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Abstract
Sparse Mixture-of-Experts (MoE) has been
a successful approach for scaling multilin-
gual translation models to billions of param-
eters without a proportional increase in train-
ing computation. However, MoE models are
prohibitively large and practitioners often re-
sort to methods such as distillation for serv-
ing. In this work, we investigate routing strate-
gies at different granularity (token, sentence,
task) in MoE models to bypass distillation. Ex-
periments on WMT and a web-scale dataset
suggest that task-level routing (task-MoE) en-
ables us to extract smaller, ready-to-deploy
sub-networks from large sparse models.

On WMT, our task-MoE with 32 experts
(533M parameters) outperforms the best per-
forming token-level MoE model (token-MoE)
by +1.0 BLEU on average across 30 language
pairs. The peak inference throughput is also
improved by a factor of 1.9x when we route
by tasks instead of tokens. While distilling a
token-MoE to a smaller dense model preserves
only 32% of the BLEU gains, our sub-network
task-MoE, by design, preserves all the gains
with the same inference cost as the distilled
student model. Finally, when scaling up to
200 language pairs, our 128-expert task-MoE
(13B parameters) performs competitively with
a token-level counterpart, while improving the
peak inference throughput by a factor of 2.6x.

1 Introduction

Scaling up neural network models has recently re-
ceived great attention, given the significant quality
improvements on a variety of tasks including nat-
ural language understanding (Raffel et al., 2019;
Brown et al., 2020) and multilingual machine trans-
lation (Huang et al., 2019; Lepikhin et al., 2020).

While training massive models on large amounts
of data can almost guarantee improved quality,
there are two factors affecting their practicality
and applicability: (1) training efficiency and (2)
inference efficiency. Large dense models are often

prohibitively compute-intensive to train, with some
models requiring TFlops-days of compute (Brown
et al., 2020). A recent line of work has proposed
sparsely-gated Mixture-of-Experts (MoE) layers as
an efficient alternative to dense models (Shazeer
et al., 2017; Lepikhin et al., 2020; Riabinin and
Gusev, 2020) in order to address training efficiency
limitations. In a vanilla sparsely-gated MoE model
each token of the input sequence activates a differ-
ent subset of the experts, hence the computation
cost per token becomes only proportional to the
size of the activated sub-network. However, they
fail to meet requirements on inference efficiency.

Consider a long sequence where each token of
the sequence activates a disjoint subset of available
experts. From a practical standpoint, the inference
trace of the full sequence spans several experts
independently for every token, resulting in an inde-
pendent pathway for each token. Although this is
a desired property - adding flexibility to the model
and increasing its capacity - it becomes prohibitive
for inference for the following reasons: the model
parameters in these large models are beyond the
memory limit of a single accelerator device, and
require model parallelism to shard them across a
cluster of devices during inference. For models
with MoE Layers, the input token would be dy-
namically routed to different experts allocated to
different devices. This further adds communica-
tion cost across devices to the overall serving cost.
Moreover, due to the sequential nature of the auto-
regressive decoding (Kasai et al., 2020; Chen et al.,
2018), the added communication cost from model
parallel decoders gets multiplied by the number
of decoding steps. To add to this, serving MoE
models efficiently requires batching a large number
of input tokens together, otherwise only a subset
of the MoE network will be activated leading to
severe device under-utilization.

In this work, we study the inference efficiency of
sparsely gated MoE models while taking into ac-
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count the characteristics of the intended application,
Multilingual Neural Machine Translation (MNMT).
MNMT is an inherently multi-task learning prob-
lem, aimed at building a single neural network for
translating multiple language pairs simultaneously.
In a MNMT model, the extent to which parameters
are shared across languages determines the magni-
tude of positive transfer (Baldwin and Ford, 1988)
and conversely task interference due to the capacity
bottleneck (Arivazhagan et al., 2019). In an ideal
scenario, we would want to efficiently train a sin-
gle large MNMT model maximizing transfer while
expanding the capacity bottleneck; meanwhile, we
would like to enjoy the benefits of sparsely acti-
vated sub-networks per-task at inference time, i.e.
extracting out a sub-network to decode for a partic-
ular language pair to actualize inference efficiency.

An alternative way to enjoy high inference ef-
ficiency from a large model is knowledge distilla-
tion (Hinton et al., 2015). However, (Fedus et al.,
2021) found that only a small fraction of quality
gains from a large sparse model can be preserved
in the student models. Instead;

• We propose routing algorithms for MoE mod-
els with affordable serving costs (Section 3).
While vanilla MoEs route each sub-word to-
ken in the input to its preferred experts, we
explore alternative routing strategies that are
trained to leverage global task level informa-
tion to route all tokens corresponding to a
particular task collectively to the same set of
experts. We decode different tasks separately
and only load the subset of experts associated
with the corresponding task during inference.

• We report the advantages of our task-level
routing method in translation quality and in-
ference cost on a multilingual WMT task (Sec-
tion 4). With the comparable inference cost,
the task-level routing achieved +3.6 BLEU
gain over the multilingual model training from
scratch, and +2.1 BLEU gain over the dense
student model distilled from the large token-
level /position-wise MoE (token-MoE) model.

• The observed quality gains from our approach
are comparable with the token-MoE models
while achieving 1.9x peak throughput and
6.3% of the decoder size.

• We scaled up the token-MoE model on a large
scale in-house dataset and saw similar quality

gains (+3.6 BLEU) against the dense baseline
(Section 5.2). Compared to the token-level
routing approach, our method achieves com-
parable quality gain, with 2.6x higher peak
throughput and 1.6% of the decoder size.

• Finally, we analyze the routing decisions
made in MoE models and motivate our
method (Section 5.4).

2 Scaling Transformers with
Mixture-of-Experts

The Transformer (Vaswani et al., 2017) architec-
ture is a popular model used for neural machine
translation and other natural language understand-
ing/generation problems. In sequence-to-sequence
problems, the model consists of an encoder and de-
coder, each of which contains multiple Transformer
layers. For further details, we refer the reader to
the original paper (Vaswani et al., 2017).

We use the Mixture-of-Experts Transformer
models proposed by (Lepikhin et al., 2020), where
the MoE layers for the Transformers consist
of E feed-forward networks (FFN), such that
(FFN1 . . . FFNE).

FFNe(xs) = woe · ReLU(wie · xs)

ys =
E∑

e=1

Gs,e · FFNe(xs)

Here, xs is the input token at position s to the MoE
layer and each FFNe is a two layer neural network
using a ReLU activation function. wie and woe
are the input and output projection weights of the
e-th expert. Finally, Gs,E is vector computed by
the gating network (also referred as router). For
each expert, most values of this vector are zeros,
one value being positive. We use this vector to
route the token to a select few experts. The entries
chosen from Gs,E determine how much the expert
contributes to the final output ys. Note that, in this
work we choose the top 2 weight experts for each
example to be comparable with the prior work.

The gating network Gs,E must be considered
carefully for efficiency purposes: (1) the utilization
of experts must be balanced and (2) the function
must be efficient to implement at scale. For a more
thorough discussion of MoE transformers, we di-
rect the reader to (Lepikhin et al., 2020).

3 Methods

In this section we describe our candidate routing
strategies in the context of MNMT and discuss
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(a) Task MoE (b) Token MoE

Figure 1: Tokens are routed to the same expert based on task or some other prior in (a) task-based MoE whereas
different tokens are routed to different experts in (b) token-based MoE models.

their trade-offs from the perspective of the train-
ing and inference efficiency. Multilingual models
learn joint representations across languages to the
extent of the parameters being shared (Wu and
Dredze, 2019; Tiedemann, 2018; Tan et al., 2019;
Zhang et al., 2020; Östling and Tiedemann, 2016;
Kudugunta et al., 2019). While being beneficial for
transfer, extreme sharing of the parameters exacer-
bates interference. Allowing dedicated (unshared)
parameters are known to be effective at mitigat-
ing interference (Zhang et al., 2021; Kong et al.,
2021) and MoE variants are inherently learn such
partitioning across languages/tasks. Therefore we
study the routing algorithm GATE(xs) of MoEs to
mitigate interference, while enabling transfer and
effective at inference.

3.1 Routing Strategies

Given the sequential nature of the multilingual ma-
chine translation task, the routing decisions can
be made at three different granularities, from bot-
tom up (i) token-level, (ii) sentence-level and (iii)
task-level, as detailed below.

Token-level Routing: This is the baseline dis-
cussed in Section 2 where each token is routed
independently.

Sentence-level Routing: Each sequence (sen-
tence), and all tokens that form the sequence, are
routed to the same expert. We change the rout-
ing algorithm to select experts by sentence repre-
sentation, calculated by taking the average token

representations in a given sentence.

Task-level Routing: We select experts by task
boundaries as opposed to making input-level deci-
sions. In the context of MNMT, these task bound-
aries can either be defined by the target language
(French-to-English and German-to-English are the
same task) or the language pair (French-to-English
and German-to-English are different tasks). Sen-
tence and task level routing are formulated as fol-
lows:

Gs,E = GATE(
1

S

S∑
s=1

xs) (Sentence-level),

Gs,E = GATE(task_ids) (Task-level).

We illustrate the difference in Figure 1, in token-
based MoE models (Figure 1b), tokens from each
datapoint are routed to different experts, whereas
in task-level MoE models (Figure 1a), tokens may
be routed to the same expert based on task.

3.2 Inference Implications of Routing
Strategies

While the MoE models discussed in (Shazeer et al.,
2017; Lepikhin et al., 2020) train quickly relative
to the number of parameters in terms of the wall-
clock time, they are expensive to serve. Consider
a MoE with 512 experts and 50B parameters (Lep-
ikhin et al., 2020). When employing token-level
routing, each token can be independently routed to
a different set of experts during inference. Given
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that the entire model is too large to load into mem-
ory on a single accelerator, the two potential so-
lutions to utilize this model for inference are: (i)
Loading experts dynamically from host to device
depending on routing decisions, or (ii) Utilizing
model-parallelism over multiple accelerators for
serving. While the first solution incurs heavy host-
device communication costs, the second introduces
significantly inter-device communication overhead.

Other practical approaches to serve a large MoE
include model quantization, pruning and knowl-
edge distillation (Cheng et al., 2017). While the
first two strategies haven’t been explored in the con-
text of conditional computation, distillation (Hin-
ton et al., 2015; Kim and Rush, 2016) has been
found to introduce undesirable artifacts into the
student model (Freitag et al., 2019; Bogoychev and
Sennrich, 2019) in the context of NMT. Moreover,
some studies have found that distilling large sparse
models preserves only a small fraction of the gains
achieved by scaling. On the other hand, if we limit
the number of experts available to every task in
the model to a small fraction of the total available
capacity, it is possible to extract task-specific mod-
els for serving, alleviating the need for complex
serving strategies or compression. Since decod-
ing time complexity for auto-regressive encoder-
decoder models is dominated by the decoder (Kasai
et al., 2020), we can also pursue a hybrid strategy
where the encoder utilizes more expensive routing
strategies while the decoder of the model utilizes
simpler and efficient routing.

Summarizing the effective decoding cost of the
MoE models utilizing different routing strategies:

• Token/Sentence level routing: The routing
decisions are made dynamically. Assuming
each token/sentence makes disjoint choices,
the server needs to load all E experts.

• Task-level routing: Tokens corresponding to
each input sentence are routed to the same
experts statically. The server only needs to
pre-load K experts (assuming top-K routing).

4 Experiments on 30 Language Pairs

We compare routing strategies at multiple levels in
both, the encoder and the decoder, by conducting
extensive experiments on two benchmarks: the pub-
lic WMT dataset with 30 language pairs (Section
4.1) and an in-house web-scale dataset with 200

language pairs (Section 5). We start with WMT
setup.

4.1 Experimental Setup

For our experiments, we use parallel training and
evaluation data from the WMT corpus and adopt
the setup used by (Siddhant et al., 2020) with 15
languages, to and from English. Full training data
details may be found in Table 3 in the Appendix.
The amount of data ranges from more than 60 mil-
lion sentence pairs in en-cs translation direction
(en-cs) to roughly 150k sentence pairs for en-gu.

We use a temperature based data sampling strat-
egy to train our models, similar to the strategy used
to train the multilingual models in (Arivazhagan
et al., 2019): if pL is the probability that a sen-
tence in the corpus belongs to language pair L, we
sample from a distribution where the probability
of sampling from L is proportional to pL

1
T . All

the experiments in this paper are performed on a
model trained with a sampling temperature T = 5.

We use the 142M Transformer Base (Vaswani
et al., 2017) architecture (or enhanced versions of
it with MoE layers) for all of our experiments with
WMT. Our models are optimized using Adafactor
(Shazeer and Stern, 2018) with momentum factor-
ization and a per-parameter norm clipping thresh-
old of 1.0. We followed a learning rate of 3.0,
with 40K warm-up steps for the schedule, which
is decayed with the inverse square root of the num-
ber of training steps after warm-up. BLEU scores
presented in this paper are calculated using Sacre-
BLEU (Post, 2018) on the WMT test sets.

Multilingual baseline: We train a Transformer
Base model on this dataset as our multilingual
dense baseline. We share all parameters across
language pairs, including the softmax layer and in-
put/output word embeddings. We use a 64k token
Sentence Piece vocabulary (Kudo and Richardson,
2018). The vocabulary is shared on both the en-
coder and decoder side. Each sentence pair has
a <2xx> token pre-pended to the source sentence
to indicate the target language, following Johnson
et al. (2017).

Mixture of Experts Models: For MoE models,
we replace the feed forward network (FFN) of al-
ternate layers of the Transformer with a set of iden-
tical FFN experts as depicted in Figure 1b. For
brevity, we provide aggregate BLEU scores in Sec-
tion 4.2 . We provide the full individual BLEU
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System Routing Granularity Throughput BLEU
Encoder Decoder Peak tokens/s Average xx2en en2xx High Low

Bilingual Baselines - -
2.3× 105

21.0 21.8 18.9 28.2 11.8
Multilingual Transformer-Base - - 20.0 23.7 17.5 23.3 15.9

Static MoE – 32 experts - - 2.3× 105 17.6 25.0 10.2 20.9 13.5
Token-level MoE – 32 experts Token Token 1.3× 105 22.6 24.9 20.4 27.5 16.3

Sentence-level MoE – 32 expert Sentence Sentence 1.3× 105 19.9 24.1 16.8 22.6 16.1

Task-level MoE – 32 experts

Language Pair Language Pair

2.3× 105

21.4 25.2 16.9 23.4 17.3
Target Target 22.9 25.6 20.2 27.2 17.3

Language Pair Token 22.4 25.6 20.3 26.9 16.8
Target Token 22.3 24.5 20.4 26.8 16.6
Token Language Pair 23.0 26.2 20.3 27.2 17.6
Token Target 23.6 26.0 21.1 28.5 17.4

Table 1: Routing strategies for Mixture-of-Experts (MoE) models – We compare routing experts by either
tokens, sentence representations, or tasks (using either language pairs or target languages). For task-level MoE,
routing can also be different between encoder and decoder. For results, Average is the average results of all
language pairs, whereas xx2en and en2xx are the averages of translations into and from English respectively. High
indicates high-resource language pairs (> 1 million sentence pairs) while Low is for low-resource language pairs
(< 1 million sentence pairs).

scores in the Appendix A.3, along with bilingual
baselines. In addition, we provide the number of
parameters for different components of our models
in Appendix A.4.

4.2 Comparison of different Routing
Strategies on WMT

We compare the token-level, sentence-level and
task-level routing strategies discussed in Section
3 at identical network size (32 experts, 533M pa-
rameters). The results are presented in Table 1. In
general, we find that all types of task-level routing
perform better than token-level routing. We see
that using sentence representations to route exam-
ples (Sentence-level MoE - 32 experts) performs
much worse, so we do not conduct further exper-
iments on this setting. In addition, we trained an
MoE baseline where the experts are deterministi-
cally allocated to tasks (Static MoE - 32 Experts) -
this too, did not perform well in our experiments.

When we use Task MoE on both the encoder
and the decoder (Task-level MoE - 32 experts:
Target/Target), we see consistent gains across the
board. To investigate this further, we trained a
model that has (a) Token MoE on the encoder and
Task MoE on the decoder (Task-level MoE - 32 ex-
perts: Token/Target or Token/Language Pair) and
(b) Task MoE on the encoder and Token MoE on
the decoder (Task-level MoE - 32 experts: Tar-
get/Token or Language Pair/Token). In Table 1 we
see that using strategy (a) works the best, whether
we choose to route by the target language or the
language pair. In Section 5.4, we discuss these
observations further.

Overall we find that using Task MoE only on the
decoder (Task-level MoE 32 experts: Token/Target)
works the best, with gains of 1 BLEU over Token
MoE. These gains are consistent across xx2en lan-
guage pairs, en2xx language pairs, high resource
languages (more than 1 million sentence pairs), low
resource languages and the 2 zero shot pairs.

4.3 Comparison of Throughput of Sparse
Models

Batch Size
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Figure 2: Inference cost analysis: We measure
the throughput of our Task-MoE model, baseline
Transformer-Base model and baseline Token-MoE
model across batch sizes and see that the peak through-
put of Task-MoE (and Transformer-Base) is 1.87 times
higher than that of Token-MoE.

We further compare Task-level MoEs with
Token-level MoEs in terms of throughput across
different batch sizes in Figure 2. We measure this
by decoding the WMT14 English-German test set
with our TaskMoE model and with the baseline
TokenMoE model on 32 Cloud TPU V3 cores.
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System Routing Granularity Throughput BLEU
Encoder Decoder Peak tokens/s Average EnFr FrEn EnDe DeEn EnRo RoEn EnHi HiEn

Bilingual Baselines - - 2.3× 105 24.3 38.1 35.5 26.4 27.4 23.7 30.1 4.5 8.5
Multilingual Transformer-Base - - 2.3× 105 25.9 36.1 34.1 22.0 28.6 23.9 33.4 10.4 19.2
Task-level MoE – 32 experts Token Target 2.3× 105 29.0 39.9 37.1 27.1 32.0 26.6 36.2 13.3 20.1

Token-level MoE – 32 experts Token Token 1.3× 105 28.2 40.1 36.4 26.7 31.2 26.5 33.7 11.5 19.8
Distillation (from Token MoE) - - 2.3× 105 26.9 37.3 33.2 25.1 29.3 24.6 34.6 13.9 17.6

Table 2: Comparing Distillation to Task-MoE: We compare our best performing Task-MoE model to Distilling
a Token MoE model to Transformer-Base and a version with 2x the width for several language pairs. We see
that distillation consistently underperforms our best-performing Task MoE model - distillation from Token MoE
achieves an average BLEU score of 26.9, while our best-performing Task MoE model has an average BLEU score
of 29.0 (+2.1 BLEU) for these language pairs.

We find that our Task-MoE model has 1.87 times
higher peak throughput while using 3.75 times less
decoder parameters (142M vs 533M). Moreover,
our Task-MoE model has minimal communication
overhead compared to decoding with Token-MoE
(0.0% versus 26.9% of step time).

We note that the inference time of the token-
based MoE model is dominated by the decoder,
with the decoders taking 200x the time per step than
the encoders at peak throughput. Therefore, the
inference cost of task-level routing on decoder only
is roughly equivalent to that on both the encoder
and decoder.

4.4 Comparison of Extracting Task MoE
Models to Distillation

While in Section 4.3 we compared the throughput
of task-level MoE and token-level MoE models, it
is common practice for large models to be distilled
to smaller student models suitable for deployment.

We distill our token-level MoE baseline to
Transformer-Base student models with the same
architecture as the multlingual dense baseline dis-
cussed in 4.1. As done in (Fedus et al., 2021),
we initialize the student model with non-expert
weights of the teacher model. We distill the model
with the source sides of the WMT parallel data
used while training the original teacher model. We
do this for several language pairs across different
language families and resource sizes - EnFr, FrEn,
DeEn, EnDe, EnRo, RoEn, EnHi and HiEn. Addi-
tional training details are provided in the Appendix
A.1.

In Table 2, we compare the BLEU scores of our
best performing Task MoE models to distillation of
our Token MoE baseline into models with similar
inference cost (shown in Figure 2). We see that
distillation consistently underperforms our best-
performing Task MoE model - distillation from
Token MoE achieves an average BLEU score of

26.9, while our best-performing Task MoE model
has an average BLEU score of 29.0 (+2.1 BLEU)
for these language pairs. We note that while distill-
ing our sparse MoE model, only 32.25% of gains
over dense multilingual baselines are preserved.
This is in line with the distillation results discussed
in (Fedus et al., 2021).

5 Scaling up to 200 Language Pairs

We now scale our results up to a larger internal
dataset with over 200 language pairs, while also
scaling the number of parameters to beyond 10
billion weights. In addition, we look more closely
at the gating decisions made by these sparse models
and discuss their implications.

5.1 Experimental Setup

Data: We use an in-house training corpus gener-
ated by crawling and extracting parallel sentences
from the web (Uszkoreit et al., 2010). This dataset
has 204 direct language pairs (102 languages to
and from English), with a total of 25 billion sen-
tence pairs. This dataset covers a diverse range of
domains and languages, and is quite noisy. There
is also a heavy imbalance when it comes to the
number of examples available per language pair,
ranging between 104 and 109 sentence pairs. In
order to record gating decisions while controlling
for semantics, we created a multi-way aligned eval-
uation set containing nearly 3k sentence pairs for
all languages.1

Model: We use the 473M Transformer Big
(Vaswani et al., 2017) architecture (or modified ver-
sions of it in the case of sparse models) as described
by (Chen et al., 2018) for this set of experiments.
Similar to Section 4.1, we (1) share all parame-
ters across language pairs including softmax layer

1Each sentence in our evaluation set is semantically identi-
cal across all other languages.
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(a) Performance of different routing strategies on Xx-En language
pairs.

(b) Performance of different routing strategies on En-Xx language
pairs.

Figure 3: Comparing the performance of differ-
ent routing strategies for Mixture-of-Experts (MoE)
models on a massively multilingual dataset – We
compare routing experts by tokens, and tasks (using
either language pairs or target languages). Given that
routing by token on the encoder and routing by task on
the decoder performed the best on WMT (Table 1), we
use those settings for the scaled up 128 expert models
we compare. We split the comparison of results into
(a) Xx-En language pairs and (b) En-Xx language pairs.
The languages on the x-axis are sorted left-to-right in
descending order of resource size. Best seen in color.
Note that the token-level MoE has 6.5B parameters in
the decoders while our task-level MoE has only 200M.

and input/output word embeddings, (2) pre-pend a
<2xx> token to the source sentence to indicate the
target language and (3) use a Sentence Piece Model
(Kudo and Richardson, 2018) with 64k tokens vo-
cabulary shared on both the encoder and decoder
side.We followed the training and architecture as
shown in Lepikhin et al. (2020).2

2As opposed to displaying BLEU scores for each language
pair, we place the baselines on the x-axis at zero and report the
∆BLEU trendline of each model we consider. In order to set
these bilingual baselines, we train Neural Machine Translation
models for each language pair (e.g. a single model for German-
to-English), tuned depending on the available training data for

5.2 Results

We compare Task-level MoEs and Token-level
MoEs to their bilingual and multilingual baselines
in Figure 2. We train 128 expert MoE models with
routing in these settings: (1) Routing by token on
both the encoder and decoder, (2) Routing by to-
ken on the encoder and by target language on the
decoder and (3) Routing by token on the encoder
and by language pair on the decoder.

We find that these scaled up sparse models per-
form better than their dense baselines, with hybrid
task-level routing performing slightly better on En-
Xx language pairs and pure token-level routing per-
forming slightly better on Xx-En language pairs.
We hypothesize that for the Xx-En tasks, not explic-
itly dividing expert parameters by tasks on the de-
coder results in better transfer, thus explaining the
better performance of token-level routing. This sug-
gests that a hybrid strategy that partially restricts
access to experts based on task-boundaries, while
still permitting routing by tokens, might provide
the right balance between efficiency and quality.

We also note that while both forms of routing
have 13B parameters (6.5B on decoder) at train
time, token level routing only on the decoder uses
only 200M parameters at inference time, in addi-
tion to the practical considerations discussed in
Section 3.1. We provide aggregate BLEU scores in
Appendix A.6 and parameter count breakdowns in
Appendix A.5. In addition, we take a closer look at
routing decisions made for different languages by
the model in Section 5.4.

5.3 Comparison of Throughput on Massive
Models

Similar to Section 4.3, we compare Task-level
MoEs with Token-level MoEs in terms of through-
put across different batch sizes in Figure 4. We
decode the WMT14 English-German test set with
our TaskMoE model and with the baseline Token-
MoE model on 128 Cloud TPU V3 cores. We find
that our Task-MoE model has 2.6 times higher peak
throughput while using 32.34 times less decoder
parameters (201M vs 6.5B). Moreover, our Task-
MoE model has minimal communication overhead
compared to decoding with Token-MoE (0.2% ver-
sus 36% of step time).

that given language We tuned batch-size and different values
of regularization methods (e.g. dropout) in a Transformer-
Big or Transformer-Base layout, for high or low-resourced
languages respectively.
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Figure 4: Inference cost analysis: We measure
the throughput of our Task-MoE model and baseline
Token-MoE model across batch sizes and see that the
peak throughput of Task-MoE is 2.6 times higher.

5.4 A Closer Look at the Routing Decisions

Now, we analyze the routing decisions made in
token-level MoE models to further motivate our
investigation. We take a token-level MoE model
trained on the massively multilingual dataset and
decode these models on the multiway test-sets,
while logging routing decisions for every token.
We plot the top expert distributions of several tasks
with different scripts and language families in Fig-
ure 5. For clarity, and because these two groups
of languages behave differently in a multilingual
setting, we split the gating decisions into those for
Xx-En and En-Xx language pairs. In the encoder
(Figure 5a), tokens from all tasks (Xx-En) seem to
prefer the same set of few experts slightly over the
others. On the other hand, in the decoder (Figure
5b) each task seems to have a slight preference for
a few experts over the others. Moreover, the set of
experts appears to be similar for related languages.
For example, English-Spanish and English-Catalan
(two Romance Languages) have similar expert dis-
tributions and so do English-Russian and English-
Ukranian (two Slavic Languages). In the Appendix
A.7, we provide expert distribution plots for other
layers of this model. In addition, we provide expert
distributions of the MoE model that routes tokens
by target language discussed in Section 3.

Our analysis suggest that, when using token-
level routing, task-level decisions emerge naturally
in the decoder, providing additional motivation for
our proposed routing strategies.

6 Related Work

Conditional Computation: Conditional compu-
tation (Bengio et al., 2015), or routing examples
through the neural network by activating only a

sub-network of the network depending on the input
has seen success in large scale natural language
processing (NLP) ((Shazeer et al., 2017; Lepikhin
et al., 2020; Bapna et al., 2019)) and computer vi-
sion ((Yang et al., 2019)) tasks. A variety of strate-
gies can be used to route examples such as learning
a function on the input (Shazeer et al., 2017; Lep-
ikhin et al., 2020), computational budget (Bapna
et al., 2019; Elbayad et al., 2019) or simplifying
the expert allocation and training regimen (Lewis
et al., 2021; Fedus et al., 2021).

Multi-task Learning Multi-task Learning im-
proves model performance across all tasks trained
on due to regularization and positive transfer be-
tween related tasks (Caruana, 1997). Here, sub-
networks are be activated depending on the task to
which the input belongs - some of these parameters
may be shared. This approach has seen success in
a variety of domains such as classification, recom-
mender systems and NLP ((Ma et al., 2019, 2018;
Clark et al., 2019; Collobert and Weston, 2008;
Ruder et al., 2019; Tan et al., 2019)). Like our
work, some of these models have been designed
with inference benefits in mind ((Ma et al., 2019)).
In this work we focus on multi-task learning in the
case of Multilingual NMT.

Multi-task learning for Multilingual NMT
Models: Multi-task learning in multilingual mod-
els has been well-studied: while complete param-
eter sharing is simple and works well ((Johnson
et al., 2017)), an optimal strategy for sharing pa-
rameters and possibly having languages-specific
parameters would maximize transfer while mini-
mizing interference (Hokamp et al., 2019). Strate-
gies involve allocating language specific hidden
states, attention modules, decoders or additional
specialized layers ((Hokamp et al., 2019; Wang
et al., 2018; Gu et al., 2018; Bapna et al., 2019)).
In addition some strategies involve grouping param-
eters by language group (Fan et al., 2020; Tan et al.,
2019). Compared to these works, our approach
to parameter sharing is designed to scale models
without impacting inference efficiency (as opposed
to simply adding language-specific capacity) while
still enjoying the benefits of scaling. Most sim-
ilar to our work in terms of the inference utility
is proposed by (Li et al., 2020) where discrete la-
tent variables used to learn language specific layer
combinations, whereas in our study we focus on
improving inference efficiency of mixture of expert



3585

(a) Gating decisions of the last layer of the encoder for Xx-En language pairs.

(b) Gating decisions of the last layer of the decoder for En-Xx language pairs.

Figure 5: We record the gating decisions of our MoE model trained on internal data on a multiway parallel dataset.
The darker a cell, corresponding to, say en-sr and the 37th expert, the more the expert is used. In (a) the encoder,
tokens from all tasks (Xx-En) seem to prefer the same set of few experts slightly over the others; while in (b) the
decoder each task (En-Xx) seems to slightly prefer a few experts over the other. Moreover, the set of experts appears
to be similar for related languages. For example, English-Spanish and English-Catalan (two Romance Languages)
have similar expert distributions and so do English-Russian and English-Ukranian (two Slavic Languages).

models at scale.

7 Conclusions

In this work we discussed more inference friendly
algorithms for routing examples in multilingual
Sparse Mixture-of-Experts models by making use
of task boundaries. We empirically demonstrated
that this new algorithm performs as well as, or
better than, conventional token-based routing al-
gorithms on two different datasets: a multilingual
WMT setup covering 30 language pairs and a large
internal dataset covering 200 language pairs, in
terms of machine translation quality evaluated with
BLEU. By carefully comparing inference through-
put across different routing approaches and dis-
tilled models, we demonstrated the superiority of

task-based routing algorithms over either serving
a token-based MoE model as-is (in terms of peak
throughput) and over distilling a large MoE model
into a smaller dense model (in terms of BLEU).

We conclude by highlighting that algorithms that
are more inference friendly while retaining the qual-
ity gains of MoE models are a promising direction
for future exploration, motivating research on in-
ference efficiency for large models. Although we
studied some hybrid routing strategies where en-
coder and decoder networks utilize different rout-
ing schemes, we believe that future research on
more granular routing hybrids or hierarchical vari-
ants will deliver more gains and advance our under-
standing of large scale, sparsely gated, massively
multi-task networks.
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A Appendix

A.1 WMT Model and Training Details

For our experiments, we use the Transformer Base
model in (Chen et al., 2018), The sole difference
is that we use a 64k vocabulary: our model there-
fore contains 142M parameters. For multilingual
models, we share all parameters across language
pairs including softmax layer in input/output word
embeddings.

We use a 64k token vocabulary formed using
a Sentence Piece Model (Kudo and Richardson,
2018). The vocabulary is shared on both the en-
coder and decoder side. To learn a joint SPM model
given our imbalanced dataset, we followed the tem-
perature based sampling strategy with a tempera-
ture of T = 5.

Finally, our models are optimized using the
Adafactor optimizer (Shazeer and Stern, 2018) with
momentum factorization and a per-parameter norm
clipping threshold of 1.0. We followed a learn-
ing rate of of 3.0, with 40K warm-up steps for the
schedule, which is decayed with the inverse square
root of the number of training steps after warm-up.
BLEU scores presented in this paper are calculated
using SacreBLEU (Post, 2018) on the WMT test
sets. 3

For distillation, training and model details are
identical apart from a reduced learning rate of 0.2.

A.2 WMT Dataset Details

In Table 3 we provide the training set details for
the WMT 4 setup we use (Siddhant et al., 2020).
We provide the data sizes and WMT years of the
Train, Dev and Test sets we use.

A.3 Individual WMT BLEU Scores

Bilingual baselines: We first train Transformer
Base and Big models on each language pair. The
results are in Table 4.

In Tables 5 and 6 we provide individual BLEU
scores of the models discussed in Table 1.

A.4 Detailed Breakdown of Parameter
Counts on WMT

Table 7 describes the parameter counts of different
parts of the Transformers compared in Table 1.

3 BLEU+case.mixed+lang.<sl>-<tl>+
numrefs.1+smooth.exp+tok.<tok>+version
.1.3.0 , where sl is the source language, tl is the target
language and tok = zh if tl = zh and intl otherwise.

4http://www.statmt.org/wmt20/

https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
http://www.statmt.org/wmt20/
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A.5 Detailed Breakdown of Parameter
Counts

In Table 8 we describe the parameter counts of
different parts of the Transformers discussed in
Section 5.

A.6 Results on Large MoE Model
In Table 9 we provide aggregate BLEU scores for
the results in Figure 3.

A.7 Gating Decisions for task-level and
token-level MoEs

In this section, we show the top expert distributions
of different layers of the position-wise MoE model
discussed in Section 5.4 in Figures 6, 7, 8 and 9.

We also show expert distributions on MoE model
routing by target language from EnX that was intro-
duced in Section 5.2 in Figures 10 and 11. We omit
results on XEn language pairs because they belong
to the same task in the context of this model.
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(a) Gating decisions of the first layer of the encoder for Xx-En language pairs.

(b) Gating decisions of the last layer of the encoder for Xx-En language pairs.

Figure 6: Gating decisions of the encoder of the position-wise MoE model on Xx-En language pairs, trained on
internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say en-sr and
the 37th expert, the more the expert is used. In both the last layer of the encoder and decoder, the tokens from
each language are fairly well distributed across experts. In (a) the first layer of the encoder, there does not seem
to be any major pattern in the expert distribution whereas in (b) the last layer of the encoder, tokens from all tasks
(Xx-En) seem to prefer the same set of few experts slightly over the others.
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(a) Gating decisions of the first layer of the decoder for Xx-En language pairs.

(b) Gating decisions of the last layer of the decoder for Xx-En language pairs.

Figure 7: Gating decisions of the decoder of the position-wise MoE model on Xx-En language pairs, trained on
internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say en-sr and
the 37th expert, the more the expert is used. In both the first and last layer of the decoder, the tokens from each
language are fairly well distributed across experts. In fact, tokens from all tasks (Xx-En) seem to prefer the same
set of few experts slightly over the others.
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(a) Gating decisions of the first layer of the encoder for En-Xx language pairs.

(b) Gating decisions of the last layer of the encoder for En-Xx language pairs.

Figure 8: Gating decisions of the encoder of the position-wise MoE model on En-Xx language pairs, trained on
internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say en-sr and
the 37th expert, the more the expert is used. In both the first and last layer of the encoder, the tokens from each
language are fairly well distributed across experts. Each task (En-Xx) seems to slightly prefer a few experts over
the other.
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(a) Gating decisions of the first layer of the decoder for En-Xx language pairs.

(b) Gating decisions of the last layer of the decoder for En-Xx language pairs.

Figure 9: Gating decisions of the decoder of the position-wise MoE model on En-Xx language pairs, trained on
internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say en-sr and
the 37th expert, the more the expert is used. In both the first and last layer of the decoder, the tokens from each
language are fairly well distributed across experts. Each task (En-Xx) seems to slightly prefer a few experts over
the other. Moreover, the set of experts appears to be similar for related languages. For example, English-Spanish
and English-Catalan (two Romance Languages) have similar expert distributions and so do English-Russian and
English-Ukranian (two Slavic Languages).
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(a) Gating decisions of the first layer of the encoder for En-Xx language pairs.

(b) Gating decisions of the last layer of the encoder for En-Xx language pairs.

Figure 10: Gating decisions of the encoder of the target language-wise MoE model on En-Xx language pairs,
trained on internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say
en-sr and the 37th expert, the more the expert is used. The encoder behaves similarly to that of the position-wise
model: in both the first and last layer of the encoder, the tokens from each language are fairly well distributed
across experts. Each task (En-Xx) seems to slightly prefer a few experts over the other.
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(a) Gating decisions of the first layer of the decoder for En-Xx language pairs.

(b) Gating decisions of the last layer of the decoder for En-Xx language pairs.

Figure 11: Gating decisions of the decoder of the target language-wise MoE model on En-Xx language pairs,
trained on internal data on a multiway parallel dataset. In this diagram, the darker a cell, corresponding to, say
en-sr and the 37th expert, the more the expert is used. There seems to be some amount of expert sharing on a
linguistic basis: en-ur, en-te and en-ta (two Dravidian Languages and an Indo-Iranian language) and en-tr, en-uz
and en-uk (two Turkic languages and a Slavic language) share an expert. On the other hand, en-es and en-ca (two
Romance languages) have different experts.
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Language
Pair

Data Sources # Samples

Train Dev Test Train Dev Test

cs→en WMT’19 WMT’17 WMT’18 64336053 3005 2983
fr→en WMT’15 WMT’13 WMT’14 40449146 3000 3003
ru→en WMT’19 WMT’18 WMT’19 38492126 3000 2000
zh→en WMT’19 WMT’18 WMT’19 25986436 3981 2000
es→en WMT’13 WMT’13 WMT’13 15182374 3004 3000
fi→en WMT’19 WMT’18 WMT’19 6587448 3000 1996
de→en WMT’14 WMT’13 WMT’14 4508785 3000 3003
et→en WMT’18 WMT’18 WMT’18 2175873 2000 2000
lv→en WMT’17 WMT’17 WMT’17 637599 2003 2001
lt→en WMT’19 WMT’19 WMT’19 635146 2000 1000
ro→en WMT’16 WMT’16 WMT’16 610320 1999 1999
hi→en WMT’14 WMT’14 WMT’14 313748 520 2507
kk→en WMT’19 WMT’19 WMT’19 222424 2066 1000
tr→en WMT’18 WMT’17 WMT’18 205756 3007 3000
gu→en WMT’19 WMT’19 WMT’19 155798 1998 1016

en→cs WMT’19 WMT’17 WMT’18 64336053 3005 2983
en→fr WMT’15 WMT’13 WMT’14 40449146 3000 3003
en→ru WMT’19 WMT’18 WMT’19 38492126 3000 2000
en→zh WMT’19 WMT’18 WMT’19 25986436 3981 2000
en→es WMT’13 WMT’13 WMT’13 15182374 3004 3000
en→fi WMT’19 WMT’18 WMT’19 6587448 3000 1996
en→de WMT’14 WMT’13 WMT’14 4508785 3000 3003
en→et WMT’18 WMT’18 WMT’18 2175873 2000 2000
en→lv WMT’17 WMT’17 WMT’17 637599 2003 2001
en→lt WMT’19 WMT’19 WMT’19 635146 2000 1000
en→ro WMT’16 WMT’16 WMT’16 610320 1999 1999
en→hi WMT’14 WMT’14 WMT’14 313748 520 2507
en→kk WMT’19 WMT’19 WMT’19 222424 2066 1000
en→tr WMT’18 WMT’17 WMT’18 205756 3007 3000
en→gu WMT’19 WMT’19 WMT’19 155798 1998 1016

fr→de WMT’19 WMT’13 WMT’13 9824476 1512 1701
de→fr WMT’19 WMT’13 WMT’13 9824476 1512 1701

Table 3: Data sources and number of samples for the parallel data in our corpus. Please note that we don’t use
parallel data in Fr-De for any of the experiments in the paper.

xx cs fr ru zh es fi de et lv lt ro hi kk tr gu

Any-to-English (xx→en) 31.3 37.2 36.0 21.7 32.7 27.3 31.7 23.1 15.0 21.3 30.1 8.5 11.5 15.9 1.0
English-to-Any (en→xx) 23.8 41.3 26.4 31.3 31.1 18.1 29.9 18.2 14.2 11.5 23.4 4.5 1.9 13.6 0.6

Table 4: Bilingual baselines. xx refers to language in the column header. (Siddhant et al., 2020)
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