to the
gold fact verification label between the statements
with that token unmasked and masked. Formally,
given the table T, original statement S and its coun-
terfactual version S; with the target token ¢ masked,
the salience score of ¢ in this statement is

salience(t) = |P(y|S,T) — P(y|S;, T)

where y indicates the gold label for fact verification
and P is given by the TAPAS model finetuned on
TabFact. Larger difference between the predictions
for S and S} indicates the token is more salient.
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3.3 Masked Salient Token Prediction

Salient tokens in statements, such as lexemes that
appear in table cells, and those referring to ag-
gregations and their results, directly contribute to
table-text alignment and reasoning. Hence, they
are critical to table-based fact verification as shown
in Fig. 1. Considering the supervision signals for
the verification task are sparse and not necessarily
sufficient to capture fine-grained table-text align-
ment and the logical relation, we introduce masked
salient token prediction as an auxiliary task.

This task is to predict a masked salient token in
an entailed statement given the masked statement
and the respective table. We mask the most salient
token in each statement according to the salience
score estimated in §3.2. The reason to do so is that
it is hard to find a general threshold to split tokens
in different statements into salient and non-salient
groups. The effectiveness of the salience-aware
masking will be further evaluated in §4.2.

Both of table-based fact verification and masked
salient token prediction share the same TAPAS en-
coder and the latter reuses the embedding layer as
the language modeling head (i.e. linear layer with
weights tied to the input embeddings). In this way,
all parameters that are updated for the auxiliary
task are shared with those in the main task. Both
tasks are jointly learned, so that the auxiliary task
seeks to provide indirect supervision signals to im-
prove the main task. The objective function and
training details are described in §3.5.

3.4 Salience-aware Data Augmentation

To effectively learn a robust and generalized NLI
model to verify statements based on tables, one re-
quirement is sufficient training data. Previous work
has explored augmenting data by filling in specific
statement generation templates with entities or val-
ues from the table (Eisenschlos et al., 2020). These
selected tokens are always detected as salient to-
kens by the method described in §3.2 as they are
important to fact verification. However, previous
works ignored the fact that the statement can be
presented in heterogeneous ways, and a reliable
table-based fact verification model should also be
adaptive and robust to heterogeneous statements.
In this context, it is intuitive to consider that the
non-salient tokens should not interfere the meaning
and evidential support of a statement. Accordingly,
we introduce an efficient probabilistic data aug-
mentation technique that leverages the salience of

tokens from the other perspective.

We augment training data by replacing the least
salient token in each statement with reasonable al-
ternatives. Since we expect non-salient token sub-
stitution to cause inconsequential meaning change
to the original statement, such automatically gener-
ated instances will be augmented into the training
data along with the original labels. Similar to §3.3,
we select the least salient token to augment, be-
cause it is hard to find a fixed threshold that works
for all statements to justify whether each of their
tokens is important enough or not.

In detail, for each human-annotated statement,
we mask the least salient token and request a BERT
model to provide the top k tokens to fill in the blank.
Each a filled token gives an augmented instance
of statement. BERT is pretrained on large textual
corpora with the MLM objective, so its predictions
can reflect the real-world language expressions>.
Considering the top &k token substitutions are not
equally confident according to the BERT predic-
tions and potential noise in data augmentation, we
down-weight each augmented data instance in train-
ing according to the token prediction probabilities
(denoted by w;; for the j-th augmented instance
derived from the ¢-th original instance). Related
details are presented shortly in §3.5.

3.5 Training and Inference

We train the model to jointly conduct the main
table-based fact verification task (§3.1) using aug-
mented data described in §3.4 along with the auxil-
iary task of masked salient token prediction (§3.3).

In detail, there are two learning objectives: the
binary classification objective L, for the main task
and the MLM objective L, for the auxiliary task.
For fact verification, we denote the gold label of the
i-th instance in the original dataset as y; (1 for en-
tailed and O for refuted). With salience-aware data
augmentation, each original instance in the dataset
is augmented to k£ 4+ 1 instances (including itself).
The training instances are also assigned with the
probability-based training weight w;; as described
in §3.4 (w;o = 1 for the original instance). Then,
given the model prediction p;; € [0, 1] on each in-
stance, the loss function is defined as the following
weighted cross-entropy, where N, is the number of

>We do not use TAPAS for data augmentation because the
table is not used as input for masked sentence completion.
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instances in the original dataset:

Ny k

Ly ==Y > wij(yilog(pij)+(1-y;) log(1-pyj)).

i=1 j=0

For the auxiliary task, given the gold label y{ ¢!
for the target token, O for other tokens) and model
outputs p’ of each candidate token ¢; € V for the
i-th instance, the loss function is defined as below,
where IV, is the number of all entailed statements
in the dataset:

Np V]

L ==Y yllog(p)).

i=1 j=1

The overall learning objective is to optimize the
following joint loss, where « is a coefficient to
balance between the two task objectives:

o (1-a)
= L
Nyk ot N,

L Lyy,.

In inference, given a statement and a table, we use
the prediction head of fact verification indepen-
dently and perform the verification without aug-
menting the test data, following the details in §3.1.

4 Experiment

In this section, we conduct experiments on the Tab-
Fact dataset. We first introduce the dataset, a series
of recent baselines and details of our method (§4.1).
Then we show the overall performance and abla-
tion results (§4.2). We also provide case studies for
in-depth analysis (§4.3).

4.1 Experimental Settings

Dataset and Evaluation. We evaluate our model
on the TabFact benchmark (Chen et al., 2020a)
that is widely used by studies on this task®. The
dataset contains 118,275 statements and 16,573
tables. Each table thereof comes along with 2 to 20
statements, and consists of 14 rows and 5 columns
in average. Each statement is paired with a table
and is labeled as entailed or refuted by information
in the table. We use the originally released train,
validation and test splits for evaluation, for which
the statistics are listed in Tab. 1. Tables in these
splits do not have overlaps. Specifically, statements
in the test split are further labeled into simple or
complex categories according to their verification

3https://tabfact.github.io/

Split #Statement  # Table
Train 92,283 13,182
Validation 12,792 1,696
Test 12,799 1,695
Simple 50,244 9,189
Complex 68,031 7,392

Table 1: Statistics of the TabFact dataset.

difficulty. Additionally, a small subset of the test
split is used to compare machine performance and
human performance. Being consistent with previ-
ous studies (Chen et al., 2020a; Zhong et al., 2020;
Yang et al., 2020; Eisenschlos et al., 2020), we re-
port the model performance on the validation and
test splits, two of the difficulty-specific subsets, as
well as the small subset with human performance,
and use accuracy as the evaluation metric.

Baselines. We compare our system with the fol-
lowing competitive baselines:

» Latent Program Algorithm (LPA) (Chen et al.,
2020a) synthesizes logical programs based on
the given statement and table, executes programs
to return bool labels, and aggregates the results
according to the confidence score of each pro-
gram assigned by a Transformer-based model.

* LogicalFactChecker (Zhong et al., 2020) cap-
tures token-level semantic interaction between a
statement, a table and a derived program using
BERT with graph-based masking. Logical se-
mantics of each program is captured with neural
module networks (Andreas et al., 2016).

e HeterTFV (Shi et al., 2020) constructs a hetero-
geneous graph to incorporate the statement, the
table and the program, and applies a heteroge-
neous graph attention network to capture both
linguistic and symbolic information.

* ProgVGAT (Yang et al., 2020) generates a pro-
gram and verbalize the execution progress as
evidences. The system applies a graph attention
network (Velickovié et al., 2017) to capture the
execution graph, the table and statement.

» Table-BERT (Chen et al., 2020a) applies BERT
for NLI taking a statement as the hypothesis and
a linearized table as the premise.

* TAPAS (Herzig et al., 2020) is a Transformer-
based model pre-trained on textual and tabular
data. Dong and Smith (2021) and Eisensch-
los et al. (2020) have formulated table-based
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Model Val Test Test (simple)  Test (complex) Small Test Set
Human Performance - - - - 92.1
LPA 65.2 65.0 78.4 58.5 68.6
LogicalFactChecker 71.8 71.7 85.4 65.1 74.3
HeterTFV 72.5 72.3 85.9 65.7 74.2
ProgVGAT 74.9 74.4 88.3 67.6 76.2
Table-BERT 66.1 65.1 79.1 58.2 68.1
TAPAS (Dong and Smith, 2021) - 76.0 89.0 69.8 -
TAPAS (Eisenschlos et al., 2020) 81.0 81.0 92.3 75.6 83.9
ours 82.7 82.1 93.3 76.7 84.3
— w/o augmented data 82.4 82.1 93.4 76.6 84.4
— w/o auxiliary task 81.8 81.9 93.6 76.3 84.1

Table 2: Performance on the official splits of TabFact in terms of verification accuracy (%). Baselines are organized
into logical program-driven (i.e. LPA, LogicalFactChecker, HeterTFV and ProgVGAT) and non-logical program-
driven (i.e. Table-BERT and TAPAS). Human performance is reported by Chen et al. (2020a).

fact verification as an NLI task, and applied
TAPAS with task-specific intermediate pretrain-
ing. The latter one achieves the current SOTA
performance on TabFact.

Model Configurations. Our system also adopts
the officially released TAPAS-Large model, which
applies intermediate pre-training and is fine-tuned
on TabFact, as our basic model*. Following Eisen-
schlos et al. (2020), we set the max input length to
512. We use 10, 000 training steps, and optimize
the learning objective with an AdamW optimizer
(Loshchilov and Hutter, 2019) which sets the learn-
ing rate to 5e~°, a batch size of 32 and a warmup
ratio of 0.1. All hyper-parameters are decided ac-
cording to the validation performance. For multi-
task learning, we set the coefficient between two
losses o to 0.5. For data augmentation, we use
the uncased BERT-Large model as the MLM. For
computational efficiency, we select the top k = 3
predictions for probabilistic data augmentation.

4.2 Results

Overall Performance. Tab. 2 presents the results
of different verification models. Among the base-
line methods, TAPAS with task-specific intermedi-
ate pretraining demonstrates the best performance.
It implies that explicit logical programs is not a
necessity for reasoning between the table and the
statement. We observe that our system outperforms
the best baseline with 2.1% relative improvement
on the validation set and 1.4% relative improve-
ment on the test set in terms of accuracy. It is
noteworthy that, our system applies the same back-
bone model and pretraining process as the previous

“https://github.com/google-research/tapas

best method, so that all the improvements are at-
tributed to the salience-aware learning strategies.
Besides, our system reduces the gap between ma-
chine performance and human performance on the
small test set to 7.8%. These experimental results
verify our hypothesis that masked salient token pre-
diction and salience-aware data augmentation are
conducive to table-based fact verification.

| Strategy | Val  Test

. Random 82.1 819
Masking ‘ Salient ‘ 824 821
A tati Uniform 81.5 813
ugmentation | p. pabilistic | 81.8  81.9

Table 3: Ablation results for masking strategy and aug-
mentation strategy. To avoid co-effects, we conduct ex-
periments on masking (or augmentation) strategy with-
out using augmented data (or auxiliary task).

Effect of Masked Salient Token Prediction. The
performance of the base model with masked salient
token prediction is marked as “w/o augmented data”
in Tab. 2. The auxiliary task solely brings along
1.7% relative improvement on the validation set
and 1.4% relative improvement on the test set. This
demonstrates that the indirect supervision brought
by the auxiliary task can directly benefit the main
task training. Tab. 3 compares salient masking and
random masking for the auxiliary task. For fair
comparison, we mask one token in each entailed
statement for both strategies. The results show that
salient masking reduces error rate on the validation
set by relative 1.7% (and by relative 1.1% on the
test set) in comparison with random masking. This
is not surprising since random masking may mask
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Token Salience Estimation | Augmentation

works 0.615

The file format mobipocket with all three . worked 0.051
compatible 0.029

- - - - - population 0.352

The from the province lives in the city navarrete people 0.184
one 0.035

Canton , Ohio was the location the event , fightfest 2 , which of 0.709
to 0.001

lasted only rounds in 0.001

Table 4: Examples of salience estimation and data augmentation. Darker background indicates more salience.

rectangles mark the targeted most salient tokens in masked salient token prediction. rectangles mark
the least salient tokens that are to be substituted by the augmentation tokens, for which weights are listed.

non-salient tokens which are not decisive for table-
text alignment and logical inference.

Effect of Salience-aware Data Augmentation.
The performance of the base model with salient-
aware data augmentation is marked as “w/o aux-
iliary task” in Tab. 2. The data augmentation in-
dependently brings 1.0% relative improvement on
the validation set and 1.1% relative improvement
on the test set. The results demonstrate that table-
based fact verification requires abundant training
data and verify the effectiveness of the proposed
data augmentation strategy. Tab. 3 compares prob-
abilistic weights and uniform weights. The results
show that probabilistic data augmentation reduces
error rate on the validation set by 1.6% relatively
(and by 3.2% relatively on the test set) in compar-
ison with uniform data augmentation. This obser-
vation is reasonable because the augmented data
are not equally confident according to the MLM
predictions. Moreover, the predicted probabilities
from the pretrained language model correlate with
real-world distribution of English language.

Performance on Simple and Complex Instances.
We further compare the performance of baselines
and variants of our system on two groups of test
instances labeled with different verification diffi-
culties. Our system outperforms all the baselines
on both simple and complex instances with at least
1.0% absolute improvement. Ablation results in
Tab. 2 also show that the auxiliary task improves
the base model more on complex instances while
data augmentation improves the base model more
on simple instances. These results are consistent
with the features of the two salience-aware learning
strategies. Masked salient token prediction seeks
to enhance the model to capture table-text align-

ment and the underlying logical relations, so that
complex instances requiring more complicated rea-
soning gain more benefits. Salience-aware data
augmentation seeks to augment statements by sim-
ply replacing non-salient tokens. This strategy in-
creases the training data but does not augment the
implicit logical form covered by the dataset so that
the improvement on complex instances is not as
significant as that on simple instances.

4.3 Case Study

We present a case study with three representative
examples to illustrate salience estimation and data
augmentation in Tab. 4. The detected salient tokens
can be entities and numeric values from the table,
tokens indicating relations, and the results of logi-
cal operations. Non-salient tokens can be common
nouns, verbs, prepositions and so on. These tokens
are detected as non-salient because they are not
closely associated with facts in the given table. For
example, the table in the second example is about
the residence of different athletes, so “player” in
the statement may be substituted to related terms
without interfering the verification result. It is note-
worthy that entities consisting of multiple words
tend to have relatively small salience scores for
some parts. It may be due to that verification mod-
els can identify the corresponding cell by part of
the entity. But it also raises the risk of incorrect
verification or polluted data augmentation when
modifying a part of a multi-word entity.

5 Conclusion

In this paper, we proposed a novel system for
table-based fact verification. Our system employs
salience-aware learning and introduce complemen-
tary supervision signals by leveraging both salience
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and non-salient tokens from different perspectives.
The system consists of three key techniques, in-
cluding probing-based salience estimation, masked
salient token prediction and salience-aware data
augmentation. Experiments on the TabFact bench-
mark show that our system leads to significant im-
provements over the current SOTA systems. For fu-
ture work, we plan to extend salience-aware learn-
ing to other NLU tasks, including NLI (Bowman
et al., 2015; Williams et al., 2018) and Tabular QA
(Sun et al., 2016; Chen et al., 2020b). Applying
the idea of salience estimation to NLG tasks, such
as controlled table-to-text generation (Parikh et al.,
2020) and paraphrasing (Iyyer et al., 2018; Huang
and Chang, 2021), is another meaningful direction.

Ethical Consideration

This work does not present any direct societal con-
sequence. The proposed work seeks to develop a
salience-aware learning framework for fact verifi-
cation using tabular data as evidence. We believe
this leads to intellectual merits that benefit claim
and statement verification for Web corpora, as well
as detection of misinformation. It potentially also
has broad impacts for NLU and NLG tasks where
tables serve as a medium of knowledge sources.
The experiments are conducted on a widely-used
open benchmark.

The goal of this research topic is to help iden-
tify misinformation, which seeks to benefit societal
fairness. While we treat tables as reliable sources
of evidences like relevant studies do, we do not
hypothesize that the populated information by Web
users in tables is not completely free of societal
bias. We believe this is a meaningful research di-
rection for further exploration. While not being
explicitly studied in this work, the incorporation of
salience-aware inference could be a way to control
or mitigate societal biases.
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