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Abstract

In this paper, we address unsupervised chunk-
ing as a new task of syntactic structure induc-
tion, which is helpful for understanding the lin-
guistic structures of human languages as well
as processing low-resource languages. We
propose a knowledge-transfer approach that
heuristically induces chunk labels from state-
of-the-art unsupervised parsing models; a hi-
erarchical recurrent neural network (HRNN)
learns from such induced chunk labels to
smooth out the noise of the heuristics. Experi-
ments show that our approach largely bridges
the gap between supervised and unsupervised
chunking.1

1 Introduction

Understanding the linguistic structure of language
(e.g., parsing and chunking) is an important re-
search topic in NLP. Most previous work employs
supervised machine learning methods to predict
linguistic structures. While these methods achieve
high performance, they need massive data labeled
with linguistic structures, such as treebanks (Mar-
cus et al., 1993). Existing resources are mainly
constructed for widely used languages (e.g., En-
glish); further constructing new treebanks for low-
resource languages is cumbersome and expensive.

Unsupervised syntactic structure induction has
been attracting increasing interest in recent
years (Kim et al., 2019a; Shen et al., 2018a,b). This
task concerns discovering linguistic structures of
text without using labeled data. It is important to
NLP research because it can be potentially used
for low-resource languages and also be a first pass
in annotating large treebanks for them. Moreover,
grammar learned by these unsupervised methods
shed light on linguistic theories.

∗ Work partially done as a co-op intern at the University
of Alberta.

1Our code and output are released at
https://github.com/Anup-Deshmukh/
Unsupervised-Chunking

Previous unsupervised syntactic structure mainly
focuses on the task of constituency parsing which
organize words in a hierarchical manner (Kim et al.,
2019a,b; Shen et al., 2018a). Recently, Shen et al.
(2021) propose to jointly induce constituency and
dependency structures from text.

In this work, we address unsupervised chunk-
ing, another meaningful task of linguistic structure
discovery. The chunking task aims to group the
words of a sentence into chunks (roughly speaking,
phrases) in a non-hierarchical fashion (Sang and
Buchholz, 2000; Kudo and Matsumoto, 2001), and
our setting is to detect chunks without the supervi-
sion of annotated linguistic structures.

In fact, unsupervised chunking has real-world
applications, as understanding text fundamentally
requires finding spans like noun phrases and verb
phrases. It would benefit various downstream tasks,
such as keywords extraction (Firoozeh et al., 2020),
named entity recognition (Sano et al., 2017), and
open information extraction (Niklaus et al., 2018).

In our paper, we propose a knowledge-transfer
approach to unsupervised chunking by hierarchi-
cal recurrent neural networks (HRNN). We uti-
lize the recent advances of unsupervised parsers,
and propose a maximal left-branching heuristic to
induce chunk labels from unsupervised parsing.
Without any supervision of annotated grammars,
such heuristic leads to reasonable (albeit noisy and
imperfect) chunks. We further design an HRNN
model that learns from the heuristic chunk labels.
Our HRNN involves a trainable chunking gate that
switches between a lower word-level RNN and a
upper phrase-level RNN. This explicitly models
the composition of words into chunks and chunks
into the sentence. Results on three datasets show
that our HRNN can indeed smooth out the noise
of heuristically induced chunk labels, with a con-
siderable improvement in terms of the phrase-F1
score; such observations are consistent in different
domains and languages.

https://github.com/Anup-Deshmukh/Unsupervised-Chunking
https://github.com/Anup-Deshmukh/Unsupervised-Chunking
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Related Work. Unsupervised syntactic struc-
ture detection has attracted much attention in early
NLP research because of its use in low-resource
scenarios (Clark, 2001; Klein, 2005). Klein and
Manning (2002) propose to model constituency
and context for each spans with an Expectation–
Maximization (EM) algorithm. Early work also fo-
cuses on unsupervised dependency parsing for syn-
tactic structure induction (Seginer, 2007; Paskin,
2001). Klein and Manning (2004) combine con-
stituency and dependency models via co-training
to further boost their performance.

To learn the syntactic structures, Haghighi and
Klein (2006) propose a probabilistic context-free
grammar (PCFG), augmented with manually de-
signed features. Reichart and Rappoport (2008)
perform clustering by syntactic features to obtain
labeled parse trees. Clark (2001) clusters sequences
of tags based on their local mutual information to
build parse trees. Such early studies typically used
heuristics, linguistic knowledge, and manually de-
signed features for unsupervised syntactic structure
induction (Wolff, 1988; Klein and Manning, 2002;
Clark, 2001).

In the deep learning era, unsupervised parsing
has revived the interest. Socher et al. (2011) pro-
pose the recursive autoencoder, where a binary
tree is built by greedily minimizing the reconstruc-
tion loss. Such recursive tree structures can also
be learned in an unsupervised way by CYK-style
marginalization (Maillard et al., 2019) and Gumbel-
softmax (Choi et al., 2018). Yogatama et al. (2017)
learn a shift–reduce parser by reinforcement learn-
ing towards a downstream task. However, evidence
shows the above approaches do not yield linguisti-
cally plausible trees (Williams et al., 2018).

Shen et al. propose to model the syntactic dis-
tance (2018a) or syntactic ordering (2018b) to build
parse trees. Kim et al. (2019b) propose a Com-
pound PCFG for unsupervised parsing. The trees
given by these approaches are more correlated with
constituency trees.

Li et al. (2019) propose to transfer knowledge
among several unsupervised parsers and obtain bet-
ter performance. Our work is inspired by such
knowledge transfer, but we propose insightful
heuristics that induces chunk labels from unsuper-
vised parsers. We also design Hierarchical RNN to
learn from induced chunk labels.

Previous studies address unsupervised chunking
as an important task in speech processing; they use

acoustic information to determine the chunks (Pate
and Goldwater, 2011; Barrett et al., 2018). Our
work only considers textual information, and views
unsupervised chunking as a new task of syntactic
structure induction.

2 Model

In this section, we will first induce chunking labels
from state-of-the-art unsupervised parsing. Then,
we will train a hierarchical RNN to learn from
induced labels to smooth out the noise.

2.1 Inducing Chunk Labels from
Unsupervised Parsing

We propose to induce chunk labels from state-
of-the-art unsupervised parsers. The intuition is
that the chunking structure can be thought of as
a flattened parse tree, and thus agree with the
parsing structure to some extent. Our knowledge-
transfer approach is able to take advantage of re-
cent advances in unsupervised parsing (Kim et al.,
2019a,b).

Specifically, we adopt the Compound PCFG
which is a 5-tuple grammar G = (S,N ,P,Σ,R),
where S is a start symbol; N , P , and Σ are finite
sets of nonterminal, preterminal, and terminal sym-
bols, respectively. R is a finite set of rules taking
one of the following forms:

S → A A ∈ N (1)

A→ B C B,C ∈ N ∪ P (2)

T → w T ∈ P, w ∈ Σ (3)

where S → A is the start of a sentence and T → w
indicates the generation of a word. A→ BC mod-
els the bifurcations of a binary constituency tree,
where a constituent node is not explicitly associated
with a type (e.g., noun phrase).

In addition, the model maintains a sentence-
level continuous random vector, serving as the
prior of PCFG. The Compound PCFG is trained
by maximum likelihood of text, where the PCFG
is marginalized by the Viterbi-like algorithm and
the continuous distribution is treated by amortized
variational inference. We refer readers to Kim et al.
(2019b) for details.

We would like to induce chunk labels from Com-
pound PCFG, which is a state-of-the-art unsuper-
vised parser. Given a sentence, we obtain its parse
tree by applying the Viterbi-like CYK algorithm to
Compound PCFG.
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Figure 1: Overview of our approach.

We propose a simple yet effective heuristic that
extracts maximal left-branching subtrees as chunks.
As known, the English language is strongly bi-
ased to right-branching structures (Williams et al.,
2018; Li et al., 2019). We observe, on the other
hand, that a left-branching structure typically indi-
cates closely related words. Here, a left-branching
subtree means that the words are grouped in
the form of ((· · · ((xixi+1)xi+2) · · · )xi+n−1). A
left-branching subtree for words xi · · · xi+n−1

is maximal if neither xi−1xi · · · xi+n−1 nor
xi · · · xi+n−1xi+n is left-branching. We extract all
maximal left-branching subtrees as chunks.

In Figure 1, for example, “deeply fried food” is
a three-word maximal left-branching subtree ,
whereas “the kid” and “likes” are also maximal left-
branching subtrees (although degenerated). Our
heuristic treats them as chunks. The following the-
orem shows that our heuristic can unambiguously
give chunk labels for any sentence with any parse
tree. (See Appendix A for proof.)

Theorem 1. Given any binary parse tree, every
word will belong to one and only one chunk by the
maximal left-branching heuristic.

Our simple heuristic achieves reasonable chunk-
ing performance, although it is noisy. Then, HRNN
learning (discussed in next part) will smooth out
such noise and yield more meaningful chunks.

2.2 Training Hierarchical RNN

We would like to train a machine learning model
to learn from the Compound PCFG-induced chunk
labels. Our intuition is that a learning machine
pools the knowledge of different samples into a
parametric model and thus may smooth out the
noise of our heuristics.

Specifically, we run Compound PCFG on an
unlabeled corpus to obtain chunk labels in the BI
schema (Ramshaw and Marcus, 1995), where “B”
refers to the beginning of a chunk, and “I” refers

to the inside of a chunk. Then, a machine learning
model (e.g., a neural network) will learn from the
pseudo-groundtruth labels.

We observe that a classic RNN or Transformer
may not be suitable for the chunking task, because
the prediction at a time step is unaware of previous
predicted chunks, thus lacking autoregressiveness.
Feeding predicted chunk labels like a sequence-
to-sequence model is not adequate, because a BI
label only contains one bit information and cannot
provide useful autoregressive information either.

To this end, we design a hierarchical RNN to
model the autoregressivenss of predicted chunks
by altering the neural structure. Our HRNN con-
tains a lower word-level RNN and an upper chunk-
level RNN. We also design a gating mechanism
that switches between the two RNNs in a soft man-
ner, also serving as the predicted probability of the
chunk label.

Let x(1), · · · , x(n) be the words in a sentence.
We first apply the pretrained language model
BERT (Kenton et al., 2019) to obtain the con-
textual representations of the words, denoted by
x(1), · · · ,x(n). This helps our model to understand
the global context of the sentence. For a step t, we
first predict a switching gate m(t) ∈ (0, 1) as the
chunking decision.2

m(t) = σ(W [h(t−1);h(t−1);x(t)]) (4)

where h(t−1) is the hidden state of the lower RNN
and h(t−1) is that of the upper RNN. Semicolon
represents vector concatenation, and σ represents
the sigmoid function.

Such a switching gate is also used to control the
information flow by altering the network architec-
ture, shown in Figure 1. In this way, it provides
meaningful autoregressive information, as it makes
HRNN aware of previously detected chunks.

Suppose our model predicts that the tth word is
the beginning of a chunk. This essentially “cuts”
the sequence into two parts at this step. The lower
RNN and upper RNN are updated by

h
(t)
cut = f (x(t), h(sos)) (5)

h
(t)

cut = f (h(t−1), h
(t−1)

) (6)

where f and f are the transition functions of the
two RNNs, respectively.

2m(t) = 1 corresponds to “B,” i.e., a new chunk, and
m(t) = 0 corresponds to “I,” i.e., inside of a chunk.
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Method
CoNLL-2000 English CoNLL-2003 German English Web Treebank

(Newswire) (Newswire) (Reviews)
Phrase F1 Tag Acc. Phrase F1 Tag Acc. Phrase F1 Tag Acc.

Supervised Methods
NLTK-tagger-chunker 83.71 89.51 87.82 93.59 - -
Supervised HMM 87.68 93.99 90.16 94.77 98.62 99.44

Unsupervised Methods
PMI Chunker 35.64 64.5 42.19 64.42 32.28 65.34
Baum–Welch HMM 25.04 58.93 27.01 58.52 24.17 58.02
LM Chunker 42.05 68.74 45.06 68.62 31.23 62.55
Compound PCFG Chunker 62.89 81.64 55.94 75.54 58.17 79.33
LM→ HRNN 47.99 73.10 48.40 70.10 39.43 70.5
Compound PCFG→ HRNN 68.12 83.90 57.14 75.81 64.32 83.25

Table 1: Chunking performance on the CoNLL-2000, CoNLL-2003, and English Web Treebank. For both CoNLL
datasets, the Phrasal F1 and Tag accuracy scores are calculated against groundtruth chunk labels. For the English
Web Treebank, we treat the chunks generated by (NLTK-tagger, Bird, 2006)) as groundtruth labels. → refers to
our knowledge-transfer approaches.

In Equation (5), the lower RNN ignores its previ-
ous hidden state but restarts from a learnable initial
state h(sos), due to the prediction of a new phrase.
In Equation (6), the upper RNN picks the newly
formed phrase with representation h(t−1) captured
by the lower RNN, and fuses it with the previous
chunk’s representation in the upper RNN h(t−1).

Suppose our model predicts that the tth word
is not the beginning of a chunk, i.e., “no cut” is
performed at this step. The RNNs are updated by

h
(t)
nocut = f (x(t),h(t−1)) (7)

h
(t)

nocut = h
(t−1)

(8)

Here, the lower RNN updates its hidden state with
the input x(t) as a normal RNN, whereas the upper
RNN is idle because no phrase is formed.

The “cut” and “nocut” cases can be unified by

h
(t)

= m(t) h
(t)

cut + (1−m(t)) h
(t)

nocut (9)

h(t) = m(t) h
(t)
cut + (1−m(t)) h

(t)
nocut (10)

In fact, we keep m(t) as a real number and fuse the
lower RNN and upper RNN in a soft manner. This
is because chunking by its nature may be ambigu-
ous, and our soft gating mechanism is able to better
preserve the information.

3 Experiments

Setup. We used the CoNLL-2000 (Sang and Buch-
holz, 2000), CoNLL-2003 (Sang and De Meul-
der, 2003), and English Web Treebank (Bies et al.,
2012) for evaluation. We compare the model output
with groundtruth chunks in terms of phrase F1 and
tag accuracy. Dataset details and our experimental
settings are presented in Appendix B.

Main Results. Table 1 presents main results
of our knowledge-transfer approach. In addi-
tion to Compound PCFG, we also adopt another
state-of-the-art unsupervised parser (Kim et al.,
2019a) based on the features of a pretrained lan-
guage model (LM). Specifically, we threshold the
BERT (Kenton et al., 2019) similarity of consec-
utive words for chunking. We observe that the
LM-based unsupervised chunker is worse than the
Compound PCFG. Therefore, our main model vari-
ant uses Compound PCFG as the “teacher” model,
i.e., the source of knowledge transfer. We train
our student HRNN model to learn from the heuris-
tically induced chunk labels. Results show that
we achieve an improvement of more than 5 per-
centage points in phrase F1 based on either the
LM-based chunker or Compound PCFG (42.05
vs. 47.99; 62.89 vs. 68.12) on the CoNLL-2000
dataset. The large margins imply that our HRNN
can indeed smooth out the noise of heuristics and
capture the chunking patterns.

We evaluate our knowledge-transfer approach
on a different language (German) and a different
domain (English Web Treebank). The results show
a similar trend as the CoNLL-2000 dataset. This
highlights the generality of our approach in differ-
ent languages and domains.

We also tested traditional unsupervised methods
for chunking, such as thresholding point-wise mu-
tual information (PMI, de Cruys and Tim, 2011)
and the Baum–Welch algorithm for the hidden
Markov model (HMM, Rabiner, 1989). These
methods perform significantly worse than recent ad-
vances in unsupervised syntactic structure discov-
ery. In general, our knowledge transfer approach
with HRNN largely bridges the gap between super-



3630

Method Phrase F1 Tag Acc. Time (Sec.)
CoNLL-2000 (English)

Compund PCFG 62.89 81.64 1803.90
Our HRNN model 68.12 83.90 364.71

CoNLL-2003 (German)
Compund PCFG 55.94 75.54 163.04
Our HRNN model 57.14 75.81 71.38

English Web Treebank
Compund PCFG 58.17 79.33 311.38
Our HRNN model 64.32 83.25 167.29

Table 2: Comparing the chunking quality and infer-
ence efficiency of the teacher Compound PCFG and
our student HRNN. The inference time (in second) is
obtained on NVIDIA Quadro RTX 6000 GPU with 25
GB RAM.

vised and unsupervised chunking.
We compare the inference efficiency of our stu-

dent HRNN and the teacher Compound PCFG in
Table 2. We observe that Compound PCFG is slow
in inference, as it requires Monte Carlo sampling
to marginalize the latent variable and dynamic pro-
gramming to marginalize the PCFG. Our HRNN
not only yields higher-quality chunks, but also is
2-5x faster. Compound PCFG uses the Viterbi-like
CYK algorithm for building parse trees, which has
the worst case running time of O(n3), where n is
the length of the sentence. Thus, efficiency im-
provement is larger on the CoNLL-2000 dataset,
as it contains longer sentences (shown in Table 5,
Appendix B).

Analysis. We provide detailed analyses of our
maximal left-branching chunking heuristic and stu-
dent HRNN model to better understand their contri-
bution. We chose the CoNLL-2000 dataset as our
testbed, due to constraints of time and space.

Table 3 compares the heuristics that induce
chunks from parse trees. We observe that our
maximal left-branching heuristic outperforms right-
branching by 20 points in Phrase F1. We also
introduce a thresholding approach that extracts
one-word and two-word chunks only, since most
groundtruth chunks contain one or two words. The
performance of such heuristic is higher than right-
branching, but worse than our left-branching. The
results are consistent with our conjecture that right-
branching is a common structure of English and
does not suggest meaningful chunks. On the con-
trary, left-branching indicates closely related words
and is an effective heuristic for inducing chunks
from parse trees.

Table 4 presents an ablation study on the student
model. As seen, all student models outperform the
teacher model, showing that the imperfection of

Chunking Heuristics Phrase F1 Tag Acc.
1-word & 2-word chunks 55.72 75.14
Maximal right branching 40.83 69.28
Maximal left branching 62.89 81.64

Table 3: Analysis of chunking heuristics. HRNN is not
applied in this comparison.

# Method Phrase F1 Tag Acc.
1 Teacher: Compound PCFG 62.89 81.64
2 → HRNN only 65.01 82.22
3 → BERT+1-layer RNN 67.19 83.86
4 → BERT+2-layer RNN 66.53 83.34
5 → BERT+HRNN (hard) 67.90 83.80
6 → BERT+HRNN 68.12 83.90

Table 4: Ablation study of the student model.

chunk heuristics can indeed be smoothed out by a
machine learning model.

However, a classic RNN or the Transformer pre-
dicts chunk labels individually, which does not pro-
vide autoregressive information. The performance
is worse than HRNN even if the number of layers
is controlled (Rows 4 vs. 6). The HRNN using soft
gates outperforms a hard HRNN (Rows 5 vs. 6).
This verifies that our soft HRNN can better handle
the ambiguity of chunks and provide better autore-
gressive information. Building HRNN on top of
BERT is also helpful (Rows 2 vs. 6), as BERT can
capture global contextual information.

4 Conclusion

In this paper, we address a new task of syntactic
structure discovery, namely, unsupervised chunk-
ing. We propose a hierarchical RNN with soft gates
to learn from the chunk labels inducted by a state-
of-the-art unsupervised parser, Compound PCFG.
Results show that our approach largely bridges the
gap between supervised and unsupervised chunk-
ing. We also show rigorous analysis on our chunk
heuristics and the student model’s architecture.
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A Proof of Theorem 1.

Theorem 1. Given any binary parse tree, every
word will belong to one and only one chunk by the
maximal left-branching heuristic.

Proof. [Existence] A single word itself is a left-
branching subtree, which belongs to some maximal
left-branching subtree.

[Uniqueness] We will show that two different
maximal left-branching subtrees s1 and s2 cannot
overlap. Assume by way of contradiction that there
exists a word xi in both s1 and s2. Then, s1 must
be a substructure of s2 or vice versa; otherwise,
the paths root –s1–xi and root –s2–xi violate the
acyclic nature of a tree. But s1 being a subtree of
s2 (or vice versa) contradicts with the maximality
of s1 and s2.

This easy theorem shows our maximal left-
branching heuristic can unambiguously give chunk
labels for any sentence with any binary parse tree.

B Experimental Setup

Datasets. We used the CoNLL-2000 (Sang
and Buchholz, 2000), CoNLL-2003 (Sang and
De Meulder, 2003), and English Web Tree-
bank (Bies et al., 2012) for evaluation. CoNLL-
2000 is widely used for the task of chunking
and contains groundtruth chunk labels. CoNLL-
2003 (German) dataset was developed for language-
independent named entity recognition (Sang and
De Meulder, 2003) which also contains groundtruth
chunk labels for the entities. Both CoNLL-2000
and CoNLL-2003 contain sentences from the
newswire domain. To evaluate the performance
on a different domain, we make use of the English
Web Treebank (Bies et al., 2012). It consists of
online review sentences and their manually anno-
tated parse trees. We use state-of-the-art supervised
chunker (NLTK-tagger, Bird, 2006) to generate
chunk labels for these sentences. Table 5 summa-
rizes dataset statistics.

Our work is for unsupervised chunking, and thus
we did not use the chunk labels of the training set.
Instead, the training sentences were used for unsu-
pervised parser to perform knowledge transfer, i.e.,
we predicted pseudo-chunk labels by Compound
PCFG to train the Hierarchical RNN.

CoNLL-2000 (English) and CoNLL-2003 (Ger-
man) datasets are labeled with the BIO schema,

Dataset #Train #Val #Test Avg. len
CoNLL-2000 (English) 7929 950 2003 20.7
CoNLL-2003 (German) 7000 2000 1000 11
English Web Treebank 6496 1856 936 13.7

Table 5: Dataset statistics.

where “O” indicates outside a chunk (mainly punc-
tuation). We followed the BI schema and ignored
the “O” tokens.

We adopted the standard evaluation script from
the CoNLL-2000 shared task to evaluate our chunk
labels (Sang and Buchholz, 2000). It calculates
the phrase F1 score and the tag accuracy of the
predicted chunks against groundtruth labels from
the dataset.

Model Settings. We employed the pretrained
BERT (Kenton et al., 2019) to capture global con-
textual sentence information. The HRNN uses
vanilla transition with 100 dimensions. In our pre-
liminary experiments, we tried 300 dimension and
achieve very close performance, suggesting that
the model capacity is already enough for chunking.
This is also evidenced by Rows 3–4, Table 4. We
did not tune hyperparameters much, as our work fo-
cuses scientific questions of unsupervised chunking
and knowledge transfer, instead of hyperparameter
engineering.

We used the Adam optimizer to train the student
model during knowledge transfer. We picked the
best model by validation for early stopping, follow-
ing most work on unsupervised parsing (Drozdov
et al., 2019; Li et al., 2019). Roughly, such fine-
tuning did not exceed 15 epochs.

C Case Study

In Figure 2, we present a few examples of chunk-
ing structures generated by both HRNN and Com-
pound PCFG (teacher model) along with the
groundtruth.

Our method is able to detect longer noun phrases,
such as small cable-television systems (Exam-
ple 1) and white house press secretary marlin
fitzwater (Example 3), which agree more with the
groundtruth chunks.

HRNN is also able to correct nonsensical chunks
produced by Compound PCFG. In Example 2, the
two words of survival is split into two chunks of
and survival as they are not in a same semantic unit.
In Example 3, (bush) (aids lawmakers) is corrected
to (bush aids) (lawmakers).

In general, HRNN not only effectively learns
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White house press secretary martin Fitzwater said negotiations between bush aids lawmakers ended Monday without success

Compound PCFG

Groundtruth

HRNN

He has mastered the art of survival

Compound PCFG

Groundtruth

HRNN

Osborn also operates muzak franchises entertainment properties small cable-television systems

Compound PCFG

Groundtruth

HRNN
Example 1

Example 2

Example 3

Figure 2: Examples of chunking structures produced by HRNN and Compound PCFG. The difference is high-
lighted in thick blue. We also show groundtruth chunks for reference.

the chunking patterns from Compound PCFG, but
also can smooth out its noise and achieve higher
performance for unsupervised chunking.


