
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3765–3772
November 7–11, 2021. ©2021 Association for Computational Linguistics

3765

Sequence-to-Lattice Models for Fast Translation

Yuntian Deng
Harvard University

dengyuntian@seas.harvard.edu

Alexander M. Rush
Cornell University

arush@cornell.edu

Abstract

Non-autoregressive machine translation (NAT)
approaches enable fast generation by utilizing
parallelizable generative processes. The re-
maining bottleneck in these models is their de-
coder layers; unfortunately unlike in autore-
gressive models (Kasai et al., 2020), remov-
ing decoder layers from NAT models signif-
icantly degrades accuracy. This work pro-
poses a sequence-to-lattice model that replaces
the decoder with a search lattice. Our ap-
proach first constructs a candidate lattice us-
ing efficient lookup operations, generates lat-
tice scores from a deep encoder, and finally
finds the best path using dynamic program-
ming. Experiments on three machine transla-
tion datasets show that our method is faster
than past non-autoregressive generation ap-
proaches, and more accurate than naively re-
ducing the number of decoder layers.

1 Introduction

Non-autoregressive (NAT) machine translation (Gu
et al., 2017) provides multi-fold speedups com-
pared to sequential generation by parallelizing com-
putation across positions. NAT models are of-
ten compared to autoregressive models with deep
architectures. However, autoregressive models
themselves also admit structural changes that can
give large speedups, for instance using shallow
decoders (Kasai et al., 2020) or pruning the per sen-
tence vocabulary (Jean et al., 2014). Unfortunately
porting these structural changes to NAT models sig-
nificantly hurts accuracy, reducing their benefits.

This work proposes a sequence-to-lattice for-
mulation for translation that yields the benefits
of non-autoregressive translation while reducing
the practical costs of deep decoder models. The
method first constructs a candidate target lattice
based on the source sentence using a variant of
IBM Model 2 (Brown et al., 1993). Then each
lattice edge is scored based on an encoder head. Fi-

nally, exact inference is performed with the Viterbi
algorithm (Forney, 1973).

Experiments on machine translation bench-
marks show that this simple approach achieves
fast translation without requiring an ensemble of
different approaches. Our code, models, and
logs are available at https://github.com/
harvardnlp/cascaded-generation.

2 Related Work

Gu et al. (2017) proposed the task of non-
autoregressive machine translation, and since then
there have been many followup works (Lee et al.,
2018, inter alia). Among these works, a line of
research using structured prediction models is par-
ticularly relevant to our approach: Sun et al. (2019)
proposed to use a first-order conditional random
field (CRF) (Lafferty et al., 2001) to model the
dependencies among adjacent target tokens; Deng
and Rush (2020) used a cascaded decoding pro-
cedure to extend to higher-order CRFs; Su et al.
(2021) used BERT to produce the transition scores
of a first-order CRF to leverage pretraining. Our ap-
proach builds on this line of research but differs in
two aspects: first, we use an efficient count-based
model to construct the candidate lattice; second,
we show that the sequence-to-lattice formulation
allows using many fewer lattice scorer layers.

Many prior works have considered the problem
of reducing the vocabulary for efficient machine
translation (Jean et al., 2014; Mi et al., 2016; Shi
and Knight, 2017; L’Hostis et al., 2016). The most
common approach is based on the intuition that
each source word can only be translated into a
small set of target words, such that taking their
union gives us a reduced vocabulary. In order to
find which words each source word translates into,
simple statistical models (Dyer et al., 2013) are
usually used to get alignments. In this work, we
also use a variant of IBM Model 2 to reduce the size
of target-side vocabularies, but instead of finding a

https://github.com/harvardnlp/cascaded-generation
https://github.com/harvardnlp/cascaded-generation

3766

reduced target vocabulary per sentence, our method
finds a reduced target vocabulary per position.

3 Approach

Our method formulates translation as a first-order
conditional Markov model. Given a source sen-
tence x = x1, · · · , xS , the goal of translation is to
produce the best target sentence y = y1, · · · , yT
under:

P (y|x, T) =
T∏
t=1

Pθ(yt|yt−1, t, x).

The full set of translations can be compactly rep-
resented as a lattice where each edge score corre-
sponds to Pθ(yt|yt−1, t, x).

Once a lattice is constructed and scored, the best
translation can be computed using the Viterbi al-
gorithm (Forney, 1973). However, the lattice is
quadratic in the vocabulary size. In order to make
this approach efficient, we need to specify how to:
a) generate a tractable lattice, b) score the edges,
and c) parallelize the process.

Candidate Lattice Construction To generate a
candidate lattice, we propose a simple statistical
model. We introduce latent alignments a from tar-
get to source (at ∈ {1, · · · , S}) and factorize the
joint distribution of alignments and target, condi-
tioned on source as,

P (a, y|x) =
T∏
t=1

P (yt|x, at)P (at|x).

We make the simplifying assumption to use rela-
tive positions P (yt|x, at) ≈ P (yt|xat , at− t), and
to ignore the source words in the alignment prior
P (at|x) ≈ P (at|S, t), yielding,

P (a, y|x) =

T∏
t=1

P (yt|xat , at − t)P (at|S, t).

Marginalizing over latent variable a, we have

P (y|x) =
T∏
t=1

∑
at

P (yt|xat , at − t)P (at|S, t),

which implies,

P (yt|x, t) =
∑
at

P (yt|xat , at − t)P (at|S, t).

Using this equation we can very efficiently generate
a position-aware candidate lattice where at each

position we keep the top K words with the highest
P (yt|x, t) values. This produces a lattice of size
K2. To train P (yt|xat , at − t) and P (at|S, t), we
use count-based MLE (without smoothing) with
supervised alignments a estimated using FastAlign
(Dyer et al., 2013).

Lattice Scoring To combine the best of proba-
bilistic modeling and neural networks, we use a
transformer (Vaswani et al., 2017) to parameterize
Pθ(yt|yt−1, t, x). We first encode x into a memory
bank using a normal transformer encoder, then we
use a single-layer head to produce Pθ(yt|yt−1, t, x)
for all K values of yt−1 while attending to the
memory bank and the target position. Transform-
ers are very suitable for this purpose because at
training, we only need to modify the standard au-
toregressive decoder self-attention masks to learn
Pθ(yt|yt−1, t, x).

Parallelization A major benefit of NAT is the
ability to parallelize the model. In our approach,
each neural computation of Pθ(yt|yt−1, t, x) can
be done in parallel using shared encoder represen-
tations. The only sequential part in our approach
is the Viterbi algorithm, which is not a bottleneck
in practice.1 For long T , this approach can be fur-
ther parallelized to be of time complexity O(log T)
(Särkkä and García-Fernández, 2019; Rush, 2020).

4 Experiments

Datasets We use three translation benchmarks:
IWSLT14 De → En (Cettolo et al., 2014) (160k
pairs), WMT14 En↔ De2 (Macháček and Bojar,
2014) (4M pairs), and WMT16 En↔ Ro3 (Bojar
et al., 2016) (∼610k pairs). We sample validation
datasets to be at most 3k following Deng and Rush
(2020). We also consider a knowledge distillation
setup (Kim and Rush, 2016; Gu et al., 2017), where
the teachers are fully autoregressive transformer
baselines described below. More preprocessing
details can be found in Appendix A.3.

Baselines We use the default transformer archi-
tectures in FAIRSEQ (Ott et al., 2019) for each
dataset: for IWSLT14 De-En we useN = 6, h = 4,

1While our approach is technically an autoregressive
model, in practice it is as fast as NAT since the neural net-
work dominates runtime. We consider these autoregressive
dependencies a positive aspect of the model.

2http://www.statmt.org/wmt14/
translation-task.html

3http://www.statmt.org/wmt16/
translation-task.html

http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt16/translation-task.html

3767

Approach Latency
(ms)

Speedup
(Rep.)

WMT14 WMT16 IWSLT14

Model Settings En-De De-En En-Ro Ro-En De-En

AR Transformer (beam 5) 257.97 ×1.00 27.43 31.50 33.91 33.86 34.46
Shallow Dec. (Kasai et al., 2020) (6-1) - ×2.7 27.4 30.8 33.2 34.3 -

With Distillation
Ours (K=64) 13.15 ×19.62 24.08 28.22 30.19 31.04 31.83
Fully NAT (Gu and Kong, 2020) (CTC+GLAT) 17.0 ×16.8 27.20 31.39 33.71 34.16 -
NAT-REG (Wang et al., 2019) 22 ×27.6 20.65 24.77 - - 23.89
Hint-NAT (Li et al., 2019) 26 ×30.2 21.11 25.24 - - 25.55
imitate-NAT (Wei et al., 2019) - ×18.6 22.44 25.67 28.61 28.90 -
BERT CRF (Su et al., 2021) (α=1) - ×11.31∗ - - - - 30.45
Coverage-NAT (Shan et al., 2021) 27.58 ×10.04 21.35 25.04 30.05 30.33 -
LAT (Kong et al., 2020) (i=1) 31 ×15.68 25.20 29.91 30.74 31.24 31.92
NART-DCRF (Sun et al., 2019) 37 ×10.4 23.44 27.22 27.44 - -
Cascaded (Deng and Rush, 2020) (K=16,i=2) 50.28 ×6.34 26.34 30.69 32.70 32.66 33.90
Levenshtein (Gu et al., 2019b) 92 ×4.01 27.27 - - 33.26 -
FlowSeq-large (Ma et al., 2019) - - 23.72 28.39 29.73 30.72 -
CMLM (Ghazvininejad et al., 2019) (i=10) - - 27.03 30.53 33.08 33.31 -
SMART (Ghazvininejad et al., 2020) (i=10) - - 27.65 31.27 - - -
Imputer (Saharia et al., 2020) (i=1) - - 25.8 28.4 - - -

Without Distillation
Ours (K=64) 13.19 ×19.56 20.98 25.04 29.59 30.33 31.15
Cascaded (Deng and Rush, 2020) (K=16,i=2) 47.05 ×6.78 21.34 26.91 32.11 32.53 32.95
Levenshtein (Gu et al., 2019b) 126 ×2.93 25.20 - - 33.02 -
FlowSeq-base (Ma et al., 2019) - - 18.55 23.36 29.34 30.44 24.75
FlowSeq-large (Ma et al., 2019) - - 20.85 25.40 29.73 30.72 -

Table 1: Main results. Latency/speedup are measured on WMT14 En-De test set with batch size 1. La-
tency/reported speedup numbers from reference papers are not directly comparable due to implementation and
hardware differences. ∗: speedup measured on IWSLT14 De-En.

dmodel = 512, dff = 1024; for all WMT datasets
we use N = 6, h = 8, dmodel = 512, dff = 2048.

Model Settings We use the same architecture
as the baselines, except that we use a single-
layer lattice scorer. For candidate lattice construc-
tion we only consider the top 40 candidates from
P (yt|xat , at − t) per each (xat , at − t). For lat-
tice decoding, we use linear regression to predict
approximate length L from S. We introduce a
padding symbol to allow for variable length genera-
tion and consider lengths T fromL−∆L toL+∆L
where L is the predicted length and ∆L = 3.

Results Table 1 shows the main results. Latency
is measured on WMT14 En-De (full results can
be found in Appendix A.2). Our approach is the
fastest in terms of raw speed yet still reaches a
decent accuracy. It is hard to compare reported
speedups across works. While there are higher
speedups (Wang et al., 2019; Li et al., 2019), we
have a lower baseline latency which might make
further speedups harder.

Notably, only Fully NAT (Gu and Kong, 2020)
outperforms our approach in terms of accuracy
(27.20 v.s. 24.08 on WMT14 En-De w/ distil-

lation) while also giving a comparable speedup
(×16.8 v.s. ×19.62). However, we note that
Fully NAT is an ensemble of best-of-class tech-
niques including glancing target (Qian et al., 2020),
CTC (Graves et al., 2006), and VAE (Kingma and
Welling, 2013).

5 Analysis

Lattice Construction Various methods can con-
struct a candidate lattice by filtering the top K
tokens for each target-position t. The shared vo-
cab reduction approach of L’Hostis et al. (2016)
ignores the position t (P (yt|x, t) ≈ P (y·|x)). Dur-
ing training, FastAlign is used to estimate P (y·|xs).
During inference, for each source word xs, the top
K words maximizing P (y·|xs) are selected. Al-
ternatively we can use an NAT baseline model,
P (y|x) =

∏
t P (yt|x, t), where P (yt|x, t) is pa-

rameterized with a six-layer transformer encoder-
decoder. This approach has access to the position
and a deep decoder, but is much slower.

Figure 1 compares different approaches for con-
structing a candidate lattice. Our method signifi-
cantly outperforms shared vocab which produces a
single reduced vocabulary at the target side. While

3768

our approach underperforms NAT baseline, it is
competitive and much more efficient.

While our statistical model is very efficient, us-
ing it alone (without lattice scoring and decoding,
or equivalently, K = 1) gets a much lower BLEU,
as shown in Table 2.

Figure 1: Recall of candidate lattice generation on
IWSLT14 De-En distilled val. Measures the percent-
age of target tokens retained in the lattice.

Settings BLEU Latency

K=64 31.05 9.99ms
K=32 30.16 9.81ms
K=1 5.10 0.41ms

Table 2: The effect of lattice generation K on
IWSLT14 De-En val (w/ distillation, ∆L = 0).

Sequence-to-Lattice Formulation Figure 3
plots BLEU score with the number of lattice scorer
layers. We can see that a sequence-to-lattice
formulation significantly outperforms the baseline
NAT model, and that it enables using much fewer
layers whereas the baseline accuracy quickly
degrades as the number of scorer layers decreases.
Being able to use fewer lattice scorer layers
allows faster inference, as shown in Appendix A.1.
The fact that NAT accuracy degrades indicates
that structural changes, like those proposed for
autoregressive models by Kasai et al. (2020), can
hurt NAT models.

Figure 2 demonstrates the importance of Viterbi
search with respect to the final model. While al-
most 15% of words are already ranked highest with-
out lattice decoding, there is a non-negligible per-
centage of changes due to search.

Latency Analysis Figure 4 shows latency break-
down as a function of length. Most time is spent

Figure 2: Reordering by lattice decoding, measured by
the selection ratio given a rank before search (using
edge scores only). We use IWSLT14 De-En val with
K = 64 and ∆L = 0.

Figure 3: BLEU v.s. number of lattice scorer layers on
the validation set of IWSLT14 De-En (w/ distillation).

Figure 4: Latency breakdown as a function of target
length. Time is measured on WMT14 En-De test with
K = 64 and asynchronous execution disabled. The his-
togram on top shows the distribution of target length.

on the encoder since there are six encoder layers.
Given the rarity of long sentences, in most cases
the other two times are dominated by the encoder.

In practice, we use serial Viterbi decoding,
which does grow linearly with length, but remains
faster. Lattice scoring time is parallelizable but also
grows with length. Practically hardware has lim-

3769

ited parallel capacity, creating a bottleneck when
sequences become very long. Future work will
need to better explore parallel approaches beyond
the regime of sentence-level generation.

6 Conclusion

In this work, we find that using a sequence-to-
lattice formulation enables using much smaller
model architectures for fast machine translation.
Our approach first generates a candidate lattice us-
ing a statistical model, then uses a transformer with
a position-wise head layer to score the lattice, and
finally uses the Viterbi algorithm to find the best
hypothesis. Experiments on three machine transla-
tion benchmarks show that our simple approach is
very fast yet achieves a decent accuracy.

Acknowledgements

We would like to thank Justin Chiu and Jiawei
Zhou. YD is sponsored by NSF 1704834 and a
Baidu AI Fellowship. AMR is sponsored by NSF
CAREER 2037519.

References
Ondřej Bojar, Yvette Graham, Amir Kamran, and

Miloš Stanojević. 2016. Results of the wmt16 met-
rics shared task. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 199–231.

Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, and Robert L Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational linguistics, 19(2):263–
311.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign, iwslt 2014.
In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, vol-
ume 57.

Yuntian Deng and Alexander Rush. 2020. Cascaded
text generation with markov transformers. Advances
in Neural Information Processing Systems, 33.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

G David Forney. 1973. The viterbi algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Constant-time machine
translation with conditional masked language mod-
els. arXiv preprint arXiv:1904.09324.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu and Xiang Kong. 2020. Fully non-
autoregressive neural machine translation: Tricks of
the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019a.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019b.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 3723–3730.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large tar-
get vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A Smith. 2020. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

3770

Xiang Kong, Zhisong Zhang, and Eduard Hovy.
2020. Incorporating a local translation mechanism
into non-autoregressive translation. arXiv preprint
arXiv:2011.06132.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. arXiv
preprint arXiv:1802.06901.

Gurvan L’Hostis, David Grangier, and Michael Auli.
2016. Vocabulary selection strategies for neural ma-
chine translation. arXiv preprint arXiv:1610.00072.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Hint-based training
for non-autoregressive machine translation. arXiv
preprint arXiv:1909.06708.

Jindřich Libovickỳ and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. arXiv
preprint arXiv:1811.04719.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. arXiv preprint arXiv:1909.02480.

Matouš Macháček and Ondřej Bojar. 2014. Results of
the wmt14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, pages 293–301.

Elman Mansimov, Alex Wang, and Kyunghyun Cho.
2019. A generalized framework of sequence genera-
tion with application to undirected sequence models.
arXiv preprint arXiv:1905.12790.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary manipulation for neural machine transla-
tion. arXiv preprint arXiv:1605.03209.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
Advances in Neural Information Processing Systems,
pages 4696–4705.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang,
Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
2020. Glancing transformer for non-autoregressive
neural machine translation. arXiv preprint
arXiv:2008.07905.

Alexander M Rush. 2020. Torch-struct: Deep
structured prediction library. arXiv preprint
arXiv:2002.00876.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive
machine translation with latent alignments. arXiv
preprint arXiv:2004.07437.

Simo Särkkä and Ángel F García-Fernández. 2019.
Temporal parallelization of bayesian filters and
smoothers. arXiv preprint arXiv:1905.13002.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Yong Shan, Yang Feng, and Chenze Shao. 2021. Mod-
eling coverage for non-autoregressive neural ma-
chine translation. arXiv preprint arXiv:2104.11897.

Xing Shi and Kevin Knight. 2017. Speeding up neural
machine translation decoding by shrinking run-time
vocabulary. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 574–579.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. arXiv
preprint arXiv:1902.03249.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, pages 10086–10095.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021. Non-
autoregressive text generation with pre-trained lan-
guage models. arXiv preprint arXiv:2102.08220.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He,
Zi Lin, and Zhihong Deng. 2019. Fast structured de-
coding for sequence models. In Advances in Neural
Information Processing Systems, pages 3011–3020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

3771

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018.
Semi-autoregressive neural machine translation.
arXiv preprint arXiv:1808.08583.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 5377–5384.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang
Lin, and Xu Sun. 2019. Imitation learning for non-
autoregressive neural machine translation. arXiv
preprint arXiv:1906.02041.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan,
Chris Brockett, and Bill Dolan. 2020. Pointer: Con-
strained text generation via insertion-based genera-
tive pre-training. arXiv preprint arXiv:2005.00558.

Jiawei Zhou and Phillip Keung. 2020. Improv-
ing non-autoregressive neural machine transla-
tion with monolingual data. arXiv preprint
arXiv:2005.00932.

A Appendix

A.1 Speedup and BLEU Versus Layers
Table 3 shows the speedup and BLEU as we vary
the number of lattice scorer layers. We can see that
reducing the number of lattice score layers makes
inference much faster without hurting BLEU score
much.

#Layers Speedup BLEU

1 ×16.78 30.90
2 ×14.47 31.83
3 ×12.74 32.02
4 ×9.62 30.00
5 ×10.28 31.15
6 ×9.41 31.33

Table 3: Speedup and BLEU score as we vary the num-
ber of lattice score layers (IWSLT14 De-En, K=64).

A.2 Full Results
We used K = 64 in the main paper, and only
reported latency/speedup on WMT14 En-De. Full
results can be found at Table 4, Table 5, Table 6,
Table 7, and Table 9.

A.3 Data Preprocessing
To process the data, we use Byte Pair Encoding
(BPE) (Sennrich et al., 2015; Kudo and Richardson,
2018) learned on the training set with a shared vo-
cabulary between source and target. For IWSLT14
the vocabulary size is 10k; for WMT14 the vocab-
ulary size 40k. For WMT16 we use the processed
data provided by Lee et al. (2018).

Model Settings Latency (Speedup) BLEU

Transformer (beam 5) 257.97ms (×1.00) 27.43

W/ Distillation
Ours (K=32) 12.11ms (×21.30) 21.57
Ours (K=64) 13.15ms (×19.62) 24.08
Ours (K=128) 14.75ms (×17.49) 25.37

W/O Distillation
Ours (K=32) 12.34ms (×20.91) 18.89
Ours (K=64) 13.19ms (×19.56) 20.98
Ours (K=128) 14.98ms (×17.22) 21.73

Table 4: Results on WMT14 En-De.

Model Settings Latency (Speedup) BLEU

Transformer (beam 5) 238.52ms (×1.00) 31.50

W/ Distillation
Ours (K=32) 12.42ms (×19.20) 26.15
Ours (K=64) 13.00ms (×18.35) 28.22
Ours (K=128) 14.80ms (×16.11) 29.20

W/O Distillation
Ours (K=32) 12.29ms (×19.41) 23.62
Ours (K=64) 13.26ms (×17.99) 25.04
Ours (K=128) 14.78ms (×16.14) 25.64

Table 5: Results on WMT14 De-En.

Model Settings Latency (Speedup) BLEU

Transformer (beam 5) 261.43ms (×1.00) 33.91

W/ Distillation
Ours (K=32) 12.59ms (×20.76) 27.72
Ours (K=64) 13.10ms (×19.96) 30.19
Ours (K=128) 14.72ms (×17.76) 30.80

W/O Distillation
Ours (K=32) 12.60ms (×20.75) 27.14
Ours (K=64) 13.35ms (×19.58) 29.59
Ours (K=128) 14.85ms (×17.60) 30.16

Table 6: Results on WMT16 En-Ro.

Model Settings Latency (Speedup) BLEU

Transformer (beam 5) 235.63ms (×1.00) 33.86

W/ Distillation
Ours (K=32) 12.48ms (×18.88) 30.16
Ours (K=64) 13.13ms (×17.95) 31.04
Ours (K=128) 14.52ms (×16.23) 31.15

W/O Distillation
Ours (K=32) 12.71ms (×18.54) 29.53
Ours (K=64) 13.21ms (×17.84) 30.33
Ours (K=128) 14.45ms (×16.31) 30.45

Table 7: Results on WMT16 Ro-En.

3772

Dataset dropout fp16 GPUs batch accum warmup steps max steps max lr weight decay

WMT14 En-De/De-En 0.1 Y 3 4096 3 4k 240k 7e-4 0
WMT16 En-Ro/Ro-En 0.3 Y 3 5461 1 10k 240k 7e-4 1e-2
IWSLT14 De-En 0.3 N 1 4096 1 4k 120k 5e-4 1e-4

Table 8: Optimization settings. We used the same settings for knowledge distillation experiments.

Model Settings Latency (Speedup) BLEU

Transformer (beam 5) 171.20ms (×1.00) 34.46

W/ Distillation
Ours (K=32) 10.00ms (×17.12) 30.90
Ours (K=64) 10.20ms (×16.78) 31.83
Ours (K=128) 10.61ms (×16.13) 32.02

W/O Distillation
Ours (K=32) 10.00ms (×17.12) 30.00
Ours (K=64) 10.11ms (×16.93) 31.15
Ours (K=128) 10.63ms (×16.11) 31.33

Table 9: Results on IWSLT14 De-En.

A.4 Optimization Settings
We train our model as a Markov transformer (Deng
and Rush, 2020) with bigrams to trigrams. We
used Adam optimizer (Kingma and Ba, 2014), with
β1 = 0.9, β2 = 0.98, and inverse square root
learning rate decay after linear warmup (Ott et al.,
2019). We train with label smoothing strength 0.1
(Müller et al., 2019). For model selection, we used
BLEU score on validation set, with K = 64 and
∆L = 3. Other hyperparameters can be found at
Table 8.

A.5 Implementation Details
Our implementation is based on FAIRSEQ (Ott
et al., 2019) and PyTorch (Paszke et al., 2019), and
we use an Nvidia A100 GPU with CUDA version
11.1 to perform inference.

