
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4016–4024
November 7–11, 2021. ©2021 Association for Computational Linguistics

4016

NUANCED: Natural Utterance Annotation for Nuanced Conversation
with Estimated Distributions

Zhiyu Chen1∗, Honglei Liu2, Hu Xu2, Seungwhan Moon2, Hao Zhou2 and Bing Liu2

1University of California, Santa Barbara
2Facebook

zhiyuchen@cs.ucsb.edu,
{honglei,huxu,shanemoon,haozhoustat,bingl}@fb.com

Abstract

Existing conversational systems are mostly
agent-centric, which assumes the user utter-
ances will closely follow the system ontology.
However, in real-world scenarios, it is highly
desirable that users can speak freely and natu-
rally. In this work, we attempt to build a user-
centric dialogue system for conversational rec-
ommendation. As there is no clean mapping
for a user’s free form utterance to an ontol-
ogy, we first model the user preferences as es-
timated distributions over the system ontology
and map the user’s utterances to such distri-
butions. Learning such a mapping poses new
challenges on reasoning over various types of
knowledge, ranging from factoid knowledge,
commonsense knowledge to the users’ own sit-
uations. To this end, we build a new dataset
named NUANCED that focuses on such real-
istic settings, with 5.1k dialogues, 26k turns
of high-quality user responses. We conduct
experiments, showing both the usefulness and
challenges of our problem setting. We believe
NUANCED can serve as a valuable resource to
push existing research from the agent-centric
system to the user-centric system. The dataset
is publicly available1.

1 Introduction

Conversational artificial intelligence is one of
the long-standing research problems in natural
language processing, such as task-oriented dia-
logue (Wen et al., 2017; Budzianowski et al., 2018;
Hosseini-Asl et al., 2020), conversational recom-
mendation (Sun and Zhang, 2018; Zhang et al.,
2018) and chi-chat (Adiwardana et al., 2020; Roller
et al., 2020) etc. However, most existing systems
are agent-centric. Such systems require the users to
unnaturally adapt to and even have a learning curve
on the system ontology, which is largely unknown

∗Work done as a research intern at Facebook.
1https://github.com/facebookresearch/

nuanced

System ontology:
category: Japanese, Korean, Chinese, New American, etc. 
alcohol: full bar, beer and wine, don’t serve
attire: casual, dressy, formal 
wifi: free, paid, no

full bar please. 

agent user

Slot: Alcohol = full bar

Hello, can you help me find some good Chinese 
restaurants?

Slot: Category = Chinese

Sure, any preference on alcoholic beverages?

Traditional Dataset

I want to update blog on my laptop with a dry martini on 
side.

agent user

Slot: Alcohol = (full bar, 1.0), (beer/wine, 0.0), (don’t 
serve, 0.0)
Slot: Attire = (casual, 0.9), (dressy, 0.0), (formal, 0.1)
Slot: Wifi = (free, 0.7), (paid, 0.3), (no, 0.0)

Hello, I’m in the mood for something like ramen. Any 
recommendations?

Slot: Category = (Japanese, 0.5), (Chinese, 0.4), 
(Korean, 0.2)

Sure, any preference on alcoholic beverages?

Slot: Category = Japanese, Chinese, Korean

Slot: Alcohol = full bar
Slot: Attire = casual, formal
Slot: Wifi = free, paid

coarse 
tags

nuanced 
distribution

nuanced 
distribution

Our Dataset NUANCED

coarse 
tags

Figure 1: Examples of traditional dataset and NUANCED: In
NUANCED, we model the user preferences as distributions
over the ontology to allow mapping of entities unknown to
multiple values and slots for efficient conversation.

to the users (such as the sample instructions for
most smart speakers). Figure 1 shows a dialogue
snippet commonly found in traditional datasets: the
user is expected to closely follow the system ontol-
ogy with the exact ontology terms, or at most with
minor variations like synonyms.

In the real-world use cases, such formulation
may easily results in information loss, or breaks
a conversation if the user speaks anything out of
the system ontology; In this work, we argue that
a smart agent can ideally be more user-centric, by
allowing users to speak freely without restrictions.
The system is expected to uncover the connection
between the freestyle user utterance and one or
more slots and values by the system ontology.

https://github.com/facebookresearch/nuanced
https://github.com/facebookresearch/nuanced
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To build a user-centric dialogue system, we pro-
pose to model the mapping from the free form
user utterances to the system ontology as prob-
ability distributions to capture fine-grained user
preferences. To learn the distributions, we con-
struct a new dataset, named NUANCED (Natural
Utterance Annotation for Nuanced Conversation
with Estimated Distributions). NUANCED targets
conversational recommendation because such type
of dialogue system encourages more modeling of
soft matching and implicit reasoning for user prefer-
ence. We employ professional linguists to annotate
the dataset, and end up with 5.1k dialogues and 26k
turns of high-quality user utterances. Our dataset
captures a wide range of phenomena naturally oc-
curring in realistic user utterances, including speci-
fied factoid knowledge, commonsense knowledge
and users’ own situations. We conduct compre-
hensive experiments and analyses to demonstrate
the challenges. We hope NUANCED can serve as a
valuable resource to bridge the gap between current
researches and real-world applications.

2 Related Work

Task-oriented dialogue systems are typically di-
vided into several sub modules, including user in-
tent detection (Liu and Lane, 2016; Gangadharaiah
and Narayanaswamy, 2019), dialogue state track-
ing (Rastogi et al., 2017; Heck et al., 2020), dia-
logue policy learning (Peng et al., 2017; Su et al.,
2016), and response generation (Dusek et al., 2018;
Wen et al., 2015). More recent approaches begin
to build unified models that bring the pipeline to-
gether (Chen et al., 2019; Hosseini-Asl et al., 2020).
Conversational recommendation focus on combin-
ing the recommendation system with online conver-
sation to capture user preference (Fu et al., 2020;
Sun and Zhang, 2018; Zhang et al., 2018). Previous
works mostly focus on learning the agent side pol-
icy to ask the right questions and make accurate rec-
ommendations, such as (Xu et al., 2020; Lei et al.,
2020; Li et al., 2020; Penha and Hauff, 2020). Chit-
Chat (Adiwardana et al., 2020; Roller et al., 2020)
is the most free form dialogue but almost with no
knowledge grounding or state tracking. Both exist-
ing task-oriented, conversational recommendation
systems have a pre-defined system ontology as a
representation connected to the back-end database.
The ontology defines all entity attributes as slots
and the option values for each slot. In existing
datasets, such as the DSTC challenges (Williams

et al., 2014), Multi-WOZ (Budzianowski et al.,
2018), MGConvRex (Xu et al., 2020), etc, the ut-
terances from the users mostly closely follow the
system ontology. While in task-oriented dialogue
systems, parsing the user utterances into dialogue
states is more on hard matching, in conversational
recommendation systems soft matching is more
encouraged since the user preferences are more
salient and diverse in this type of conversations.

3 The NUANCED Dataset

3.1 User Preference Modeling
Given a system ontology, denote the set of all slots
as {Si}, with the option values for each slot as
{V j

i }. Denote the current user utterance as T and
dialogue context (of past turns) as C. We model
the user preference as a distribution over each slot-
value, namely preference distribution:

P j
i = P (V j

i |T,C). (1)

Note that we expect the representation to be gen-
eral, expandable, and to hold the fewest assump-
tions, i.e., there is no assumption on the depen-
dency among slot-values, nor the completeness of
the value set. Therefore we model the distribution
as a Bernoulli distribution over each slot-value. In-
tuitively, P j

i represents the probability that the user
chooses an item with attributes V j

i , under the ob-
served condition of the dialogue up to the current
turn. Note that the preference distributions may dif-
fer among individuals which causes variances, In
this work, we aim to aggregate estimated distribu-
tions from large-scale data collected from multiple
workers as “commonsense” distributions. We leave
modeling user-specific distributions to future work.

3.2 Dataset Construction
We first simulate the dialogue flow with the pref-
erence distributions, then we ask the annotators to
compose utterances that imply the distribution.

3.2.1 Dialogue Simulator
We follow the approach from the MGConvRex
dataset (Xu et al., 2020) to build the user visit-
ing histories from real-world data. For each user
with its visiting history as a list of restaurants with
slot-values, we sample a subset of the history and
aggregate to get a value distribution for each slot.
For example, in the list of restaurants of a user’s
visiting history, we sampled two restaurants, restau-
rant 1 and restaurant 2. Restaurant 1 has the slot-
values of Alcohol = full_bar, Restaurant 2 has the
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slot-value of Alcohol = beer_and_wine. Then the
aggregated distributions is Alcohol = (full_bar, 0.5),
(beer_and_wine, 0.5), (no_serve, 0.0). As gener-
ally, for the same user, the attributes of its visited
restaurants tends to follow certain trends. There-
fore the aggregated distributions created this way
can be more natural. Using the sampled distribu-
tion as the ground truth distribution, we simulate
the dialogue skeletons of the following scenarios:
1) Straight dialogue flow: the system asks each slot,
followed by the user response filled with preference
distributions; 2) User updating preference: the user
updates the preference distributions in a previous
turn; 3) System yes/no questions: the system can
choose to ask confirmation questions; For each
turn, we randomly select 1 to 3 slots, correspond-
ing to the cases that the user utterances naturally
imply multiple slot-values. The system turns are
composed using templates.

3.2.2 User Utterances Composition
After simulating the dialogue skeletons, we em-
ploy professional linguists to do the composition
to ensure high quality. We provide two composing
strategies: Implicit Reasoning: do not mention
the slot-value terms explicitly. This is the focus of
this work because we expect that users are unaware
of the system ontology and to depict their requests
naturally. Explicitly Mention: use the slot-value
terms (or synonyms), as a backup option when the
first one is not applicable. We also emphasize the
following aspects: 1) Read the whole dialogue first
to have an overall “story” in mind before compos-
ing each utterance to ensure consistency; 2) Try
to compose utterances as diverse as possible; 3)
Reject any cases with invalid or unnatural prefer-
ence distributions. We provide learning sessions to
linguists to ensure they all master the tasks.

3.3 Dataset Statistics and Analysis

With an average of 5.39 user turns per dialogue,
we have 5,100 dialogues consisting of 25,757 user
turns. The user utterances have an average length
of 19.43 tokens. 84.7% of the utterances are com-
posed using implicit reasoning; 6.5% of the utter-
ances explicitly mention the ontology terms, and
the rest use mixed strategies. The train / valid /
test split is 3,600 / 500 / 1,000 in the number of
dialogues, and 18,182 / 2,529 / 5,046 in the number
of user turns. To evaluate the quality of our dataset,
we randomly sample 500 examples and ask the
linguistics whether a preference distribution is rea-

sonable based on the corresponding utterance. We
end up with a turn-level correctness rate of 90.2%.

Among the utterances involving implicit reason-
ing, we summarize 3 basic reasoning types. The
examples are shown in Table 1. Type I (Factoid
Knowledge) is largely agreed on by people and is
relatively stable. Type II (Commonsense Knowl-
edge or User Situations) may not be formally de-
fined. For example, a food item less than $10 is
considered cheap. In many cases, such knowledge
needs to be inferred from a situation described by
users. Type III (Mix of Type I and II) may appear
in a single utterance.

3.3.1 NUANCED-reduced
We also provide a reduced variant called NU-
ANCED-reduced, by discretizing the distributions
for preference into binary numbers. For all slot-
values with a positive preference distribution2 we
label them as 1.0, otherwise 0.0. This reduced vari-
ant does not have continuous probabilities to tell
the nuanced differences but it still needs to map
free form utterances to binary labels. We conduct
human evaluation by asking the annotators to de-
cide which representation can better capture more
fine-grained user preferences. As Table 2 shows,
NUANCED can better capture the nuanced informa-
tion. Note that in real applications, which version
of the data to use may depend on requirements of
the system, i.e., level of granularity for state repre-
sentation.

4 Experiments

In this section, we conduct experiments on both ver-
sions of the datasets in §4.1 and §4.2, respectively.

4.1 NUANCED-reduced
4.1.1 Baselines
Exact match & Random guess We follow the pre-
ceding system query to make slot prediction; we
then use an exact match to predict the slot-values;
if no match is found, we apply a random guess.
BERT (Devlin et al., 2019), The input is the con-
catenation of the slot name, current turn system
question and user utterance, and the dialogue con-
text of past turns. We add two types of prediction
heads on the [CLS] token of BERT, one for slot
prediction (whether the input slot is updated or not),
and the other for the value prediction of each slot.

2In practice we set a threshold of 10%, because in the
utterance composition stage a preference distribution lower
than 10% is generally considered ignorable.
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Reasoning types Example user utterances Example preference distributions

Type I Factoid Knowledge
(37.3%)

I really want a G&T or a Riesling,
but I could also have a tonic water.

Slot: Alcohol = (full_bar, 0.7), (beer_and_wine, 0.2),
(don’t_serve, 0.1)

Type II Commonsense knowledge
or User Situations
(43.8%)

five to ten dollars, I don’t want a
place with people wearing ties, you
know?

Slot: Price = (cheap, 0.6), (affordable, 0.4),
(moderately_priced, 0.0), (expensive, 0.0)
Slot: Attire = (casual, 1.0), (dressy, 0.0), (formal, 0.0)

Type III Mixed Type I & II
(19.0%)

I want to update blog on my laptop,
with a dry martini on side.

Slot: Wifi = (free, 0.7), (paid, 0.3), (no, 0.0)
Slot: Alcohol = (full_bar, 1.0), (beer_and_wine, 0.0),
(don’t_serve, 0.0)

Table 1: Examples of reasoning types. Type I utterance: G&T is only served in a full bar, while Riesling is a kind of wine and
tonic water does not require alcohol options. Type II utterance, ‘place without people wearing ties’ indicates casual attire, and
‘five to ten dollars’ indicates a price range of cheap or affordable. Type III utterance, we need both kinds of reasonings.

NUANCED win NUANCED-reduced win Tied

54.7% 16.7% 28.6%

Table 2: Human evaluation results of comparing two versions.

The loss is a combination of cross-entropy loss for
slot prediction and mean squared error (MSE) loss
for value prediction. During inference, we set up a
threshold to decide positive or negative predictions.
Transformer (Vaswani et al., 2017) We use the
similar architecture as the BERT baseline but train
the weights from scratch.
Train-ConvRex As MGConvRex dataset (Xu
et al., 2020) has similar domain and ontology, we
compare the BERT model trained on MGConvRex3

with that tested on NUANCED-reduced. We use this
baseline to demonstrate the open challenges caused
by users’ free-form speaking.

We refer the readers to Appendix A for more
details. For all baselines, we evaluate on the turn
level slot prediction accuracy and joint accuracy.

4.1.2 Results for NUANCED-reduced
As shown in Table 3, the BERT model achieves
the best performance as the external knowledge
obtained from pre-training helps draw a better rele-
vance between unrecognized entities from the user
and entities from the agent. Train-ConvRex limits
such mapping to system ontology, indicating that
existing dialogue datasets may limit what an agent
can understand from users. Lastly, by comparing
with BERT without dialogue context (or past turns),
we notice that context may help in learning better
values but yields more noise for slot prediction.

4.2 NUANCED

4.2.1 Baselines
Exact match & Random guess Similar to NU-
ANCED-reduced, we assign a probability of 1.0

3We contacted the first author to obtain the dataset.

Baselines Slot Accuracy (%) Joint Accuracy (%)

Exact match & Random guess 48.83 4.84

Train-ConvRex 38.70 4.02

Transformer 74.14 21.52

BERT 88.21 36.56

BERT w/o context 88.78 34.99

Table 3: Results on NUANCED-reduced. Slot Accuracy: per-
centage of turns that all slots are correct; Joint Accuracy:
percentage of turns that all slots and values are correct.

for matched values or random value otherwise.

BERT, Transformer Similar to NUANCED-
reduced, we use MSE loss between the ground
truth and the predicted distribution.

Train-reduced-X We train the model on NU-
ANCED-reduced and test on NUANCED to see how
data with binary states can infer states in the con-
tinuous space. We define a fixed number of X as
the continuous number for all positive predictions.
We experiment with X = 0.5 and 1.0.

We keep the same evaluation for slot prediction.
For value predictions, we evaluate the soft average
mean absolute error (MAE) between the ground
truth distribution and the predictions.

4.2.2 Results for NUANCED

As in Table 4, BERT reaches the best performance.
One interesting observation is that using the same
model BERT, the slot prediction accuracy increases
(from 88.21% to 89.62%) compared with training
on the reduced version. NUANCED helps to reduce
the noise of sparse entities in context (past turns).
This is probably because numbers in continuous
space can draw more relevance among different en-
tities. As we can see, Train-reduced-X has a much
larger error. This indicates that simply adapting the
results from the reduced state labels suffers from
information loss, i.e., the nuanced differences in
continuous distributions.
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Baselines Slot Accuracy (%) Correct slots
mean MAE (1e-2)

Exact match & Random guess 48.83 46.84

Train-reduced-1.0 88.21 40.72

Train-reduced-0.5 88.21 21.62

Transformer 78.42 16.78

BERT 89.62 14.20

BERT w/o context 88.08 14.49

Table 4: Evaluation results on NUANCED. Correct slots mean
MAE (lower the better): mean absolute error of predicted
distribution for all correctly predicted updated slots;

4.2.3 Analysis on Slots
We study how the models perform on different
kinds of turns, shown in Table 5. Generally speak-
ing, the turns with more slots are relatively harder
to learn. The turns that update the preference in
previous turns have the highest error, the prefer-
ence distribution needs to be jointly inferred from
the previous mention and the current turn. We also
study the performance on each slot in Appendix B,
and provide some case studies in Appendix C.

Type of turn all 1 slot 2 slots 3 slots updating
preferences

Slot Accuracy(%) 89.62 96.67 78.91 67.65 90.61

Mean MAE(1e-2) 14.12 14.06 13.55 14.20 15.63

Table 5: Performance for different kinds of slots: all: all kinds
of turns; n slots: turns that the user utterance jointly implies
n slots; updating preferences: turns that the user utterance
updates the preference in previous turns.

4.2.4 Human Evaluation
We further conduct a human evaluation on base-
line models. We first evaluate the model outputs
of Transformer, BERT, and BERT w/o context,
through pairwise comparison between the model
predictions and the gold labels. The results on 200
samples are shown in Table 6. There is a large gap
between the best-performing baseline and the gold
reference, which indicates significant room for im-
provement for future research. Further, we study
the breakdown of predictions of BERT on 3 differ-
ent types of reasoning. As shown in Table 7, the
type 1 utterances, that involve factoid knowledge,
are relatively harder to learn. This is close to our
intuition because factoid knowledge is huge (and
keeps increasing) and the limited utterances in the
dataset may not cover all of the knowledge.

5 Conclusion and Open Problems

Starting from our dataset, we believe the user-
centric dialogue system is an open-ended problem
and the following directions are worth pursuing:

Methods Model output win(%) Tied(%) Gold win(%)

Transformer 10 9.5 80.5

Bert 23.6 20.9 55.4

Bert w/o context 19.5 9.6 70.9

Table 6: Human evaluation results for the model predictions.

Methods Model output win(%) Tied(%) Gold win(%)

Type I 22.5 19.9 57.6

Type II 27.4 24.1 48.5

Type III 21.1 11.2 67.7

Table 7: Human evaluation results for different reasoning
types. Type I: factoid knowledge; Type II: commonsense
knowledge or user situations; Type III: Mixed Type I & II.

1) Preliminary experimental results indicate that to
improve performance, it is promising to incorpo-
rate external domain texts into pre-trained models,
for example, pre-training the model on domain cor-
pora like restaurant descriptions and reviews. 2)
Although our dataset collects a large set of domain
entity knowledge, we still cannot guarantee that it
will cover the vast amount of unknown entities in
the future. One idea is to incorporate a knowledge
base (KB) in the form of data augmentation or mod-
eling. 3) Through our large-scale dataset, although
one can learn a general agreement of estimated dis-
tributions from the crowds, a more user-specific
distribution would be more desirable. We believe
providing a personalized solution is another proper
next step to consider.

6 Ethical Considerations

For our data annotation, our annotators were hired
as full-time employees through a leading annota-
tion services vendor, and were paid in accordance
with a fair wage rate.
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Appendix

A Model Implementation and Training Details

BERT

slot name
price, category, attire, ... 

CLS

slot 
prediction

{ update, none }

{ nightlife, bbq, … }

{ cheap, affordable, … }

slot: category

slot: price

...current turn
System: any preference on attire?

User: I’d like to wear my jeans 

dialog history
User: hi, i’d like to find a place to eat

System: sure, …
...

slot: attire
{ casual, dressy, … }

Figure 2: Illustration of the BERT baseline

Figure 2 presents the architecture of the BERT
baseline. For each turn, we concatenate each slot
with the current turn and the dialogue context as the
input. On the [CLS] output, we add one head for
slot prediction as binary classification, i.e., whether
the input slot is updated in the current turn. For
each slot, we add a specific head for value predic-
tion. We use cross entropy loss for slot prediction,
and mean squared loss for value distribution pre-
diction. The overall loss is a weighted combination
of the two losses. We set the weight for value
prediction as 20.0. The threshold for value pre-
diction in NUANCED-reduced is set as 0.5. We
use BERT-base uncased model from the official
release4 with 110M parameters; The learning rate
is set as 3e-5, batch size as 32. We take the results
based on the performance on validation set. For NU-
ANCED-reduced, the training takes around 25,000
gradient steps; For NUANCED, the training takes
around 40,000 steps. For the transformer model,
to achieve best performance we use 6 layers and
hidden size 300. All training is done on a single
NVIDIA TESLA M40 card with 11G memory.

Note that for the slot “food category", some val-
ues are commonly observed in the dataset such as
“American food", “nightlife", while some others are
less frequently such as "Thai". During training we
employ up-sampling for the less frequent ones.

In the construction of NUANCED, we sample a
subset of the user history and aggregate to get the
ground truth preference distributions. Because the
number of viable values of each slot is different, for
those slots with relatively more values the distribu-
tion generally presents ‘long tail’, we only take the
top 3 value distributions for each slot. Correspond-
ingly, during the model evaluation, we also take the

4https://github.com/google-research/bert
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top 3 predicted value distributions to calculate the
MAE.

B Analysis on Slots
We also study how the model performs on each
slot in the domain, shown in Table 8. Generally,
slots that may involve more factoid knowledge or
more choices of values are harder to learn, such
as food category, parking. These may re-
quire learning long-tailed knowledge from external
data.

Slot food category price parking noise

Mean MAE(1e-2) 15.48 15.29 16.94 13.34

Slot ambience alcohol wifi attire

Mean MAE(1e-2) 15.04 13.88 12.30 8.95

Table 8: Performance for each slot of our dataset.

C Case Studies
Table 9 provides some case studies with ground
truth and the BERT model predictions.
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Dialogue Turns NUANCED-reduced NUANCED

Assistant: any preference on attire?
User: I like shorts and a loose tee shirt
in this heat.

Gold labels:
Attire ( casual= 1, dressy= 0, formal= 0 )

Gold Distributions:
Attire ( casual= 1.00, dressy= 0.00, formal= 0.00 )

BERT predictions:
Attire ( casual= 1, dressy= 0, formal= 0 )

BERT predictions:
Attire ( casual= 0.99, dressy= 0.01, formal= 0 )

Assistant: what type of food would you
like?
User: Ribs would be perfect.

Gold labels:
Category ( traditional_american= 1.0, bbq= 1.0,
nightlife= 0.0 )

Gold Distributions:
Category ( traditional_american= 0.50, bbq= 0.50,
nightlife= 0.00 )

BERT predictions:
category ( traditional_american= 1.0, nightlife= 1.0,
new_american= 0.0 )

BERT predictions:
Category ( traditional_american= 0.20, nightlife= 0.08,
new_american= 0.09 )

Assistant: any preference on alcohol?
User: I really want a G&T or a Riesling,
but I could also have a tonic water.

Gold labels:
alcohol ( full_bar= 1.0, beer_and_wine= 1.0,
don’t_serve= 1.0 )

Gold Distributions:
alcohol ( full_bar= 0.78, beer_and_wine= 0.33,
don’t_serve= 0.11 )

BERT predictions:
alcohol ( full_bar= 1.0, beer_and_wine= 1.0,
don’t_serve= 1.0 )

BERT predictions:
alcohol ( full_bar= 0.55, beer_and_wine= 0.47,
don’t_serve= 0.09 )

Assistant: what parking option would
you like?
User: I need something fuss-free and
out of the rain for my car, Also, I really
want a gin and tonic, but it’s not a
complete deal-breaker if I can’t have it.

(after some turns)

Assistant: here’re the recommendations.
User: You know what, if it’s going to be
a fancier place then I don’t mind dealing
with more complicated parking after all.

Gold labels:
parking ( garage= 1.0, valet= 0.0, validated= 0.0 )
alcohol ( full_bar= 1.0, beer_and_wine= 1.0,
don’t_serve= 1.0 )

Gold Distributions:
parking ( garage= 0.86, valet= 0.00, validated= 0.00 )
alcohol ( full_bar= 0.93, beer_and_wine= 0.21,
don’t_serve= 0.14 )

BERT predictions:
parking ( garage= 1.0, valet= 1.0, lot= 1.0 )
alcohol ( full_bar= 1.0, beer_and_wine= 1.0,
don’t_serve= 1.0 )

BERT predictions:
parking ( garage= 0.78, valet= 0.41, lot= 0.34 )
alcohol ( full_bar= 0.79, beer_and_wine= 0.17,
don’t_serve= 0.12 )

Gold labels:
parking ( garage= 1.0, valet= 1.0, validated= 1.0 )

Gold Distributions:
parking ( garage= 0.86, valet= 0.64, validated= 0.21 )

BERT predictions:
parking ( garage= 1.0, lot= 1.0, validated= 1.0 )

BERT predictions:
parking ( garage= 0.67, valet= 0.48, lot= 0.40 )

Table 9: Some case studies. the last example shows two turns in a dialogue and corresponding distributions for each turn. The
user updates the preference in a later turn based on a previous turn.


