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Abstract

Computational models of human language of-
ten involve combinatorial problems. For in-
stance, a probabilistic parser may marginal-
ize over exponentially many trees to make
predictions. Algorithms for such problems
often employ dynamic programming and are
not always unique. Finding one with optimal
asymptotic runtime can be unintuitive, time-
consuming, and error-prone. Our work aims to
automate this laborious process. Given an ini-
tial correct declarative program, we search for
a sequence of semantics-preserving transfor-
mations to improve its running time as much
as possible. To this end, we describe a set of
program transformations, a simple metric for
assessing the efficiency of a transformed pro-
gram, and a heuristic search procedure to im-
prove this metric. We show that in practice,
automated search—Ilike the mental search per-
formed by human programmers—can find sub-
stantial improvements to the initial program.
Empirically, we show that many speed-ups de-
scribed in the NLP literature could have been
discovered automatically by our system.

1 Introduction

Algorithmic research in natural language process-
ing (NLP) has focused—in large part—on devel-
oping dynamic programming solutions to combi-
natorial problems that arise in the field (Huang,
2009). Such algorithms have been introduced over
the years for countless linguistic formalisms, such
as finite-state transduction (Mohri, 1997; Eisner,
2002; Cotterell et al., 2014), context-free parsing
(Stolcke, 1995; Goodman, 1999), dependency pars-
ing (Eisner, 1996; Koo and Collins, 2010; Ma and
Zhao, 2012) and mildly context-sensitive parsing
(Vijay-Shanker and Weir, 1989, 1990; Kuhlmann
et al., 2018). In recent years, the same algorithms
have often been used for deep structured prediction,
using a neural scoring function that decomposes
over the structure (Durrett and Klein, 2015; Rastogi

et al., 2016; Lee et al., 2016; Dozat and Manning,

2017; Stern et al., 2017; Kim et al., 2017; Hong and

Huang, 2018; Wu et al., 2018; Wu and Cotterell,

2019; Qi et al., 2020; Rush, 2020).

When a dynamic programming algorithm for a
new problem is first introduced in the literature,
its runtime may not be optimal—faster versions
are often published over time. Indeed, the process
of introducing a first algorithm and subsequently
finding improvements is common throughout com-
puter science. In the case of dynamic programming,
there are program transformations that may be ex-
ploited to derive algorithms with a faster runtime
(Eisner and Blatz, 2007). These transformations
map a program to another program with the same
meaning (given the same inputs, it will produce the
same outputs), but with possibly different running
time. This paper shows how to search over program
transformation sequences in order to automatically
discover faster algorithms, automating the work of
the NLP algorithmist.

Consider the following instances' of published
dynamic programs whose runtime bounds were
later improved using specific applications of the
program transformations mentioned above.

* Projective dependency parsing: Collins (1996)
gave an O(n5) algorithm that was sped up to
O(n*) by Eisner and Satta (1999).

 Split-head-factored dependency parsing: imple-
mented naively runs in O(n”); with some ef-
fort, an O (n3) algorithm can be derived (Eisner,

1996; Johnson, 2007; Eisner and Blatz, 2007).

* Linear index-grammar parsing: O(n7) in Vijay-
Shanker and Weir (1989), sped up to O(nS) by
Vijay-Shanker and Weir (1993).

* Lexicalized tree adjoining grammar parsing:
O(n®) in Vijay-Shankar and Joshi (1985), sped
up to O(n”) by Eisner and Satta (2000).

"Many of these examples were brought to our attention

in the works of Eisner and Blatz (2007) and Gildea (2011);
further discussion can be found therein.
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BX,I,K) += v(X,Y,2)
* B(Y,I1,J) x B(Z,7,K).
start = BK,L,K0 += v,V
* word(Y,I,K).
z += B(root,@,N) * len(N).

fold(l, [1, 2])

cost=16

BX,I,K) +=
tmp(I,J,X,2) * B(Z,7,K).
B, I,K) += v(X,Y)
* word(Y,I,K).
z += B(root,0,N) * len(N).
tmp(I,J,X,Z) +=
BY,I1,T) * v(X,Y,2).

BX,I,K) += ~v(X,Y,2)
* B(Y,I,J) x B(Z,7,K).
BX,I,K) += ~v(X,Y)
* word(Y,I,K).
z += [B(root,0,N) * len(N).
tmp(I,7T,X,Z) += B(Y,I,])
* v(X,Y,2).

unfold(1, 1)

cost=5 cost=16

eliminate(4)

Figure 1: Depiction of the program optimization graph search problem (§5). The program used in this figure is our
running example of speeding up CKY (Example 3). Nodes are Dyna programs (§2). The node pointed to by “start”
indicates the user’s program. Edges are program transformations (§4). Costs are derived by program analysis (§3).
Only a tiny subset of the nodes and edges that exist in the search graph are shown. The dotted unlabeled outgoing
edges represent additional transformations that we did not elaborate in the diagram to reduce clutter.

* Inversion transduction grammar: O(n7) in Wu
(1996), sped up to O (nﬁ) by Huang et al. (2005).

* CKY parsing (Cocke and Schwartz, 1970;
Younger, 1967; Kasami, 1965) is typically pre-
sented in a suboptimal O (K3n?) form, but can
be sped up to O(K2n3 + K3n2) (Lange and
LeiB3, 2009; Eisner and Blatz, 2007).

* Tomita’s context-free parsing algorithm (1985)
runs in O(nf*1) where p is the length of the
longest right-hand side of a context-free produc-
tion in the grammar (Johnson, 1989). However,
it can be made to run in O (n3) by binarizing the
production rules.

In this paper, we ask a simple question: Can
we automatically discover these faster algorithms?
Typically, a dynamic programming algorithm
can be regarded as performing inference in an
semiring-weighted deduction system (Goodman,
1999). Eisner et al. (2005) provided a programming
language, Dyna, for expressing such deduction
systems, along with a compiler that produced fast
inference code. All of the runtime improvements
mentioned above are examples of source-to-source
program transformations (Eisner and Blatz, 2007).2

Our work, depicted in Fig. 1, poses program op-
timization as a search over transformed versions of
the initial program, an idea that was suggested as fu-
ture work by Eisner and Blatz (2007). Our contribu-
tion is to show that two classic search algorithms—
beam search (Reddy, 1977; Meister et al.,

2The closest work in the NLP literature is Gildea (2011),
who proposed the junction-tree minimization to speed up dy-
namic programs, which corresponds to only considering the
fold transformation. Outside of NLP, Mastria et al. (2020)
learn to fold in the context of answer set programs. Our work
considers a broader range of program transformations.

2020) and Monte Carlo tree search (Kocsis and
Szepesvari, 2006)—are effective for this purpose,
rapidly rediscovering many of the known optimiza-
tions listed above. To set up this solution, the fol-
lowing sections describe the elements of the search
problem: our space of possible programs (§2), a
simple cost function that serves as a proxy for pro-
gram runtime (§3), and a set of directed edges
that connect semantically equivalent programs (§4).
Our search starts at the initial program and seeks
a low-cost equivalent program that can be reached
by traversing directed edges. In §5, we review the
beam search and MCTS algorithms that we will
use for this purpose in the experiments of §6.

2 Our Space of Dynamic Programs

We will consider programs that are expressed in the
original version of the Dyna language (Eisner et al.,
2005), which is essentially a way of writing down
the recurrence relations of a dynamic programming
algorithm. In this section, we only briefly describe
the language and refer the reader to Eisner et al.
(2005) for a more complete introduction. To start,
consider the following examples.

Example 1. The total weight of length-4 paths in
a graph with edge weights w:
20 z += w(Y1,Y2) * w(Vz2,Y3) * w(Y3,Ys) * w(Yq,Y5).

This program defines the value of a derived item
z in terms of input items w(...). The value of
z1is ZY{ . -ZYS w(Y1,Y2)w(Ya,Ys)w(Ya,Ya)w(Va,Ys). NO-

3We chose the name z as it is short and traditional for de-
noting the normalization constant of a probabilistic model, e.g.,
p(Y1, YQ, Y37 Y47 Ys) X W(Y17 YQ) 'W(Yz, Y3) 'W(Y37 Y4) 'W(Y47 Ys)
would be have z as its normalization constant.
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tice that there is no need to clutter the expression
with explicit summations or control-flow constructs
such as for-loops: all variables (denoted by capital-
ized letters) that appear only on the right-hand side
of += are summed over.

Dyna programs elegantly enable recursive com-
putation by allowing the value of an item to be
defined in terms of other items of the same kind.

Example 2. The Viterbi algorithm (Viterbi, 1967)
finds the most probable path in a graph from a
node labeled "a" to a node labeled "z" with edge
probabilities (or weights) w:

nan

21 a("a") max= 1.
2 «a(J) max= a(l) * w(l,J).
z += a("z").

The second rule is recursive. For each possible
value of J on the left-hand side, it defines a(J) by
maximizing over assignments to the other variables
on the right-hand side (namely I). Maximization is
specified by max=, whereas summation in Example 1
was specified by +=.

Example 3. Weighted context-free parsing with
CKY (Cocke and Schwartz, 1970; Younger, 1967;
Kasami, 1965), or more precisely the inside algo-
rithm (Baker, 1979; Jelinek, 1985):*

u BX,ILK) += B(Y,I,T) * B(Z,T,K) * ~(X,Y,2).
5 B(X,I,K) += y(X,Y) * word(Y,I,K).
2% z += [B(root,@,N) * len(N).

The values of the ~ items should be defined to be
the weights of the corresponding context-free gram-
mar rules: for example, the item ~(s,np,vp) =0.7

encodes the production s o7, npvp). Also, the
item word(x, I,k) should be 1 if the input word
X appears at position I of the input sentence and
K = I + 1, and should be 0 otherwise. Then for
any nonterminal symbol X and any substring span-
ning positions [I, K) of the input sentence, the item
B(x,1,K) represents the total weight of all grammat-
ical derivations of that substring from X.

More generally, a Dyna program P is a
collection of rules, each rule having the form
h &= by ®---®@bg. Here (®,®) can be any
pair of operations that form a semiring (Good-
man, 1999; Huang, 2009), such as (+,*) in Ex-
ample 1 and Example 3, or (max, *) in Example 2.
We call h the head, and by, --- ,bg the body of
the rule. Each by, in the body is called a subgoal.

*If the reader is not familiar with context-free parsing, we
recommend Jurafsky and Martin (2020, chapters 12—13).

SMany other semirings are useful in NLP (Goodman, 1999;
Huang, 2009; Eisner et al., 2005).

Let head(r) and body(r) denote the head and body
terms in a rule r. We assume that all rules in the
program use the same semiring.® The structured
names of items are terms, which are nested typed
tuples as in Prolog. For example, f(g(z,h(3))) is
a 1-tuple of type f, whose single element is a 2-
tuple of type g, and so on. The rules use captialized
variables such as X to pattern-match against sub-
terms, where a variable that is repeated in a rule
must have the same value each time. Let vars(-)
denote the set of variables contained in a term, e.g.,
vars(£(g(x), 4, x)) — {X}. The Dyna language al-
lows logical side conditions on a rule, e.g., goal
+= f(X) for X < 10. This is syntactic sugar for goal
+= f(X) * lessthan(X,10), where the value of each
lessthan(a,b) term is the one or zero element of the
semiring, according to whether a < b or not.

3 Program Analysis

Our goal is to search for a fast Dyna program. We
will assume that the programs are executed using
the forward chaining algorithm described by Eis-
ner et al. (2005).” In principle, we could evaluate
a candidate program’s runtime by actually execut-
ing it, but this would be very expensive and would
also require us to specify particular inputs to the
program. Instead, as our search objective, we will
use a simple asymptotic upper bound on the pro-
gram’s runtime, based on a folk theorem from the
Datalog community that has a long history of use.
Many NLP papers have analyzed the runtime of
their algorithms using either this folk theorem or a
more refined version given by McAllester (2002):
Gildea (2011); Nederhof and Satta (2011); Gilroy
et al. (2017); Melamed (2003); Kuhlmann (2013);
Nederhof and Sanchez-Sdez (2011); Biichse et al.
(2011); Lopez (2009); Eisner and Blatz (2007).
The folk theorem says that, under certain condi-
tions (discussed later), the running time of forward
chaining execution of a given program is at worst
linear in the number of ways to instantiate its rules,
i.e., bind the variables to constants. A relatively
simple bound on rule instantiations is available if
we can establish that each variable in the program
can be bound in at most 7 different ways. In that
case, given some other conditions discussed at the
end of this section, the number of ways to instan-

®We leave the extensions in Dyna 2 (Eisner and Filardo,
2011), which relaxes this restriction, to future work.

"This algorithm assumes that the program is range-
restricted, i.e., vars(head(r)) C vars(body(r)). An example
of a non-range restricted rule is id(I,I) += 1.
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tiate a rule with & variables is bounded by O (nk )
Program P’s total runtime is O (n%9¢(P)) where
degree(P) is the maximum number of variables in
any rule of P. We therefore take degree to be the
cost function to minimize during search.

Consider Example 1. Evaluating this pro-
gram under the forward-chaining algorithm will
instantiate the rule by binding the 5 variables
X1, X9, X3, X4, X5 to constants. Then, the number
of rule instantiations is O (n°).

Similarly, Example 3 runs in (9(776), as the first
rule must sum over 6 variables, X, Y, Z, I, J,K. Note
that this is a coarse-grained analysis: the runtime
is usually given more specifically as O (n3K 3)
where n is the number of sentence positions, and
K is the number of grammar symbols. (This finer-
grained bound can be achieved by the theorem of
McAllester (2002): the intuition is that the vari-
ables I, J, K can each be bound in O(n) ways while
X,Y,Z can each be bound in O(K) ways.) How-
ever, the simpler analysis (9(176) gives us a single
exponent to reduce, namely 6.

To see the cost function in action, consider that
Example 1 has a running time of O(7)°), whereas
the following equivalent program runs in O (772) .

Example 4. Efficient factorization of Example 1
27z += resti1(Y1).

28 resti (Y1) += wi(Y1,Y2) * resta(Ya).
29 resta(Ys) += wa(Yo,Y3) * rests(Ys).
30 restz(Ys) += ws(Ys,Ysq) * rests(Yq).
31 resta(Yq) += wa(Yq,Y5) * rests(Vs).

Similarly, in Example 3, we can sum over the
variable Y separately from K as follows:

Example 5. Faster CKY (Example 3)

2 BXI,K) += tmp(I,T,X,Z) * B(Z,7,K).
s30tmp(I,T,X,2) += B(Y,I,J7) * v(X,Y,Z).

which is more efficient as its running time is O (775).
It is also more efficient under the finer-grained anal-
ysis, (’)(K2n3 + K3n2) .

The degree analysis of a Dyna program only
leads to a valid O-expression under some condi-
tions, which we will now discuss. (1) The degree
bound requires the grounded program to be acyclic
(Eisner et al., 2005). Cycles slow down forward
chaining because it must iterate to a numerical fixed
point. Generally, the number of iterations required
to reach a fixed-point is data dependent.® (2) The
degree bound assumes that all of the relations in the

81n the Boolean case (i.e., a Datalog program), the cycles
do not affect the running time because finding “new” values for

an item that is already true does not trigger further propagation
to items that depend on it. Unfortunately, this is not true of

program are bounded in size. The degree bound
requires that terms are not nested; this prevents
the user from encoding infinite sets, such as the
Peano integers. Additionally, it assumes that the
program’s rules are all range-restricted (footnote 7).
(3) The degree bound also assumes that the semir-
ing operations are constant time.

We will see in §6 that simply optimizing de-
gree is sufficient to recover a number of asymptotic
speedups noted in the NLP literature (see §1) as
well as asymptotic speedups on synthetic programs.

That said, the degree analysis might be loose
for many reasons. The upper bounds derived us-
ing our methodology assume that relations are
dense. Often relations are statically known to be
sparse. Many low-level details affect actual execu-
tion time, but do not matter for asymptotic complex-
ity. For example, memory layouts (e.g., row-order
or column-order layout of a dense array in mem-
ory), sparse vs. dense representations of relations
(e.g., hash tables vs. arrays), and indexes on rela-
tions (including sorted order) can have a dramatic
effect on the running time in practice. However,
they will not manifest in the degree analysis (e.g.,
Bilmes et al. (1997); Dunlop et al. (2011); DeNero
et al. (2009); Lopez (2007)). Such choices are out
of the control of our specific search space, but they
may interact with the program in ways that are not
represented in the degree.

An obvious alternative cost function would be
the empirical execution time of executing the trans-
formed program on a workload of representative
inputs (e.g., running a transformed parser on actual
sentences from the Penn Treebank (Marcus et al.,
1993)). But as we noted earlier, such a cost function
might be impractically expensive. For example,
evaluating the degree of a degree-1000 program is
linear in the size of the program, whereas evalu-
ating the wallclock time is O (771000). Optimizing
the program degree is a crucial design choice as it
enables a more exhaustive search in practice. Addi-
tionally, it sidesteps the need to optimize for a spe-
cific workload. However, in future work, we would
like to investigate hybrid search algorithms (e.g.,
Song et al. (2019)) that do attempt to minimize
empirical execution time, but replace some of the
expensive evaluations of that with cheaper approxi-

general semirings. For example, the programa += r * a. a
+= 1. encodes a geometric series; it may take many iterations
to converge if |r| is close to 1, and will diverge if |r| > 1. The
efficiency of this cyclic program thus depends on the value of
the input parameter r.
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mations: empirical execution time but with a time-
out, fine-grained bounds obtained by abstract inter-
pretation, and—most cheaply—estimates derived
from worst-case asymptotic analysis as above.

4 Program Transformations

This section details the set of transforms that we
consider in this paper. None of the transforms are
novel to this work. They have been detailed and
proved correct in Eisner and Blatz (2007). We
include them in our discussion for completeness of
presentation and to illuminate the challenges of our
search problem. We provide pseudocode for the
transforms in App. B, but defer to Eisner and Blatz
(2007) for a more thorough discussion.

Input and output declarations. We assume that
the initial program declares some items as input
and/or output items. The rest are considered inter-
mediate items. A program transform must preserve
the mapping from a valuation of the input items to
a valuation of the output items. (A valuation is an
assignment of a value to each item.) However, a
program transform is free to introduce, destroy, or
alter intermediate items.

For example, for CKY, the input and output
items are declared as follows:

34 input word(X,I,K); v(X,Y,Z); v(X,Y).
output goal.

4.1 Fold

Examples 1 to 3 were examples of the folding
transform. Our candidate fold actions are based
on variable elimination, as these are the only
valid folding actions that reduce the rule’s de-
gree. For a given rule r, the variable v € vars(r)
can be eliminated if it does not appear in all of
the factors in the rule’s body and it does not ap-
pear in the head of the rule. Formally, the set of
such variables is elim(r) = {v | factors(r,v) #
body(r),v ¢ head(r)} where factors(r,v) = {b |
b € body(r),v € vars(b)}.

If any rule r of the program P contains vari-
ables that can be eliminated (|elim(r)| > 0), then
eliminating any variable v € elim(r) by folding
factors(r, v) out of r reduces that r’s degree, which
may reduce (and never increases) the degree of
the program. Therefore, no final program bene-
fits from having rules with variables that can be
eliminated. However, when more than one vari-
able can be eliminated (|elim(r)| > 1), the order in
which the variables are eliminated will affect the

eventual degree. Finding an optimal sequence of
variable-elimination steps is NP-hard, by reduction
from variable elimination ordering in probabilistic
graphical models (Gildea, 2011).

We briefly note that folding can increase the
space complexity of the program, since it intro-
duces intermediate items that will be stored. We
do not consider optimizing the space—time tradeoff,
but it could be done with methods similar to ours.

4.2 Unfold and Rule Elimination

Suppose the user provided an inefficient program,
such as Example 6, which could have been obtained
by folding Example 1 with a suboptimal variable-
elimination ordering.

Example 6. Bad ordering for Example 1

36 goal += tmpy (X1,Xq,X5).

37 tmpa (X1,X2) += wy (X1,X2).

38 tmpz (X2,Xq4) += wa(X2,X3) * w3(X3,X4).

30 tmpy (X1,Xa,X5) += tmpa(X1,Xa) * wa(Xq,Xs5).
40 tmpa(X1,X4) += tmpa(X1,X2) * tmp3(X2,Xs).

While the above program is correct, its degree is
3, which is worse than the optimal variant, which
has degree 2. It has no variables that can be elimi-
nated, so there are no fold actions that can improve
its degree. To improve it, we first have to undo
the poor choices. There are two transformations
for “undoing” folds: unfold and rule elimination,
which we will describe in this section.

The unfold transform is essentially the inverse of
the fold transformation, and corresponds to inlining
code. It takes as input a specific subgoal by €
body(r) of some rule r. The goal is to replace
by by its definition. We will remove r from the
program, and replace it by adding a specialized
version of 7 for each rule ' whose head unifies with
by. These rules r’ define by—except in the special
case where by matches any input items, in which
case we cannot unfold by because its complete
definition is not available.

As a simple example, consider unfolding the first
subgoal of the first rule of Example 5,

1 BOGILK) += tmp(I,T,X,2) % B(Z,T,K).
o tmp(I,T,X,Z) += B(Y,I,T) * v(X,Y,Z).

This becomes

3 BOGTLKY += BCY,I,T) * y(X,Y,Z) * B(Z,7,K).
w4 tmp(I,7,X,2) += B(Y,I,T) * v(X,Y,Z).

Notice that the second rule is now defunct.” This

“We make use of a simple dead rule detection strategy to
identify rules that cannot fire based on the declared inputs,
or are unused by any of the declared outputs. Determining
which rules are dead is possible with a straightforward graph
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transformation is correct by the distributive rule.
Notice that the degree increased from 5 to 6.

An unfold will usually increase or preserve the
program’s degree—but there are exceptions due to
repeated variables or constants in rules:

55 a(l,K) += b(I,T) % c(J,K).

6 trace += a(L,L).

Unfolding the subgoal of the second rule decreases
the program’s degree from 3 to 2:

47 trace += b(L,J) * c(J,L).

Thus, this is an example of an immediately useful
unfold. The program in this case computes the
trace of a matrix product, and the role of unfold is to
specialize the sub-program that computes the entire
matrix product a(I,K) to the site where the product
is used, which only seeks its diagonal a(L,L). Such
optimizations are easy for programmers to miss.

Rule elimination is an alternative transforma-
tion, also described by Eisner and Blatz (2007),
that happens to achieve the same result in the above
examples. As the name suggests, rule elimination
targets rules instead of subgoals. The transform
takes as input a rule r/, removes it from the pro-
gram, and adds specialized versions of all of the
rules 7 whose subgoals match the head of 7. Rule
r’ cannot be eliminated if its head matches any
output items, since that would change the value
of those output items. Notice that attempting to
eliminate recursive rules is futile, as a rule cannot
be eliminated until it reaches its base case.

Rule elimination and unfold are especially use-
ful for eliminating non-range-restricted rules (foot-
note 7). For example, eliminating the first rule from
a8 F(I) += 1.

49 f(I) += g(I) * m(I,J).

50 goal += f(I) x h(I).

yields the range-restricted program
st f(I) += g(I) * m(I,T).

52 goal += f(I) * h(I).

53 goal += 1 * h(I).

Another useful case of rule elimination is for
propagating constants throughout the program. For
example, if the grammar in Example 3 is known
in advance, i.e., y(X,v,z) ¢ inputs, then we can
propagate them ahead of time. Yielding a highly
specialized program with no X, Y, Z variables and
having an overall reduced degree of 3.

In order to recover the original version of Exam-
ple 1 given Example 6, we can eliminate all rules
mlysis on a coarsened program, such as the

program resulting from dropping the arguments to all relations,
known as the predicate graph.

except for the one defining the output item z, and
then fold to eliminate variables in a different or-
der. This poses search challenges because all of the
unfold or rule elimination actions needed to reach
Example 1 are “uphill”: they increase the degree,
until the folds are applied. This means that finding
useful unfold and rule elimination moves can be
challenging (i.e., take a fair amount of exploration).

S Program Improvement

Our goal is to find a sequence of transformations
to the user’s program Py that gives the lowest cost,
cost(P) £ degree(P). In this section, we provide
two effective search algorithms for approaching
this goal: beam search and Monte Carlo tree search.

5.1 The Graph Search Problem

We consider an abstract graph search problem,
(S, A, so, T,transition, cost), where S is a state
space, A is an action space, transition : S x A — S
is a transition function, s; € S is an initial
state, 7 C S is a set of terminal states, and
cost : 7 — R is an cost function on the ter-
minal states. The cost and transition functions will
be treated by MCTS and beam search as black
boxes.!? The goal of the search problem is to find
the terminal state in the graph that has the lowest
cost, s* = minge7 cost(s).

Our problem (depicted in Fig. 1) can be easily
mapped into this notation. Our states S are pro-
grams (§2). The initial state sg is the initial pro-
gram Py. The transitions are applications of any
valid program transformation, which we discussed
in §4. In our setting, every state is a terminal. For
the cost function, we use program’s degree (§3).
To ensure termination, we only explore up to a dis-
tance of 100 from the initial state. We will discuss
in §5.4 how to structure the state and action spaces
to make search more effective.

5.2 Beam Search

Beam search is a common heuristic search algo-
rithm, which is easy to implement (Fig. 2) and
often works well in practice. A terse description of
the algorithm is that it is a variant of breadth-first
search (Russell and Norvig, 2020) which prunes
the search frontier (FIFO queue) to only keep the

'OMCTS can be used in the more general case where cost
and transition are stochastic or adversarial functions, but this is
not the case in our setting.
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. def beam_search(so, B):
2. beam < [so]

while beam :
. beam’ + []
5. for s € beam :
6. fora € A(s):
7. s’ « transition(s, a)
8. beam’.append(s’)

9 beam < B lowest-cost elements of beam’
0. return lowest-cost state ever to appear in beam

Figure 2: Beam search algorithm

B lowest cost states so far.!! However, the pruning
also robs breadth-first search of any guarantees. In-
creasing the beam size B generally returns a lower-
cost terminal state, but occasionally it may result in
incorrectly pruning a good state and thus returning
a higher-cost terminal state (as we see in our ex-
periments). We do recover exhaustive breadth-first
search, which is guaranteed correct, when the beam
size is large enough that no pruning is done.

5.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a learning
based algorithm (Kocsis and Szepesvéri, 2006;
Coulom, 2007), is considered a “major break-
through” in computer Go (Swiechowski et al.,
2021; Gelly et al., 2012; Silver et al., 2016). MCTS
is an uninformed search algorithm, which means
that it is classified alongside well-known algo-
rithms such as breadth-first search, beam search,
and iterative deepening search. However, since
MCTS is based on learning, it has some of the ben-
efit of an informed search algorithm, such as A*
(Hart et al., 1968), without the burden of designing
or evaluating a heuristic function. Essentially, it
learns its heuristic by sampling sequences of ac-
tions. For our specific search problem, designing an
A* heuristic that works well with all of our search
actions (especially unfold and rule elimination) is
challenging. We discuss our choice further in §5.5.

The application of MCTS to graph search is sum-
marized in Fig. 3. For thorough surveys on MCTS,
we refer the reader to the surveys by Swiechowski
et al. (2021) and Browne et al. (2012).

MCTS searches by estimating the expected cost-

to-go for taking action a in a given state s, %((‘:Z))

where ¢(s, a) is the total cost of previous attempts

"In our experiments, we break ties encountered on line 9
by comparing programs according to following sort key:
(d1,...,dn) where d; is " largest in the program with N
rules. This comparison has the benefit that it will minimize
lower degree terms as well, which may better guide search.

1. def mcts(so, C, R):
2. mode < explore
repeat R times: mets’(so)
mode < deploy
5. return mcts’(so)
6. def mets’ (s):
7. > Terminal state, return cost and final state
5. if s € T : return (s, cost(s))
0. a<+ m(s)
0 > Transition to new state
. (s*,c) < mets’ (transition(s, a))
2. update(s, a, ¢)
. return (s, c)
. def (s, A):
s, ifn(s)=0:
6. return mo ()
7. else if mode = explore :

18 return argmin, . 4 Tf?(i‘;)) -4/ l(nig(ffj)>

. else > Deploy mode
20. return argmax,. 4 1(s,a)

> Novel state, follow initial policy

>1. def update(s, a, ¢):
2. > Update MCTS statistics after observing cost
3. ¢(s,a) +=c;n(s,a) +=1;7n(s) +=1

Figure 3: Search algorithm

of action a, and n(s, a) is the total number of such
attempts. In order to learn a policy 7 that maps
states to actions, MCTS selects the action a in state
s that minimizes the lower-confidence bound,

ey

In state s, MCTS chooses the action a that mini-
mizes (1). This bound treats actions optimistically
in the face of uncertainty: if an action in state s has
been under-explored, its cost might be rather lower
than the noisy average cost observed for it so far,
and so MCTS may be willing to try it again.

The constant C' > 0 is a tunable constant that
controls the exploration—exploitation tradeoff.!? If
n(s,a) = 0, the lower confidence bound is de-
fined to be —o0; thus, novel actions are always
explored if there are any. In this paper, we use
MCTS as a batch search algorithm. That is why
the top-level MCTS routine includes a repeat-loop
(line 3) and switches the policy into deployment
mode (line 4). Notice that when the policy is in
deployment mode, it exploits by selecting the most
frequently explored action (line 20).'* Lastly, we
note if MCTS is run for sufficiently long and the

"In our experiments, we set C' to equal the degree of the
initial program. This is close to the theoretical requirement of
an upper bound on the range (max - min) of the cost function.

It is also reasonable to use the action with the lowest
estimated cost. However, this choice is less stable in practice.
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constant C' is set appropriately, it will converge to
an optimal transformation sequence (Kocsis and
Szepesvari, 2006).

Initial Policy Design MCTS can be greatly sped
up using the following strategy: on the first visit
to a state (i.e., n(s) = 0), we redirect control to
an initial policy 7 rather than uninformed explo-
ration (that which results from following the lower
confidence bound). This results in a sensible initial
value for the cost-to-go estimate. For our initial
policy, we randomly fold all rules until there are no
more fold actions available.

5.4 Refinements to the Search Graph

In the sections describing each of the transforms,
we discussed conditions for the transforms to be
valid. The basic version of the search graph would
simply say that all valid transforms from §4 are
available at all times. However, that would ignore
some useful problem structure. In this section, we
propose two refinements to the search space: rule
to-do lists and macro folding. We validate their
empirical utility in §6.

Rule to-do list. Each of the transforms we
consider is centered around a specific rule in
the current version of the transformed program.
Applying transforms to rules r and 7’ in either
order will get the same result if neither transform
makes the other one impossible. Thus, we consider
transforms in a canonical order. Each state will
now consist of a program together with to-do list
of rules that can still be transformed. The possible
actions at that state consist of either removing the
top rule r from the list (declining to transform r)
or applying a program transform (fold, unfold, or
elimination) that is centered on . Applying such
a transform may delete and/or add program rules,
which are correspondingly deleted from the list
and/or added at the bottom of the list. (If the list is
empty, no more actions are possible.) This design
reduces the branching factor by a factor of the
number of rules, and improves the sharing of statis-
tics at nodes in the MCTS search tree. Of course, a
potential downside is that it makes the search tree
deeper by a factor of the number of rules.

Macro folding. Our most important refinement
is to use macro folding actions. These actions will
take a given rule r and completely fold it inde-
pendently from the main program allowing us to
memoize it. More precisely, macro-folding runs the

program containing the single rule r through search
Py, +— searchioid-onty([7]), and then merges the so-
lution into the main program, (P — r) U P... Macro
folding provides an exponential reduction in the
size of the search space because it allows any given
rule to be optimized by folding independently of
the other rules in the program. Thus, if a given rule
appears in multiple program variants, we can re-use
knowledge acquired from folding it in other con-
texts to fold it in the current context—analogous
to memoizing the best folding sequence for each
rule. The macro folding action is implemented in
our graph search instance as yet another action.'#
However, unlike the other transforms, macro
folding is useful to memoize as it is reusable across
many of the programs explored during search.

5.5 Discussion

Our goal in this work was to exhibit a working
method (not necessarily the best one). But since
our search problem is just graph search, why not
simply use a classical method like A* (Hart et al.,
1968)? The challenge is in designing an admissible
and effective A* heuristic. The role of the heuristic
is to approximate lookahead. MCTS does not
need a hand-designed heuristic because it instead
performs lookahead by actual rollouts. The average
cost of these rollouts is still only an approximation
of the optimal cost-to-go, because the rollouts use
the current exploration policy—but it approaches
the optimal cost-to-go as the algorithm continues
to run. MCTS has been previously used for graph
search (Wang et al., 2020; Negrinho et al., 2019).

Could an A* heuristic be designed in our setting?
There are many good search heuristics (e.g., Gogate
and Dechter (2004)) in the special case where only
folding actions are allowed. However, for unfold
and rule elimination, the heuristics are difficult to
derive. The challenge with these actions is that they
are always uphill moves with delayed benefits: it
is often the case that we require several unfolds,
each increasing the degree, followed by several
(potentially tricky) folds.

6 Experiments

The goal of this paper was to devise a system for
automatically improving typical dynamic program-
ming problems. To evaluate whether we achieved
this goal, we devised a set of unit tests and stress

“When we enable macro folding in our experiments, we
disable the basic fold action since they are redundant.
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avg rel degree % optimal
benchmark beam mcts beam mcts
bar-hillel 1.00 1.00 100 100

bilexical-labeled 0.97 1.00 90 100
bilexical-unlabeled 1.00 0.99 100 90

chain-10 1.00 1.00 100 100
chain-20 1.00  1.00 100 100
chain-expect 1.00 1.00 100 100
cky+grammar 0.74  0.68 40 40
cky3 099  0.99 90 90
cky4 097  0.96 90 80
edit 1.00  0.99 100 90
hmm 1.00  1.00 100 100
itg 098  0.95 90 60
path 1.00  1.00 100 100
semi-markov 1.00 1.00 100 100
split-head 099  0.99 90 90

Table 1: Experimental results for stress test experi-
ments. Each row is a class of 10 randomly constructed,
semantically equivalent input programs. ¢ % optimal:
the percentage of the 10 random programs for which
we find the optimal degree within the search budget
(R = 300K iterations for MCTS, B = 1000 for beam
search). In many rows, this is 100%. However, in
some recursive cases with two or more recursive sub-
goals, the randomly applied unfolds make the programs
very big, which makes them difficult to optimize. Both
methods performed poorly on the cky+grammar bench-
mark, which is by far the longest program we consider
as it contains 35 rules in its original form. e Aver-
age relative degree: The relative degree achieved by
search, averaged over the 10 random programs. We see
that this metric follows the same trend as % optimal.
* Overall, we see a small but consistent improvement
of beam_search over mcts (under both metrics), except on
bilexical-labeled.

tests to see how well our proposed approach works.

Unit tests. Our unit tests include most of the faux
pas mentioned in §1; the precise set of programs
is provided in App. A. However, recovering these
instances is relatively easy as they typically only re-
quire a few fold transformations. Thus, they are not
a good stress test for our automated system. In all
of our test cases, we know the optimal degree, and
we have verified that both MCTS (with R = 100
iterations) and beam search (with a beam of size
B = 10) successfully find it within a few seconds.

Stress tests. The inspiration for our stress tests
is to imagine that a naive programmer produces a
suboptimal program. For example, they may have
chosen the poor variable-elimination order in Ex-
ample 6, and, now, we would like to “undo” their
handiwork via unfold, elimination, and fold. We
operationalize such a naive programmer by imag-
ing that they have applied a sequence of random

search B todo macro avgreldeg % optimal

beam 100 - - 96 87
+ 93 75

+ 97 93

1000 - - 90 74

+ - 94 77

+ 98 93

mcts - - 97 83
+ - 96 80

+ + 97 89

Table 2: Ablation of search-space refinements. Like
Table 1, we show % optimal and average relative de-
gree, except here we average together all benchmarks
to see an overall picture. The rows are labeled by their
search method and whether that search method oper-
ates on a search graph with a to-do list and/or macro
folding. Overall, we see that the proposed refinements
improve overall performance under both metrics, ex-
cept that smaller beams are disadvantaged by the in-
creased depth of the to-do list refinement. When the
macro folds are added to the small beam, performance
hits the same peak as the system with a larger beam.

folds and unfolds to a starting point program. More
precisely, for each program Py in our unit test suite
with known optimal degree d*, we generate an inef-
ficient variant P; for search to improve. The variant
‘P1 is generated by applying a random sequence of
transformations to Py, but we reject P; if the opti-
mal degree d* can be “trivially”” achieved by apply-
ing the greedy fold-only algorithm to P;. The re-
sults of this experiment are summarized in Table 1.

We compare the search algorithms according to
the percentage of stress tests that they are able to
solve optimally. We also consider the relative de-

gree, i.c., the fraction of the possible improvement
degree(P1 ) —degree(P)

that was actually achieved: degree(P1)—d"

Ablation analysis. We explore the utility of our
propose search space refinements (§5.4) in Table 2.

7 Conclusion

We have presented a system for automatically
analyzing and improving dynamic programming al-
gorithms. Expressing those algorithms in the Dyna
programming language allows us to successively
apply program transformations introduced by Eis-
ner and Blatz (2007). We showed that Monte Carlo
tree search and beam search allows us to automat-
ically discover asymptotically faster algorithms.
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A Programs Used for Experiments

A.1 Chain Structures (chain-10, chain-20)

Chain structures are common in NLP as they model interaction between adjacent words or label in a
sequence (e.g., Lafferty et al. (2001)).
The chain-N programs are adaptations of Example 1,

1oz A= w(Ye,Y2) x w(Y2,Y3) * w(Ys,Ya) * w(VYq,Ys5).
which is for the specific case of length 4, to have length N. The original program’s degree is N. The
optimal degree for chains is 2 regardless of N.

A.2 Projective Dependency Parsing

This program performs a version of CKY (App. A.3) where the non-terminals have been lexically
annotated with their head word. In contrast to CKY’s O (n3) runtime, the original presentation of this
algorithm ran in O (n5) (Collins, 1996). In subsequent work Eisner and Satta (1999) gave a faster version
of the algorithm that runs in O (n4).

A.2.1 Bilexical Unlabeled (bilexical-unlabeled)

1 phrase(I,H,K) += phrase(I,H,J) * phrase(J,H',K) x score(H,H', left).

> phrase(I,H',K) += phrase(I,H,J) * phrase(J,H',K) * score(H,H',right).
3 phrase(I,I,K) += word(I,I, K).

4 goal += phrase(0,_,N) * len(N).

5 input word(_,_,_); len(.); score(_,_,_).

6 output goal

Degree: 5. Optimal: 4.
A.2.2 Bilexical Labeled (bilexical-labeled)

Extends bilexical-unlabeled with labels (i.e., grammar relations).

1 % 0 right children so far

> rconstit(X,H,I,K) += rewrite(X,H) * word(H,I,K).

3 % add right child

4 rconstit(X,H,I,K) += rewrite(X,H,Y,H,Z,H") * rconstit(Y,H,I,J) * constit(Z,H',J,K).
5 % 0 left children so far

6 constit(X,H,I,K) += rconstit(X,H,I,K).

7 % add left child

g8 constit(X,H,I,K) += rewrite(X,H,Y,H",Z,H) * constit(Y,H',I,J) * constit(Z,H,J,K).
9 goal += constit(s,H,@,N) x len(N).

10 input word(_,_,_); len( ); rewrite(_,_,_,_,_,_).

11 output goal.

Degree: 8. Optimal: 7.

A.2.3 Split-Head-Factored (split-head)

References: (Johnson, 2007; Eisner and Blatz, 2007)

1 goal += x(0,_,N) x len(N).

% words are "duplicated” as in Johnson (2007).

1(I,K) += word(left,I, K).

4 r(I,K) += word(right,I,K).

5 % (I, K) is a span with K as the head

6 1(I,K) += x(I,V,J) * 1(J,K) * score(left, V, K). %V =>K
7 % (I, K) is a span with I as the head

8 r(I,K) += r(I1,J) * x(J,V,K) % score(right, V, I). % I <=V
9 % J is the head of 1(I, J) and J is the head of r(J, K)

0 x(I,J,K) += 1(1,7) * r(J,K).

11 input word(_,_,_); score(_,_,_). len()).

12 output goal( ).

Degree: 4, Optimal: 3.

A3 CKY
The following programs are variants of CKY (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965;
Lange and Leif3, 2009; Eisner and Blatz, 2007; Tomita, 1985, 1991; Johnson, 1989; Baker, 1979; Jelinek,
1985). We briefly discussed CKY in Example 3 of the main text.
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A3.1 CKY (cky3)

1 BOGILK) += (X, Y,Z) * B(Y,I1,T) * phrase(Z,J,K).
2 BOGILK) = (X, Y) * B(Y,I,K).

3 B(X,IL,K) += ~v(X,Y) * word(Y,I,K).

.z += fB(root, @, N) x len(N).

5 input word(W,I,K); len(N); ~v(X,Y,Z); ~v(X,Y)

6 output z

Degree: 6, Optimal: 5.
A.3.2 CKY with 4-ary Productions (cky4)

The following program implements Tomita (1985)’s algorithm where the grammar can have a production
rule of length up to 4. It is a simple modification to CKY4. We just add the following rule, and input
declaration.

7 phrase(X,I1,14) += 7(X,Y1,Y2,Ys) * phrase(Y1,I1,12) * phrase(Y2,12,13) % phrase(Ys,13,14).
g input v(X,Y1,Y2,Ys3)

Degree: 7, Optimal: 6.
A.3.3 CKY with a Fixed Grammar (CKY+grammar)

For CKY+grammar, we use CKY3, but we remove the input declaration for -y and declare the following
grammar for the program to specialize to.

o y("S", "NP", "VP") += 1.0.
10 y("NP", "Det”, "N") += 1.0.
1 y("NP", "NP", "PP") += 1.0.
oy ("VP", "V, UNP") += 1.0.
13 y("VP", "V") += 1.0.

4 y("VP", "VP", "PP") += 1.0.
15 ~("PP", "P", "NP") += 1.0.
6 ("<, ") += 1.0,

17 y("NP", "Papa”) += 1.0.

18 y("N", "caviar") += 1.0.

19 y("N", "spoon") += 1.0.

20 y("N", "fork") += 1.0.

21 y("N", "telescope”) += 1.0.
2 y("N", "boy") += 1.0.

23 y("N", "girl™) +=1.0.

24 y("N", "baby") += 1.0.

25 y("N”, "man”) += 1.0.

26 y("N", "woman") += 1.0.

27 y("N", "moon") += 1.0.

% y("N", "cat”) += 1.0.

v "V, "ate”) += 1.0.

30 y("V", "saw") += 1.0.
stoy("V", "fed”) += 1.0.

2 y("V", "said") += 1.0.

3 y("V", "jumped”) += 1.0.

34 y("P", "with") += 1.0.

35 y("P", "over") +=1.0.

36 y("P", "under") += 1.0.

37 y("P", "above") += 1.0.

s y("P", "below") += 1.0.

39 y("P", "on") += 1.0.

40  ~("P", "in") += 1.0.

Degree: 6, Optimal: 3.

A.3.4 Inversion Transduction Grammars (itg)

Inversion transduction grammars were introduced by Wu (1996), who gave an O (n7) algorithm, which
was later sped up to O (n6) by Huang et al. (2005). The model is one that simultaneously parses a pair of
related sentences—typically a target language sentence and a source language sentence as in machine
translation. The model allows for a restricted form of syntactic reordering of phrases called inversion.

1 constit(A,I,K,I",K") += word(X,I,K) * word'(X',I',K') * transduce(A,X,X").
> constit(A,I,K,I',K'") += constit(B,I,J,I',J') * constit(C,J,K,J',K') * rewrites(A,B,C).
constit(A,I,K,I',K') += constit(B,J,K,I',J') * constit(C,I,J,J',K') * rewrites_inv(A,B,C).
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4 goal += constit("A",0,M,0,N) *x lenM,N).
5 input word(_,_,_); word'(_,_,_); transduce(_,_,_); rewrites(_,_,_); rewrites_inv(_,_,_); len_,_).
6 output goal.

Degree: 9, Optimal: 8.
A.4 Edit Distance (edit)

The following program implements a weighted generalized monotonic alignment between two sequences
word and word’. It is essentially the well-known Levenstein distance (Levenshtein, 1966).

1 align(0,0) min= 1.
align(J,J') min= align(I,I') * word(W,I,J) * word'(W',I',J') * score(W,W").

VRN

align(I,J') min= align(I,I") * word'(W',I',J') % score(e,W").
4 align(J,I') min= align(I,I') * word(W,I,J) * score(W,e).
5 goal min= align(N,N') * len(N) * len'(N").
6 input word(_,_,_); word'(_,_,_); score(_,_); len(L); len'(L).

7 output goal.
Degree 6, Optimal: 4.

A.5 Bar-Hillel Construction (bar-hillel)

The following program implements a parser for (weighted) intersection of a context-free parser and a
bigram model on the part-of-speed sequences. It is essentially Bar-Hillel et al. (1961)’s construction of a
context-free language that accepts the intersection of a regular language and a context-free language.

I goal += B(0,_,root,_,N) * len(N).

> B(I,AX,D,K) += B(I,A,Y,B,J) * B(J,C,Z,D,K) * y(X,Y,Z) * bigram(B,C).

3 BT, XXX, K) += tag(X,W) * word(W,I,K).

4+ 1input len(_); word(_,_,_); bigram(_,_); v(_,_,.); tag(,-).

5 output goal.

Degree 10, Optimal: 8.

A.6 Expectations under a Linear-Chain Conditional Random Field (chain-expect)

This example implements the inside-outside speedup (Li and Eisner, 2009) for computing the expectation
of an additively decomposable function f : S x S’ — R over randomly drawn sequences from a weighted
graph (e.g., a conditional random field (Lafferty et al., 2001)). The graph is specified as a collection
of weights w, as well as start and end nodes. The relations « and 5 implement the forward-backward
algorithm (discussed in Rabiner (1989)), and z is the normalization constant of the distribution. The
expectation of the i dimension of f is fbar(I)/z.

1 % forward algorithm

a(S) += start(S).

a(S') += a(S) * w(s,S").

4 % backward algorithm

s [B(S) += end(S).

o B(S) +=w(5,S") * B(S").

7 % normalization constant

8z += a(S) * end(S).

9 % unnormalized expected value via inside-outside speedup
10 fbar(R) += a(S) * w(S,S') * B(S') * r(S,S',R).
11 input w(_,_); r(_,_,_); start(l); end( ).

12 output fbar(l). z.

VRN

Degree 3, Optimal: 3.
A.7 Hidden Markov Models (hmm)

Hidden Markov models (HMMs) are the generative and locally normalized analogue of CRFs, which are
discussed in App. A.6. Rabiner (1989) provides a classic tutorial.

1 v(Q,start) += 1.

> v(T",Y") += v(T,Y) * emission(Y,X) * transition(Y,Y') * obs(T,X,T"').
3 goal += v(N,stop) * len(N).

4 input obs(_,_,_); len(.); emission(_,_); transition(_,_).

5 output goal.

Degree 5, Optimal: 4.
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A.8 Semi-Markov Model (semi-markov)

The a semi-Markov model (Sarawagi and Cohen, 2004) generalizes a Markov model to score spans rather
than individual words. In terms of runtime, one can perform inference in a Markov model in O(n) time
(omitting dependence on the number of tags). In contrast, inference in a semi-Markov model takes O (n2)
I B(start, @) += 1.

BCY, J) += B(X, I) * transition(X, Y) % chunk(Y, I, J).

goal += B(_, N) x len(N).
. input transition(_,_); chunk(_, _, _); len(l).

output goal.

Degree 4, Optimal: 3.

A.9 Most Probable Path (path)

Example 2 of the main text briefly discussed the most-probable path algorithm (Viterbi, 1967). We give a
slightly more general version here that finds the most probable path from a set of start states to a set of
end states.

1 v(S) max= start(S).
v(S') max= v(S) * w(S, S').
3 goal max= v(S) * stop(S).
4 input w(_,_); start(.); stop(l).
5 output goal.

Degree 2, Optimal: 2.
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B Pseudocode for Program Transformations

In this section, we will make more extensive use of manipulations of terms. Terms can be equated
with—or, matched against—other terms via structural equality constraints (Herbrand, 1930; Robinson,
1965; Martelli and Montanari, 1982; Knight, 1989), which are denoted by the equality operator, e.g., f(X)
= f(3). Systems of structural equality constraints have a unique minimal solution (up to variable renaming)
when a solution exists, known as the most general unifier. For example, f(Y,2) = f(g(X),4) has the solution
{Y = g(X), Z — 4}, whereas f(X,g(X)) = f(3,g(4)) has no solutions (is unsatisfiable). We assume access
to a subroutine unify that can find a substitution mapping @ to that makes the terms equal, or returns
0 = () if no substitution exists. For example, unify(£(Y,z), £(g(x),4)) — 0 ={y — g(x),z — 4}. We
can apply the substitution with subst(£(Y,z), 8) =1£(g(x), 4). We will make use of the following utility
method: fresh(z) — 2’ which returns a term 2, which denotes the same set as the term x, but has distinct
variable names, vars(z)Nvars(z’) = (). This operation is useful to prevent variable naming conflicts. For
example, fresh(£(g(x), X)) =£(g(X«), X«) where X, is a novel variable name.

. def fold(P, i, a):

2. D input: rule index 1, subgoal indices to fold into a new subgoal c.

v (hP=b1®...Qbg) « P

4. ﬁ — {1, o ,K} N O > Remaining factors

s {X1,..., XK} < vars(bs) ~\ (vars(bg) Uvars(h))

6. D> Generate a new relation with a unique name, provided by the gensym() utility method. Note that the ordering
of the arguments is arbitrary, but it is important for it to be used consistently.

7 gen, < gensym()

s b+ gen,(X1,... Xk)

o PP > Copy rules
0 Pie (h &= W@ [ljep bj)
. P’.append (h/ D= Hjea bj) > Add new rule that defines h'

o return P’

. def unfold(P, i, k):

» (h@=b1®...®bk) «+ P;
+ P« remove(P,1)

o forj=1...|P|:

S}

5. > In the case of recursion, we rename variables in s’ to avoid variable-name collisions.
6 s < fresh(P;) if i = j else P;

7. > Solve for a substitution to make the head match h

8 6 « unify(head(s), by)

9. if @ = () : continue

10. > Copy rule body
1. r (h b= b1®---®bk71®b°dY(3)®bk+1®'"®bK>
12. > Apply substitution; copy rule

. P’ + P’ U {fresh(subst(r’, 0))}
. return P’
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.. def eliminate(P, s):

> Transform assumes that all rules are range-restricted.
5. P < linearize(P, head(s))

4. P[]

s forr’ e P

6. r < fresh(r’) if 1 is s else
7 count=0

8. (h®=b1®...Rbg) <7

9 fori=1...k:
10. 0 < unify(head(s), b;)

1 if 6 75 @ :

. count += 1

13, "+ (hB=b1®...R®b;_1® body(s) @b;11® ... Rby)

14, P’ .append(fresh(subst(r’, 0)))

15 assert count > 1 > ensured by linearize on line 3
16. if 7’ is s : continue

17, P’ .append(r)

s return P’
The linearize utility method transforms a program with repeated subgoals. For example, it transforms
1 goal += £(X) * g(X,Y) * f(Y).
into the following equivalent program that that does not repeat the f subgoal—or, more precise, it does
not have any pair of subgoals that unify.
> goal += f(X) * g(X,Y) * gen(Y).

gen(Y) += f(Y).

This transformation is useful as pre-processing in the eliminate function, which assumes the there are no
repeated subgoals. If we do not want the entire program to be linearized, but just sufficiently linearize to
eliminate a specific rule, we can specify what term we want to be linear with respect to. This is used in
line 3 of the eliminate pseudocode.

. def linearize(P, z):

PP > copy rules
s fori=1...|P|:

4, (h@=b1®...®bK)<—Pi)

5. for;=1...K:

6 if unify(bj,z) = () : continue

7 fork =j+1... K:

8. if unify(b;, by) = () : continue
9 > fold subgoal k out of rule i

10. br(X1,...,Xp) < bg
1, gen, «+ gensym()

12. > replace by, with the gen. subgoal so that it won’t appear twice.
13, P!+ fresh(h ®=b1®...® geny(X1,...,X1) ®...@bk)
14, P’ .append(fresh(gen (X1, ..., X) ®=Dbg(X1,...,X1)))

s return P’
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