B cosMic: A Coherence-Aware Generation Metric for Image

Descriptions
Mert inan Piyush Sharma Baber Khalid
University of Pittsburgh Google Research Rutgers University

mert.inan@pitt.edu

Radu Soricut
Google Research

rsoricut@google.com
Abstract

Developers of text generation models rely on
automated evaluation metrics as a stand-in
for slow and expensive manual evaluations.
However, image captioning metrics have strug-
gled to give accurate learned estimates of
the semantic and pragmatic success of out-
put text. We address this weakness by intro-
ducing the first discourse-aware learned gen-
eration metric for evaluating image descrip-
tions. Our approach is inspired by computa-
tional theories of discourse for capturing infor-
mation goals using coherence. We present a
dataset of image—description pairs annotated
with coherence relations. We then train a
coherence-aware metric on a subset of the
Conceptual Captions dataset and measure its
effectiveness—its ability to predict human rat-
ings of output captions—on a test set com-
posed of out-of-domain images. We demon-
strate a higher Kendall Correlation Coefficient
for our proposed metric with the human judg-
ments for the results of a number of state-
of-the-art coherence-aware caption generation
models when compared to several other met-
rics including recently proposed learned met-
rics such as BLEURT and BERTScore.

1 Introduction

An investigation of the descriptions used with im-
ages on the web shows that image descriptions
can have different functions and goals (Kruk et al.,
2019a; Alikhani et al., 2020). For instance, cap-
tions may describe visible entities, activities and
relationships, provide background information that
goes beyond what’s visible, or report the writer’s
own subjective reactions to what’s displayed. By
drawing on such diverse examples, image caption-
ing models can learn the different inferential links
between text and images and use that information
at generation time to produce descriptions that can
fulfill different discourse goals and inject the de-
sired context into their output (Papineni et al., 2002;
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Figure 1: A comparison of the scores for a generated
(Model) caption that has a different coherence relation
than the reference (Human) caption. “Coh.” represents
the coherence labels for generated and reference cap-
tions. Our coherence-aware metric COSMic is aware
of the different information goals for these captions,
and assigns a more adequate score when comparing
the Model caption against the Human caption. In this
case where a caption that does not just describe the
image but elaborates on it, our metric recognizes that
the model output is potentially successful (Photo credit:
Moorthy Gounder)

Lin, 2004; Denkowski and Lavie, 2014; Anderson
et al., 2016a).

So far, however, efforts to develop such expres-
sive captioning models have been hindered by the
lack of automatic metrics that can evaluate their
output with respect to their information goals in
context. Previous approaches to automatic cap-
tion evaluation have mostly focused on n-gram
measures of similarity to reference output (Vedan-
tam et al., 2014); such surface-level models fail
to deal with the lexical and syntactic diversity of
image descriptions. More recent approaches more
closely approximate semantic similarity using word
embedding-based techniques. These models show
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robust performance and achieve a higher correla-
tion with human judgments than that of previous
metrics. Nevertheless, they too fail to generalize
to the different kinds of content that successful de-
scriptions may exhibit across different goals and
contexts. That is, they cannot distinguish reason-
able descriptions that happen to differ from refer-
ence output in their goals and perspective, from
problematic descriptions that hallucinate inappro-
priate content or context.

To bridge this gap, we present a coherence-aware
embedding-based generation metric that learns to
respect diverse discourse goals without penalizing
captions that are purposefully generated to fulfill
different purposes or communicate background in-
formation. Figure 1 demonstrates this capability by
presenting an example image and captions with dif-
ferent coherence labels together with their scores.

Our approach to modeling discourse goals is
based on the framework of discourse coherence the-
ory (Hobbs, 1985), which characterizes the infer-
ences that give discourse units a coherent joint in-
terpretation using a constrained inventory of coher-
ence relations. In particular, we use the taxonomy
for image—text coherence developed by Alikhani
et al. (2020), which for example includes Visible,
Story and Subjective relations between the text and
the image. A description and an image stand in a
Visible relation if the text includes information that
is recognizably depicted in the image. Subjective
captions react to the content of the image and Story
captions provide a free-standing description of the
circumstances depicted in the image similar to the
Narration relation in text. Our metric is learned in
part from a new dataset of 4000 images with de-
scriptions labeled with different coherence labels
in this taxonomy.

In inaugurating the study of coherence-aware
generation metrics, we make the following specific
contributions. In Section 3 we present two differ-
ent, annotated datasets for training and testing a
coherence-aware metric. We present a model to
score a generated caption given the image, refer-
ence caption, and the discourse goals of both these
captions (Section 4). We compare this metric to pre-
vious ones using a common methodology, ranking
the performance of several different caption genera-
tion systems on out-of-domain images—telying on
a new benchmark out-of-domain test set, which we
publish, providing reference captions for a subset
of Openlmages (Kuznetsova et al., 2020b). Our

experiments demonstrate that among all these met-
rics, our proposed metric has the highest correlation
with human judgments.

2 Related work

There are diverse ways of characterizing the con-
tributions of text and imagery. Gao et al. (2015)
investigate the genre of image captions and Huang
and Kovashka (2016) study the persuasive implicit
relationships between text and images. Kruk et al.
(2019b) study the emotional links between text and
images. Otto et al. (2019) present an annotated
dataset of text and imagery that compares the in-
formation load in text and images. However, we
build on works that study information-level infer-
ences between discourse units in different modali-
ties such as comic book panels (McCloud, 1993),
movie plots (Cumming et al., 2017), and diagram-
matic elements (Hiippala et al., 2021). In particular,
we use Alikhani et al. (2020)’s relations that char-
acterize inferences between text and images.

Coherence-aware models have benefited sev-
eral NLP tasks such as gesture interpretation (Las-
carides and Stone, 2009; Pustejovsky and Krish-
naswamy, 2020), text summarization (Xu et al.,
2019), machine comprehension (Gao et al., 2020).
The majority of these works use Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1987)
and Penn Discourse TreeBank (PDTB) (Prasad
et al., 2008b) datasets to learn and predict these
relations between two adjacent text spans. In this
line of work, we are the first to present a coherence-
aware generation metric.

The most widely used automatic evaluation met-
rics are ngram-based, which compute the exact
number of ngram matches between reference and
generated text (Cui et al., 2018). Examples of
such metrics that are commonly used for evaluating
the output of captioning, translation and summa-
rization models are BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and CIDEr (Vedantam et al.,
2015), . The major problem of the n-gram sim-
ilarity metrics is that they give no credit to syn-
onym matches of reference n-grams, even if those
words are common and used appropriately in the
generated text. Embedding-based metrics such as
BLEURT (Sellam et al., 2020) and BERTScore
(Zhang et al., 2020) designed to address this lim-
itation are closer to human ratings. BLEURT is
a data-intensive training scheme that is based on
BERT (Devlin et al., 2019) fine-tuned on human
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Man sitting by his artwork
looking at a large statue of
a man on a horse in a royal

A pink flower bush in a gar-
den.

Woman with an umbrella

reading a book sitting in the
grass in front of a city sky-

« i
The underside of the Arc de
Triomphe.

Cowboy on a horse and cow-
boy on the ground working
together to lasso a calf in a

Close-up of a fly sitting on a
daisy.

Black and white artwork
painted on a blue wall.

courtyard. line.

pen.

Figure 2: Examples of the ground truth captions that we collected for the COIN dataset. (Photo credits from left to
right, top to bottom: Sharron Mollerus, Northfielder, George M. Groutas, davebloggs007, Tim Adams, Brisbane

City Council, Colin Brown, Guilhem Vellut)

ratings of generated text. BERTScore, however,
computes the similarity score as the average of
cosine similarities between predicted tokens and
their top matching reference tokens. These metrics
however, do not respect the information goal and
the purpose for which the model has generated the
text. We address this problem by introducing the
first coherence-aware generation metric. Similar
to SPICE (Anderson et al., 2016b) and VIFIDEL
(Madhyastha et al., 2019) we use the information
encoded in images. We further propose the addi-
tion of coherence relations that facilitate learning
with fewer samples by a multimodal metric using
pre-trained BERT and ViLBERT.

3 Data Collection

We collect two datasets: human judgments for
image captions that are generated by coherence-
aware captioning systems using Conceptual Cap-
tions dataset; and ground-truth labels for the Open
Images dataset. With Conceptual Captions cor-
pora we fine-tune VILBERT with ratings and show
that addition of coherence relations can make au-
tomated scoring closer to human scoring. We use
Openlmages corpora to reinforce that multimodal-
ity and coherence relations have significant contri-
butions to scoring out-of-domain datasets, as well.

Protocol We hired two expert linguists for data
annotation and designed an annotation website to
facilitate the annotation procedure. They are na-
tive English speakers who identify themselves as

of White and Latino ethnicity. The code ! of the
annotation website, and the details of the protocol
is publicly available. The study has been approved
by our institution’s human subject board.

Conceptual Captions Score Annotation We
have collected ratings on the quality of different im-
age descriptions with coherence labels for a subset
of 1000 images from the Conceptual Captions (CC)
training dataset (Ng et al., 2020). With this paper,
we are publishing this dataset as a benchmark for
evaluation metrics that are coherence-aware. The
set-up of the data collection is as follows: CC
images are input into a caption-generation model
created by Alikhani et al. (2020). This model
generates coherence-aware descriptions for input
images in 4 different coherence classes of Meta,
Visible, Subjective, Story. These 4,000
image/caption pairs are then presented to human
annotators who are asked to select the correct
coherence label for each pair:

* Meta: the caption talks about when, where,
and how the picture is taken. Meta-talk in
Schiffrin (1980)

* Visible: the caption is true just by looking at
the picture. Restatement relation in Prasad
et al. (2008a).

* Subjective: the captions is the matter of opin-
ion. Evaluation relation in Hobbs (1985).

» Story: text and image work like story and il-
lustration. Occasion relation in Hobbs (1985).

"https://github.com/Merterm/COSMic
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Figure 3: An illustration of different flavors of COSMic that outputs a score for the generated caption given the
image, reference caption, and the coherence-labels for both the captions. (a) COSMic Vanilla uses only global
textual and visual features, while (b) COSMic VILBERT uses combined visio-linguistic features with both local
and global focus. This model takes into account the information goals (determined by coherence-labels) for both
the captions when comparing the generated caption to the reference for evaluation.

After the annotator selects a specific coherence
label from the above, we ask them to rate the quality
of the captions, given the label, on a scale of 1 to
5. We use these annotations as training data for our
coherence-aware captioning metric, COSMic. We
call this data we annotated RaCCoon (Ratings for
Conceptual Caption).

To calculate the Cohen’s x agreement measure,
we selected 150 images randomly and assigned
them to two annotators. The Kappa coefficient is
x = 0.89 which indicates a substantial agreement
(Viera and Garrett, 2005)

Openlmages Ground Truth Captions To cre-
ate an out of domain test set we asked our anno-
tators to write Visible captions for 1,000 images®
from the Openlmages dataset (Kuznetsova et al.,
2020a). We call this dataset COIN (Corpus of
Openlmages with Natural descriptions). A sample
of these ground truth captions written by our expert
linguists are presented in Figure 2. We use this
dataset to test COSMic and other learned metrics
in Section 5 and present our benchmark results in
Table 1.

4 Method

The goal of a coherence-aware image captioning
metric is to predict a score for the generated cap-
tion given the image, reference caption, and coher-
ence relations of one generated caption and one

>The same subset, named T2, was used for the

CVPR-2019 Workshop on Conceptual Captions,
www.conceptualcaptions.com.

reference caption. This metric function M can be
formalized as predicting a score s as follows:

SZM(Ivgvrngarc;9> (1)

where the metric is defined by parameters 6, and
where the model inputs are defined as [ being the
image being captioned, g and r the generated and
reference captions, respectively. g. and r. are the
coherence relations for g, r respectively.

We now describe the architecture of our
coherence-aware image captioning metric, COS-
Mic (COherence-Sensitive Metric of image
captions). It has two flavors — a VILBERT-based
model pre-trained on large multimodal data, and a
baseline Vanilla version, as illustrated in Figure 3.
Both are trained on RaCCoon training data (Sec-
tion 3) with normalized human annotated rating to
obtain the model’s target score.

4.1 COSMic VILBERT

VIiLBERT (Lu et al., 2019) is a multimodal feature
learning model pre-trained on 3.3 million Concep-
tual Captions image and captions data. It is trained
for masked multi-modal learning and multi-modal
alignment prediction and demonstrates strong per-
formance on several downstream multimodal tasks
such as VQA, VCR, grounding, and image retrieval.
For this reason we use a pre-trained VILBERT to
embed our multimodal inputs shown in Equation 1
with changes to incorporate both the captions and
coherence relations.
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For input image (I), we use the same process
as VILBERT. We use a Faster R-CNN (Ren et al.,
2016) model pre-trained on Visual Genome (Kr-
ishna et al., 2016) to detect objects regions and ex-
tract features. The sequence of these image features
is denoted as I’ with 100 bounding box features
where each element is R2%48. Similar to VILBERT,
we use the special token [IMG] to denote the be-
ginning of the bounding box features list.

For input captions (g, r) and coherence labels
(gc» gr), the sequence begins with the special token
[CLS] followed by input text embeddings. Each of
our text inputs are tokenized and embedded using
VIiLBERT’s input text pre-processing and denoted
as ¢, ', g., g, for g, v, g. and g, respectively.
Note that the coherence labels are processed as text
inputs such as “Visible” and “Story” which allows
the model to use its pre-trained representations of
these concepts. Each of these input sequences are
separated by the special token [SEP] to form our
input sequence.

Hence, our input to VILBERT is of form:

v =([IMG], I', [CLS], ', [SEP], ¢, [SEP], r¢, [SEP], g¢)

We use a linear layer with sigmoid activation
on VILBERT’s output text logits to compute COS-
Mic’s output metric score (s).

s = Linear(ViLBERT (v)) ()

During training, we fine-tune VILBERT and the
output linear layer in an end-to-end fashion by mini-
mizing the Mean-Squared error between the output
score, s and the corresponding reference score, ,
on the RaCCoon dataset.

4.2 COSMic Vanilla

The COSMic VILBERT approach above takes ad-
vantage of multimodal pre-training on the Concep-
tual Captions dataset to embed the image and text
inputs. As a simpler baseline, we now present
COSMic Vanilla which independently embeds the
input image and text to be later combined for score
computation with no end-to-end training.

To extract image features, we use a ResNet50v2
(He et al., 2015) model pre-trained on ImageNet
(Deng et al., 2009) and linearly transform the global
image representation to 512-dimensional space.

er = Linear; (AveragePool(ResNet(/))) (3)

In our textual feature extraction module, we
embed g and r independently with a pre-trained

BERT-Large-512 model. We use the [CLS] to-
ken embedding as 1024 dimensional caption-level
representation in each case and transform them to
512-dimensional space.

eq = Linears(BERTcs(g))

4
e, = Lineary(BERT 1 s(7)) @

In our coherence label embedding module, g,
and r. are each represented as one-hot vectors such
that the dimensions correspond to labels Meta, Vis-
ible, Subjective and Story. Each is embedded into
a 512-dimensional space.

eq. = Linears(g.) 5)

ey, = Linears(r.)

We thus obtain the 5 vectors (each R°1?),
representing one of the inputs of Equation 1.
We concatenate and use a feed-forward net-
work with progressively smaller hidden layers
of sizes [512,256, 128,64, 32,16, 8], each with
ReLU (Agarap, 2018) activation. The output score,
s, is computed by a final linear layer on top of the
above network.

e = concat(ler, eg, €y, €g,, €r.]))

s = Lineary(MLP; (e)) ©

where e € R?°® and s € R.

To understand the role of each component of this
implementation, we further deconstruct each mod-
ule in ablation experiments described in Table 2.

4.3 Coherence-aware Captioning Systems

In order to experiment with COSMic, we generate
our own captions. In this section we describe the
coherence-aware captioning systems used to gener-
ate these image captions for the training and testing
of COSMic.

For our base captioning system, we use the state-
of-the-art coherence-aware captioning system in-
troduced by (Alikhani et al., 2020). It uses a
Transformer-based (Vaswani et al., 2017) encoder-
decoder architecture where the encoder inputs are
(1) global image features, (2) image labels, and (3)
coherence label. The coherence-label also serves
as the first input token for the decoder which gen-
erates the output captions. We set the coherence
label to the groundtruth relation at training time,
and the desired relation at inference time. We use
the Conceptual Captions dataset (Sharma et al.,
2018) with machine-generated coherence labels for
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System Metrics

Avg.

Model | Coh. Hum. BS-  COSMic COSMic COSMic COSMic

Label Rating B1 B2 M Ry ¢ § BR g Vanilla  ViL- Vanilla+  ViL-

BERT BERT+

BUTD | Visible 2091 163 077 049 160 092 030 -877 863 706 796 52 641

Visible 3532 050 025 019 066 020 002 -L114 862  .696 777 516 614

Base | Meta 3213 041 000 012 063 012 000 -1.050 863 548 727 505 602

Subj. 2830 033 012 011 057 017 000 -1.197 849 323 421 358 403

Story 2915 029 000 017 058 013 000 -1304 842 533 629 482 527

Visible 3298 028 011 013 053 01 000 -L.101 863  .684 784 515 604

Lie | Met 2830 026 010 008 055 015 000 -1.084 859 548 748 511 565

¢ | Subj. 2208 039 012 019 066 024 003 -1217 849 364 451 379 419

Story 2426 036 000 018 062 021 000 -1362 842 568 666 499 519

Kendall’s
1000 071 154 036 -036 -571 -052 286 445 571 546 667 764

Correlation (7)

Table 1: System-level scores for 9 different image captioning systems as evaluated by human annotators and
various captioning metrics. Bottom-Up Top-Down (BUTD) is trained on COCO, while others are trained on the
Conceptual Captions (CC) dataset. The evaluation however is conducted on COIN dataset, which is out-of-domain
for both COCO and CC. This domain shift causes the n-gram based metrics (e.g. BLEU, ROUGE, CIDEr) to assign
very low scores to otherwise correct captions (See Table 4). Whereas embedding based metrics (e.g. BLEURT,
BERTScore and COSMic) do not suffer from this limitation. Since all metrics have different scales, instead of
absolute scores, we use Kendall Rank Correlation to measure agreement with human scores. Model names are
abbreviated as follows: B: Bleuy, Bo: Bleus, M: METEOR, R;: ROUGE,, C: CIDEr, S: SPICE, BR: BLEURT,
BS-F: BERTScore F1. COSMic models with '+’ denote application of data augmentation to remove training data
bias. More metrics and detailed results can be found on the code repository.

training this captioning system. To obtain the co-
herence labels above, we closely follow (Alikhani
et al., 2020) to train a coherence classifier on the
Clue dataset (Alikhani et al., 2020) that provides
around 4K human annotated (image, caption, rela-
tion) triplets. We present two caption-generation
systems in this section.

Base-systems family A family of 4 captioning
systems is created by setting the coherence-label
to Meta, Visible, Subjective or Story in the base
captioning model described above. These are con-
sidered different captioning systems because the
information content and discourse goals, as con-
trolled by the coherence label, are different.

Lite-systems family We remove the global im-
age features from the base model’s input to obtain
a smaller, light-weight (lite) model. Similar to the
base model, we obtain a family of 4 captioning
systems by changing the coherence-label.

In Section 5, we study the order in which sev-
eral image captioning metrics rank these 8 systems.
The goal is to identify the metric that agrees the
most with the groundtruth rankings based on hu-
man assessments.

4.4 COCO-trained Captioning System

COSMic’s training data, RaCCoon, is based on
Conceptual Captions and it is coherence-aware. To
test the model’s generalization capability, we use

a captioning system trained on MS COCO (Chen
et al., 2015). Since COSMic expects an input co-
herence label, and COCO captions are Visible style
by design, we set the label to Visible. Specifically,
we use the Bottom-Up Top-Down (BUTD) Atten-
tion model (Anderson et al., 2018). This helps
study how well COSMic generalizes to other cap-
tioning datasets and coherence-agnostic captioning
systems.

5 Experiments

Here, we describe the experimental setup to com-
pare COSMic with other metrics. As outlined in
Section 3 and 4, we use the RaCCoon data to train
our models, and COIN to test COSMic and other
metrics. We have several baseline metrics that we
compare to, which can be found on Table 1.

5.1 Model Training Setup

We implement COSMic—as described in Sec-
tion 4—with PyTorch (Paszke et al., 2019) and train
on a GTX1080 GPU. We pre-compute BERT? and
ResNet* features using their TensorFlow (Abadi
et al., 2015) implementations. We use the pub-

*https://github.com/google-research/
bert

*https://www.tensorflow.org/api_docs/
python/tf/keras/applications/ResNet50V2
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lic VILBERT’ implementation. We use a batch
size of 4, and a learning rate of 2 x 10~ for fine-
tuning ViLBERT and use RAdam optimizer and
stop the training when the validation score does
not change for 3 epochs. For COSMic Vanilla,
we train with a batch-size of 10, Adam optimizer
(Kingma and Ba, 2017) with a base learning rate
of 1073 that decays by a factor of 10~2 every 10
epochs. We observe that the Vanilla converges
in approximately 100 epochs and VILBERT con-
verges in 9 epochs. VILBERT has 250 million
parameters. COSMic Vanilla includes 3,062,913
trainable parameters. Pre-trained BERT-Large and
ResNet50V2 have an additional 350 million param-
eters. The setup for coherence-aware captioning
models to obtain machine-generated captions for
our study is the same as (Alikhani et al., 2020).

5.2 Baseline Captioning Metrics

To benchmark COSMic, we compare it with other
learned metrics. In this section we describe these
various metrics traditionally used for measuring
image captioning systems. None of these metrics
were designed to support the coherence relations
of the reference or generated captions. These serve
as baselines for COSMic.

N-gram based The most popular image caption-
ing metrics are based on precision and recall of n-
grams from generated and reference captions. We
compare with Bleu;, Bleus, Bleus, Bleuy (Guo and
Hu, 2019), ROUGE[, (Lin, 2004), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al.,
2016b). We compute these using their popular
open-source implementation®.

BLEURT We use a pre-trained BLEURT model’
as a baseline for our work. Unlike N-gram based
approaches, BLEURT uses BERT-based word em-
beddings which are robust to variations in surface
word realizations between the reference and gen-
erated captions. We do not do any fine-tuning for
this baseline.

BERTScore BERTScore® uses a pre-trained
BERT model to embed the reference and gener-
ated captions. Text-level similarity scores are then

Shttps://github.com/facebookresearch/
vilbert-multi-task
®https://github.com/tylin/coco-caption
"https://github.com/google-research/
bleurt
$https://github.com/Tiiiger/bert_score

computed by matching the tokens’ output embed-
dings.

Please note that for both BERT-based baselines
above (BLEURT, BERTScore), we use the BERT-
Large-512 size model.

5.3 COIN-based Evaluation Setup

We use each baseline metric and COSMic to score
the 8 different image captioning systems described
in Section 4 on the same set of test images with
reference captions. Note that the range and scale
of each metric is different, however they are all
monotonously increasing functions of model qual-
ity. So in our study, we do not analyze the abso-
lute score assigned by these metrics, but only their
ranks. We also ask human annotators to rank these
8 captioning systems on the same set of test im-
ages. The ranks assigned by a higher performing
metric will align better with the ranks from human
annotators.

Since the captioning systems above are trained
on Conceptual Captions or COCO, we use im-
age/caption pairs from COIN for an out-of-domain
evaluation. A subset of 50 random images is used
to rank the captioning systems as described above,
resulting in 400 machine-generated captions total
for the 8 captioning systems. These were then
evaluated by human annotators using the process
described in Section 3. The human-scored system
level performance for each captioning system on
this test set is reported in Table 1 in “Average Hu-
man Rating”.

We measure the alignment between metric-
assigned and human-assigned scores using the
Kendall (Kendall, 1938) correlation coefficient. In
order to calculate the score, we first aggregate all
the sample scores and average them. Then we
calculate the Kendall tau score using the SciPy
1.7.1 implementation. The score is calculated
between two vectors, first of which is the aver-
age human ratings for 8 models and the second
being the investigated metric scores for 8 mod-
els in the following order:[Basey ;sipic, Basensetas
BaseSubjective, BaseStm‘y, Liteyisibie, Lit€nsetas
Litegupjective, Lit€siory|. Due to the small sam-
ple size, Kendall correlation is the most suitable
correlation measure.

A key measure of the success of an automatic
evaluation metric is whether it makes the same deci-
sion about which system is better in a head-to-head
evaluation as we would get from a human-subjects
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evaluation. If each system is evaluated based on
its average score, then success comes when the av-
erage computed metric correlates closely with the
average human-ranking. In particular, we measure
the alignment between metric assigned and human
assigned scores using the Kendall score, following
the work of (Sellam et al., 2020).

6 Results

Table 1 presents the results of the COIN-based
study. The last row reports the Kendall correla-
tion coefficient between the scores assigned by the
metric and humans.

All N-gram based metrics, such as BLEU and
CIDEr, fail to adapt to the out-of-domain ground-
truth captions from COIN. This results in a rela-
tively flat distribution of system-level scores con-
centrated close to 0, and hence low correlation co-
efficients. CIDEr has a highly negative Kendall’s
7, which denotes a strong negative association
with human judgements. This is partly due to low
(~0.01) and hence noisy CIDEr scores. (Figure 4
provides example cases that illustrate this argu-
ment.)

Embedding-based methods, BLEURT and
BERTScore, do not suffer from this limitation re-
sulting in more meaningful scoring of systems and
hence higher correlation with human scores. How-
ever, by design, both these metrics are agnostic to
coherence-labels and the input image. COSMic,
which is coherence-aware, obtains the highest cor-
relation with human scores. COSMic VILBERT
has the highest Kendall’s correlation among all of
our models. COSMic Vanilla performs the sec-
ond best among our models and it performs better
than the rest of the models in terms of Kendall’s
correlation.

Reference  two men in scrubs per-
forming surgery. clear blue sky.
Generated surgeons operatingona mountain range as seen

patient. from the trail.

o Tegis

mountains in front of a

Data Augmentation The raw RaCCoon training
data has a coherence-level bias as demonstrated by
the average COSMic score for each class — Visi-
ble (0.622), Meta (0.459), Subjective (0.236) and
Story (0.397). This reflects the human annotators’
bias towards liking Visible captions the most, and
Subjective captions the least, which is expected.
However, training COSMic on this data injects the
same coherence-bias into the model which is un-
desirable. As presented in Table 1, both flavors of
COSMic (without the ‘+’) assign high scores to
Visible captioning systems.

To mitigate this issue, we algorithmically aug-
ment the training data to bring the average scores
for each coherence class to comparable values. We
achieve this by pairing images with random cap-
tions from the coherence class and assigning them
a score of 0. This is a valid training sample because
the randomly sampled caption does not describe the
said image and serves as a negative sample. With
these operations, the class bias is significantly re-
duced — Visible (0.459), Meta (0.439), Subjective
(0.328) and Story (0.425). The COSMic columns
in Table 1 with ‘+” denote that this data augmen-
tation approach improves ranking of captioning
systems leading to better alignment with human
judgements.

Ablation Study Table 2 reports the perfor-
mance of COSMic Vanilla without coherence-
labels and/or the image as model inputs. We find
that removal of image features affects COSMic’s
performance, showing the important contribution
of images. The performance deteriorates signifi-
cantly when the coherence-labels are removed from
the model ("No 7, g." column in Table 2). This
demonstrates that COSMic successfully integrates
coherence-relations in the caption scoring process.

large brick building next to
a green lawn and big trees.
the front of the house.

a foggy forest.

light shining through
the trees.

Figure 4: Tllustration of COIN reference captions and corresponding outputs of the Base-Visible model. Though
the generated captions are correct, an n-gram based metric such as CIDEr assigns them a very low score due to the
variations in surface word realizations. See Table 1 for average scores over the test set. (Photo credits, from left to
right: U.S. Army Africa, Gabriel, Fr James Bradley, Rosmarie Voegtli)
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System | COSMic
Model | Coh. Ful NolI Noc Nolé&c
Label
Visible | .516 447 434 442
Base Meta .505 439 442 453
Subj. 356 347 438 453
Story .505 433 436 445
Visible | .515 444 434 433
Lite Meta 511 434 447 464
Subj. 379 367 440 459
Story 499 440 433 442
Kendalls 667 546 -222  -415
Corr. (1)

Table 2: Ablation experiment results. "No [" repre-
sents "COSMic Vanilla without image features", "No
¢, gc" represents "COSMic Vanilla without coherence
label embeddings", finally "No I & No r., g." repre-
sents "COSMic Vanilla without coherence label embed-
dings and without image features".

7 Conclusion

Our work is the first step towards designing genera-
tion metrics that respect the information goal of the
generated text. We observe that a small set of ex-
amples annotated with coherence relations can pro-
vide what is needed for learning a discourse-aware
generation metric. Our findings have implications
for designing context-aware multimodal metrics
with criteria that are closer to human ratings for
evaluating machine-generated multimodal content.

We have called attention to the challenge of
learning robust generation metrics that can eval-
uate the output of the generation models consid-
ering the information goals. Our findings sug-
gest that fine-tuning VILBERT—originally trained
with millions of images—with a smaller sample of
coherence relations and expert-annotated scoring,
automated metrics can score generated captions
closer to a human rating. The presented dataset
provides the opportunity for future research in the
area of image description generation, designing
discourse-aware metrics, and multimodal content
evaluation. We hope that coherence-aware text gen-
eration metrics could be used for learning better
generation models (such as abstractive summariza-
tion or story generation) and could be deployed
directly in machine learning pipelines to help in
optimizing hyper-parameters. Ultimately, it is in-
tended to have a generalizable model that can use
a labeling mechanism—not restricted to coherence
labels— to improve applicability of generation met-
rics in different tasks.

8 Ethics

This paper describes a research prototype. We do
not work with sensitive or personal data. Our pro-
tocol was approved by our ethics board. Human
subjects participated voluntarily, undertook min-
imal risk, and were compensated fairly for their
time. The dataset we produced is fully anonymized.
Subjects consented to the distribution of their data
as part of their participation in the research. Tech-
nologists should think carefully before deploying
our ideas in production. Our work depends on
pretrained models such as word and image embed-
dings. These models are known to reproduce and
even magnify societal bias present in training data.
Moreover, like many ML NLP methods, our meth-
ods are likely to perform better for content that
is better represented in training, leading to further
bias against marginalized groups. We can hope that
general methods to mitigate harms from ML bias
can address these issues.

A distinctive complication of our work is the fact
that many image—text presentations involve writ-
ers expressing subjective opinions. By its nature,
our evaluation metric assesses such subjective texts
based on averages and trends across many users,
which may be problematic. Although such judg-
ments are ultimately matters of personal taste, they
are nevertheless often grounds by which hierarchies
of differences are culturally encoded and enforced.
Thus, a deployed subjective-caption generation sys-
tem could well be unfair to users, especially if those
users are not confident in their own taste or critical
towards the system’s responses. Our evaluation
metric is not sensitive to such harms.
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