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Abstract

With the recent surge in social applications re-
lying on knowledge graphs, the need for tech-
niques to ensure fairness in KG based meth-
ods is becoming increasingly evident. Previ-
ous works have demonstrated that KGs are
prone to various social biases, and have pro-
posed multiple methods for debiasing them.
However, in such studies, the focus has been
on debiasing techniques, while the relations
to be debiased are specified manually by the
user. As manual specification is itself suscepti-
ble to human cognitive bias, there is a need for
a system capable of quantifying and exposing
biases, that can support more informed deci-
sions on what to debias. To address this gap
in the literature, we describe a framework for
identifying biases present in knowledge graph
embeddings, based on numerical bias metrics.
We illustrate the framework with three differ-
ent bias measures on the task of profession pre-
diction, and it can be flexibly extended to fur-
ther bias definitions and applications. The re-
lations flagged as biased can then be handed
to decision makers for judgement upon subse-
quent debiasing.

1 Introduction

Knowledge graphs (KGs) update and represent
world knowledge in a structured and scalable for-
mat. They are commonly embedded into lower
dimensional representations, namely knowledge
graph embeddings (KGEs), which have success-
fully been applied in diverse applications such as
personalized recommendations (Liu et al., 2019),
question answering (Huang et al., 2019), and en-
hancement of language modeling (Zhang et al.,
2019; Peters et al., 2019; Baumgartner et al., 2018).
Following the proliferation of social applications
relying on KGEs, the issue of fairness in KG based
methods is a growing concern.

∗The first two authors contributed equally.

Recent works show that KGEs are inclined to
manifest bias, and propose methods for debiasing
them (Fisher et al., 2020a; Arduini et al., 2020;
Bose and Hamilton, 2019). However, these works
implicitly assume that the relations to be debiased
are chosen by the practitioner without quantifica-
tion (e.g. based on social preconception), which
may result in a sub-optimal decision. Reaching
an informed decision on what to debias thus poses
a challenge, and there is currently no empirical,
data-driven method for identifying biased relations
in KGs. In lack of such a system, some potential
biases may go unnoticed while others are exagger-
ated.

In this paper we aim to fill this gap, and present
a framework for numerically identifying biases in
KGEs. Our goal is to facilitate decision making by
providing a table of bias scores on KG relations,
as well as to encourage exploratory research in
comprehending the nature of KGE biases. Practi-
cally, we describe and implement the framework
using three bias measures that we derive from bias
definitions from the domain of machine learning
fairness.1 The relations and their corresponding
bias scores can then guide practitioners when de-
ciding which relations to debias.

We experiment and evaluate our framework’s
feasibility by implementing it for three bias defini-
tions and applying it to the two benchmark datasets
FB15K-237 (Bordes et al., 2013) and Wikidata5m
(Wang et al., 2019).

2 Why Automatic Bias Detection?

2.1 Aptly Deciding what to Debias

Before debiasing a KGE, the user must choose
which relations to debias. However, there is cur-
rently no method for uncovering which relations
are prone to bias in a KG, and in previous works

1The code will be released at: https://github.com/
mianzg/kgbiasdetec
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this selection was done mostly manually. Such
manual selection of the relations to debias by the
user can in itself be biased; for instance, the bias
in a KG may potentially be rooted in non obvious
relations such as ZIP codes (Krieger et al., 2002)
or a person’s given name which can go unnoticed.
It is therefore imperative to measure biases across
a broad set of possibly sensitive relations, in an
extensive and empirical manner.

2.2 Identifying the Sources of Bias
Biases in KGEs can arise from multiple sources,
including the data collection process for the KG,
the chosen ontology, or the embedding method
(Janowicz et al., 2018). To help better understand
the sources of bias, our bias measurement frame-
work can be used to measure bias in different em-
beddings of the same KG. By doing so, we can
examine which biases are apparent or amplified in
certain embedding approaches, analyse whether the
embedding method affects bias, and infer which
biases are inherent to the KG itself. The output of
our framework opens the door to further studies
comparing biases across embedding methods and
KGs, and serves as a step towards uncovering the
bias sources.

2.3 Comparing Bias Types
Moreover, the machine learning literature includes
a range of bias and fairness definitions (Verma and
Rubin, 2018). By extracting bias scores that are
based on diverse bias definitions, we can empir-
ically compare and analyse the relationships and
correlations among them.

3 Our Framework for KGE Bias
Identification

In this section, we begin with an overview of three
specific bias measures we employ, which are de-
fined over the relations in a KG. We then provide
an overall description of our pipeline.

3.1 Preliminaries: Bias Measures
There is a multitude of definitions for fairness
and bias in the machine learning literature (Verma
and Rubin, 2018), and impossibility theorems
have shown that they cannot all be simultaneously
achieved (Saravanakumar, 2020; Kleinberg et al.,
2016). In our model, we implemented three dif-
ferent definitions of fairness, that we formally de-
scribe below. Our framework can be easily ex-
tended to additional fairness definitions.

The first two measures are Predictive and Demo-
graphic Parity (Mitchell et al., 2021; William Di-
eterich, 2016), both common fairness metrics,
which rely on a classification task. They measure
the bias of sensitive relations via classification on a
target relation. In our experiments, the classifier is
trained to predict the target relation “profession” in
order to measure bias in other relations.

Predictive Parity focuses on the classifier’s preci-
sion, whereas Demographic Parity is useful when
the underlying ground truth data is biased. These
metrics are not specific to KGs and we describe
below how their definition is extended to the KG
setting. The third measure, Translational Likeli-
hood Bias (TLB), is specifically tailored towards
KGEs (Fisher et al., 2020b). It leverages the score
function used in KGE training to update entity em-
beddings and compute bias.

Formally, a knowledge graph (KG) is a set of
facts represented by triples of the form (h, r, t) ∈
E ×R× E , where E denotes the set of entities and
R denotes the set of relations. Each triple (h, r, t)
has a head entity h, a relation r, and a tail entity
t, represented by embedding vectors. As we are
concerned with fairness, we focus on the sub-graph
containing solely human entities H, and their as-
sociated relations as RH. There may exist a set
of sensitive relations S ⊂ RH related to humans,
towards which we want to detect any biases. For
Predictive and Demographic Parity, we also assume
a classification task and a classifier which takes en-
tity embeddings as input, together with a relation
and predicts the corresponding tails. Lastly, we re-
fer s as a possibly sensitive relation in the following
definitions, and take it as binary for simplicity.

Demographic Parity A classifier satisfies demo-
graphic parity with respect to a sensitive relation
s, if the classifier’s predictions, denoted ŷ, are in-
dependent of s. Namely, demographic parity holds
if P[ŷ = a|s = 1] = P[ŷ = a|s = 0] for all
possible predictions a. We can then measure the
demographic parity distance (DPD) as

DPD(s, a) = |P [ŷ = a|s = 1]− P [ŷ = a|s = 0]|
(1)

We finally compute

DPD(s) =
∑
a

DPD(s, a) (2)

In the case of profession prediction, ŷ stands for
the predicted profession, and a stands for a pos-
sible profession. Intuitively, DPD measures how



Demographic Parity Distance ↑ Predictive Parity Distance ↑ Translational Likelihood ↑

TransE ComplEx DistMult RotatE TransE ComplEx DistMult RotatE TransE ComplEx DistMult RotatE

gender 0.127 0.177 0.191 0.182 0.037 0.008 0.012 0.01 1.566 0.047 0.208 0.010
languages 0.190 0.201 0.227 0.211 0.0 0.0 0.0 0.0 0.824 0.293 0.077 0.012
nationality 0.280 0.361 0.289 0.277 0.267 0.296 0.215 0.368 0.724 0.289 0.076 0.007

Table 1: Aggregated bias scores of three implemented measures when predicting profession in FB15K-237. The
arrow indicates the direction of larger bias. We measure the bias scores with respect to gender, languages, and
nationality across four different embedding methods. This table suggests an investigation into debiasing nationality,
as it has the highest bias scores in all embeddings.

much the sensitive relation affects classification,
and therefore depends on the data itself. For in-
stance, let the sensitive relation s represent “is-
Christian”. In this setting, if all photographers in
the KG were Christian, an accurate profession clas-
sifier would have a high DPD with respect to being
Christian, and a random one would have low DPD.
Namely, DPD rewards a classifier that is agnostic to
the sensitive relation, regardless of its performance.

Predictive Parity A classifier satisfies this def-
inition with respect to a sensitive relation s if its
precision is independent of s. Given a predicted
label a, the predictive parity distance (PPD) is then
defined as

PPD(s, a) = |P [y = a|ŷ = a, s = 1]

− P [y = a|ŷ = a, s = 0]|
(3)

We then compute

PPD(s) =
∑
a

PPD(s, a) (4)

Translational Likelihood KGEs are typically
trained using a score function φ that is unique to
the embedding method, and captures closeness be-
tween entities and relations in the embedding space.
According to Fisher et al. (2020b), we can directly
use such score functions to measure bias. Given a
triple (h, r, t), we obtain a translated triple (h′, r, t)
by performing a one-step gradient descent to up-
date the head entity embedding on a direction of
sensitive relation s. For instance, if s is gender,
we can translate the head entity h in the direction
of the entity “female” to obtain a new h′. The
translational likelihood bias is then calculated as
the difference in scores between the original and
translated triples on a target relation ri

TL(s, tri) = φ(h′, ri, tri)− φ(h, ri, tri) (5)

Following the example, a positive bias value in-
dicates that making h more “female” results in a

higher score for the tail occupation tri , and a neg-
ative bias value indicates that the new entity h′

scores worse on tri . A score closer to zero suggests
a relatively fairer relation, i.e. less bias.

Compared with DPD and PPD which are based
on a downstream classification task, TLB does not
require an external task to compute bias as it is
calculated directly from the KGE.

3.2 Score Aggregation

While the scores in section 3.1 can be used to cal-
culate bias for a binary sensitive relation, in prac-
tice, a sensitive relation s may have multiple tail
values t. In general, given a possibly sensitive
relation s, we are interested in a score function
biasagg(s) : RH → R that will summarise how
much bias there is towards s ∈ RH.

To generalize biasagg to the non-binary case, con-
sider a sensitive relation s and let t1, ...tn be all the
possible tails s can have. We aggregate the score
over ti;

biasagg(s) =
1

n

n∑
i=1

bias(s = ti) (6)

where bias(s = ti) is the bias with respect to hav-
ing tail ti with the relation s, and is calculated
according to the measure of choice.

3.3 Bias Detection Framework

The workflow of our framework allows the user to
specify a pre-trained KGE and a set of bias mea-
surements. In the case of DPD and PPD, the user
should also specify a classification task, namely the
target relation to be classified. For clarity, through-
out this paper we will consider profession to be
the classification target. The output of our model
is a table containing bias scores for each specified
relation and bias measurement. This provides users
with a ranking of relations according to their bias
scores, which can empirically inform decisions on
which relations to debias. After observing the bias



scores for each relation, the practitioner can choose
which ones to debias by according to their domain
knowledge. Furthermore, our tool offers a multi-
bias perspective for comparing bias across different
embeddings, and helps select the appropriate em-
beddings according to downstream applications.

4 Experiments

We applied our framework with the bias measure-
ments described in section 3.1 to evaluate bias on
two benchmark datasets; FB15k-237 (Bordes et al.,
2013) and Wikidata5m (Wang et al., 2019). Each
of the datasets was trained on four KGE methods
respectively; TransE, CompleEx, DistMult and Ro-
tatE. The embeddings for FB15K-237 were trained
using the entire dataset, through pykeen’s hyper-
parameter optimization pipeline. For Wikidata5m,
we use pre-trained embeddings from GraphVite2

(Zhu et al., 2019). To measure DPD and PPD, a
random forest classifier was trained on the task of
profession prediction in both datasets. We attempt
classification of the 5 and 10 most common profes-
sions in FB15K-237 and Wikidata5m respectively,
and relabel the rest as “OTHER”. A pre-processing
step was applied to remove any tails that appeared
less than 10 times in the test set.

4.1 Results

Table 1 compares all three bias measurements of
the three most common relations in the FB15k-237
dataset. We observe that across all embeddings,
the relation gender has the lowest DPD bias, and
nationality the highest bias in both DPD and PPD,
suggesting it may need debiasing. Moreover, no
PPD bias is detected for languages. The common
patterns across embeddings might imply that the bi-
ases do not arise from the embedding methods, but
are rather inherent to the data itself or to the classi-
fier. TLB presents a more mixed picture, with the
most biased relation varying between embeddings.
Since TLB is calculated using the score function
of the embedding model, it is likely to be more
sensitive to the KGE method.

The aggregated DPD and PPD bias scores on
Wikidata5m are shown in Table 2. The relation
portraying highest DPD on this dataset by a mar-
gin is position played on team/specialty, followed
by sport. While our framework would mark these

2the embeddings can be found at https:
//graphvite.io/docs/latest/pretrained_
model.html

two relations as biased according to DPD, the prac-
titioner might choose not to debias them, since
they are related to a person’s profession. Notably
the PPD for these two relations is low, further il-
lustrating the importance of offering a multi-bias
perspective for a more robust bias evaluation. On
the other hand, given name scores relatively high
on both DPD and PPD in most embeddings, and
can be considered an unwanted bias by the practi-
tioner, since a person’s given name should normally
not affect their occupation. Therefore, given these
scores, one may choose to only debias the relation
given name in Wikidata5m.

Lastly, we provide a qualitative example shown
in Table 3, presenting the disaggregated TLB bias
scores with respect to nationality in FB15k-237.
We display the five professions with highest TLB
with respect to England versus the United States,
the two most common tails for the relation national-
ity. At the fine-grained level, we notice a historical
stereotype might remain, where England associates
more with scientific occupations while the U.S. is
biased towards entertainment careers. Moreover,
the bias towards England appears lower, namely,
the highest TLB bias towards England is signifi-
cantly lower than the highest bias towards the U.S.
The disagreggated tables presenting TLB bias for
the other embedding methods and relations can be
found in the Appendix A.3.

5 Discussion

In this paper, we proposed a novel framework to
systematically identify, measure and inform biases
in knowledge graph embeddings (KGE). The con-
tribution of our model is to aid stakeholders and
practitioners with a quantitative approach to iden-
tify biased relations in the KGE. Since biases are
context- and culture-dependent, the final determi-
nation on what to debias may depend on the down-
stream task and is left to the practitioner. For ex-
ample, one would want to remove gender biases
from a question answering task about historical fig-
ures, while in medical related data, keeping gender
information can be valuable for proper diagnosis.

Our implementation provides the user with bias
scores rather than a binary decision. The choice
of which relations to debias is then to be done by
comparing the relative scores of relations in the KG,
combined with domain knowledge. In future work,
we would like to derive a threshold that can provide
users with a binary score (biased/unbiased) for each

https://graphvite.io/docs/latest/pretrained_model.html
https://graphvite.io/docs/latest/pretrained_model.html
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Demographic Parity Distance Predictive Parity Distance

TransE ComplEx RotatE DistMult TransE ComplEx RotatE DistMult

country of citizenship 0.53 0.55 0.54 0.52 0.07 0.08 0.09 0.07
given name 0.59 0.63 0.51 0.60 0.1 0.11 0.11 0.09
place of birth 0.52 0.51 0.47 0.51 0.06 0.08 0.02 0.06
sport 0.73 0.74 0.78 0.64 0.0 0.0 0.0 0.0
languages spoken 0.46 0.57 0.49 0.54 0.07 0.09 0.14 0.08
position played on team / speciality 1.21 1.26 1.24 1.11 0.06 0.14 0.14 0.12

Table 2: Bias scores for most the common relations in Wikidata5m under a profession prediction task. The relation
“position played on team/specialty” has the highest Demographic Parity Distance bias by a margin, which can be
explained by its direct relation to profession. We further note that bias patterns are similar across embeddings.

England U.S.

Mathematician 0.0160 Television director 0.0250
Biologist 0.0158 Television producer 0.0227
Football player 0.0133 Screenwriter 0.0222
Physician 0.0105 Radio personality 0.0214
Scientist 0.0100 Actor 0.0207

Table 3: Professions with the highest Translational
Likelihood Bias with respect to English versus U.S. na-
tionalities in FB15K-237, using the TransE embedding.

relation, possibly through a statistical significance
test. While a yes/no suggestion could save time and
target a broader range of users, a careful analysis is
required in order to define such a threshold without
incurring further biases.

In summary, our paper presents a framework for
quantifying bias in KGs, and by doing so identifies
useful avenues for future research, and opens the
possibility to compare various sources and defini-
tions of bias. Janowicz et al. (2018) raise the con-
cern that debiasing is not a neutral task, but rather
based on social norms and is at risk of becoming
censorship. By presenting a numerical method for
selecting which relations to debias, we aim to min-
imize these risks. We hope to have illuminated the
importance of identifying bias, as a complimentary
component to algorithms that mitigate it.
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A Appendix

A.1 Profession Classifier
We trained a random forest and an MLP classi-
fier to predict the occupations on the KGEs. On
random forest, we did hyperparameter search on
maximal depths in [3, 4, 5, 6] and batch sizes in
[100, 256, 500]. On FB15K-237, we chose the ran-
dom forest classifier with maximal depth of 4 and
balanced class weights and a batch size of 256 as
our final model, as it had the best performance. On
Wikidata5m we choose the MLP classifier. The ac-
curacy and balanced accuracy on classifying each
entity into 6 and 11 occupation classes on FB15K-
237 and Wikidata5M respectively are presented in
tables 4 and 5.

TransE ComplEx DistMult RotatE
accuracy 0.5 0.514 0.499 0.517

balanced accuracy 0.329 0.34 0.33 0.356

Table 4: Performance of the random forest classifier
on a 6 class classification task, predicting occupation
on FB15K-237.

TransE ComplEx DistMult RotatE
accuracy 0.7 0.67 0.68 0.63

balanced accuracy 0.61 0.55 0.55 0.44

Table 5: Performance of the MLP classifier on a 11
class classification task, predicting occupation on Wiki-
data5m.

A.2 Knowledge Graph Embeddings
For the purpose of this paper, we trained a
range of knowledge graph embedding models on
FB15K237. The hits@k scores of the embeddings
are listed in Table 6 below. We trained the em-
beddings through the hyperparameter optimization
pipeline of pykeen (Ali et al., 2020), or by using
the suggested parameters either from pykeen or
openKE (Han et al., 2018).

TransE ConvE ComplEx DistMult RotatE

hits@10 0.42 0.308 0.183 0.366 0.446
hits@3 0.271 0.175 0.183 0.219 0.289
hits@1 0.094 0.184 0.183 0.118 0.175

Table 6: Hit@k for the trained embeddings.

A.3 Translational Likelihood scores on
FB15K-237

Below we present the disaggregated Translational
Likelihood Bias (TLB) scores on FB15K-237, for
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the top three relations nationality, language, and
gender.

A.3.1 TransE

In Table 7 and 8, we provide results using TransE
embeddings on FB15k-237 dataset.

Male Female

Cinematographer 0.0367 Model 0.0157
Farmer 0.0365 Pin-up model 0.0131
Soldier 0.0346 Spokesperson 0.0077
/m/0196pc 0.0295 VJ 0.0044
Screenwriter 0.0288 Environmentalist 0.0022

Table 7: Male v.s. Female.
English Hindi

Model 0.0213 Stunt performer 0.0060
Author 0.0205 Music Director 0.0054
Singer-songwriter 0.0199 Prime Minister of Canada 0.0008
Designer 0.0199 Politician 0.0002
Spokesperson 0.0189 Storyboard artist -0.0008

Table 8: English language v.s. Hindi language.

A.3.2 ComplEx

In Table 9, 10 and 11, we provide results using
ComplEx embeddings on FB15k-237 dataset.

Male Female

Football Player 0.0006 Television Producer 0.0015
Politician 0.0003 Comedian 0.0014
Lawyer 0.0002 Prime Minister of Canada 0.0014
Architect 0.0002 Television director 0.0013
Mathematician 0.0002 Dub Actor 0.0012

Table 9: Male v.s. Female.
English Hindi

Make-up artist -0.0021 Theatrical producer 0.0046
Production sound mixer -0.0021 Supermodel 0.0046
Art Director -0.0024 Music video director 0.0045
/m/089fss -0.0025 VJ 0.0045
Football player -0.0025 Pin-up model 0.0045

Table 10: English language v.s. Hindi language.

England U.S.

Architect 0.0047 Production sound mixer -0.0012
Mathematician 0.0046 Make-up artist -0.0012
Scientist 0.0046 Voice Actor -0.0017
Critic 0.0046 Art Director -0.0017
Inventor 0.0046 Television producer -0.0018

Table 11: England v.s. U.S..

A.3.3 DistMult
In Table 12, 13 and 14, we provide results using
DistMult embeddings on FB15k-237 dataset.

Male Female

/m/0196pc 0.0054 Pin-up model 0.0067
Cinematographer 0.005 Model 0.0059
Soldier 0.0049 Supermodel 0.0043
/m/01c8w0 0.0049 /m/064xm0 0.0026
Mathematician 0.0046 Prime Minister of Canada 0.0024

Table 12: Male v.s. Female.

English Hindi

Author 0.0021 /m/028kk_ 0.0005
Artist 0.002 Costume designer 0.0005
Actor 0.0019 Audio engineer 0.0002
/m/0np9r 0.0019 Cinematographer 0.0002
Spokesperson 0.0019 Prime Minister of Canada 0.0002

Table 13: English language v.s. Hindi language.

England U.S.

Physician 0.0013 /m/0196pc 0.0024
Mathematician 0.0013 Screenwriter 0.0022
Scientist 0.001 Radio personality 0.0022
/m/0q04f 0.0009 /m/02krf9 0.0021
Football player 0.0008 Animator 0.002

Table 14: England v.s. U.S.

A.3.4 RotatE
In Tables 15, 16 and 17, we provide results using
RotatE embeddings on FB15k-237 dataset.



Male Female

/m/0196pc 0.0002 Model 0.0002
Cinematographer 0.0002 Pin-up model 0.0002
Inventor 0.0002 Supermodel 0.0002
/m/01c8w0 0.0002 Spokesperson 0.0001
Composer 0.0002 VJ 0.0001

Table 15: Top 5 biased professions in terms of gender.
English Hindi

Theatrical producer 0.0002 /m/01tkqy 0.0
Spokesperson 0.0002 Politician 0.0
Author 0.0002 Prime Minister of Canada 0.0
Musician 0.0002 /m/028kk_ 0.0
Singer-songwriter 0.0002 Football player -0.0001

Table 16: Top 5 biased professions: English language
v.s. Hindi language.

England U.S.

Biologist 0.0001 Attorneys in the United States 0.0002
Mathematician 0.0001 /m/0196pc 0.0002
Football player 0.0001 Music executive 0.0002
Physician 0.0001 Television producer 0.0002
/m/0q04f 0.0001 Businessperson 0.0002

Table 17: Top 5 biased professions.


