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Abstract

While contrastive learning is proven to be
an effective training strategy in computer vi-
sion, Natural Language Processing (NLP) is
only recently adopting it as a self-supervised
alternative to Masked Language Modeling
(MLM) for improving sequence representa-
tions. This paper introduces SupCL-Seq,
which extends the supervised contrastive learn-
ing from computer vision to the optimization
of sequence representations in NLP. By alter-
ing the dropout mask probability in standard
Transformer architectures (e.g. BERTbase), for
every representation (anchor), we generate
augmented altered views. A supervised con-
trastive loss is then utilized to maximize the
system’s capability of pulling together similar
samples (e.g., anchors and their altered views)
and pushing apart the samples belonging to the
other classes. Despite its simplicity, SupCL-
Seq leads to large gains in many sequence
classification tasks on the GLUE benchmark
compared to a standard BERTbase, including
6% absolute improvement on CoLA, 5.4%
on MRPC, 4.7% on RTE and 2.6% on STS-
B. We also show consistent gains over self-
supervised contrastively learned representa-
tions, especially in non-semantic tasks. Finally
we show that these gains are not solely due
to augmentation, but rather to a downstream
optimized sequence representation. Code:
https://github.com/hooman650/SupCL-Seq

1 Introduction

Sequence classification is a fundamental problem
in natural language processing (NLP), as it has
a wide range of applications, including but not
limited to the tasks such as sentiment analysis,
inference and question answering (Minaee et al.,
2020). Cross-entropy loss is generally the de-
fault loss function in training neural networks for
NLP downstream tasks (Zhang and Sabuncu, 2018;
Sukhbaatar et al., 2015). Recently, thanks to the
simplicity of augmentation methods in computer

vision (e.g., zooming, cropping, rotation, etc.), self-
supervised and supervised variants of contrastive
learning proved to be effective training approaches
in image classification tasks (Wu et al., 2018; Hé-
naff et al., 2019; Khosla et al., 2020). These meth-
ods aim at optimizing the representations by mini-
mizing the distance between similar samples and
maximizing it between diverse samples (Chen et al.,
2020). Gao et al. (2021) proposed to leverage
the built-in dropout masks in attention and fully-
connected layers of Transformers (Vaswani et al.,
2017) to introduce noise in the embedding represen-
tations. This is obtained by simply passing twice
the same input and using different dropout masks.
In this way, for every representation (anchor), al-
tered views are generated. Gao et al. (2021) applied
this augmentation approach to improve the seman-
tic representation of a sequence in a self-supervised
fashion, by taking an input sentence and contrasting
its similarity against its augmented version and the
remaining samples in a batch. The authors further
extended this approach by employing positive (i.e.,
entailment) and negative (i.e., contradiction) exam-
ples from natural language inference (NLI) datasets.
The resulting sentence embeddings achieved large
gains in semantic textual similarity (STS) tasks.

To the best of our knowledge, however, con-
trastive learning has not yet been applied in a super-
vised fashion to optimize sequence representations
towards downstream tasks. 1 Inspired by the re-
cently proposed supervised contrastive learning in
computer vision (Khosla et al., 2020), in this paper
we introduce SupCL-Seq, which extends the self-
supervised contrastive method by Gao et al. (2021)
to a supervised contrastive learning approach, in
which anchors and altered views, along with their
classification labels, are used to learn downstream

1During the review process, we were made aware of a
contemporaneous work by Gunel et al. (2020) on supervised
contrastive learning for natural language processing. A major
difference between their work and ours lays in the adopted
augmentation methodology.

https://github.com/hooman650/SupCL-Seq
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Figure 1: SupCL-Seq applied to COLA (Warstadt et al., 2018). SupCL-Seq first forward propagates the input
N times (in this example N = 2) through the same encoder (e.g. BERTbase) with N different dropout masks (e.g.
p = 0 and p = 0.1 respectively) and obtains their corresponding noisy embedding views. The noisy embeddings
that belong to the same class are then employed as the positive pairs for the original input (anchor with dropout
mask of p = 0). In this way, the samples belonging to the negative class effectively are used as negatives.

optimized sequence representations by means of
contrastive learning ( see Figure 1 for details).

SupCL-Seq is simple and can be applied to any
sequence classification task, on any arbitrary num-
ber of classes. In our experiments, SupCL-Seq
leads to large gains in several tasks of the GLUE
benchmark (Wang et al., 2018), including CoLA
(6% Matthew‘s correlation coefficient absolute im-
provement), MRPC (5.4% accuracy score absolute
improvement), RTE (4.3% accuracy score absolute
improvement) and STS-B (2.6% Spearman’s rank
correlation coefficient absolute improvement).

The main contributions of this paper are:

• The adaptation from computer vision to NLP
of a supervised contrastive learning approach
for sequence classification tasks (SupCL-Seq),
which extends Gao et al. (2021)’s approach by
optimizing the sequence representations for
any downstream task, independently on the
number of classes.

• Empirical demonstration that SupCL-Seq
leads to significant gains in many text clas-
sification tasks in GLUE (Wang et al., 2018)
using a standard transformer such as BERTbase
(Devlin et al., 2018).

2 Method

SupCL-Seq extends the self-supervised contrastive
learning (Gao et al., 2021) for improving semantic
representations to a supervised setting, in which
representations are optimized towards the down-
stream task, independently on the number of labels.

The augmentation step is obtained by forward
propagating the input batchN times in the same en-
coder with N distinct dropout masks (i.e., different
dropout probabilities). The generated altered views,
along with their anchor’s label, are then used to
optimize the sequence representations through a
supervised contrastive loss function (Khosla et al.,
2020). Figure 1 details our training approach.

Formally, our pipeline consists of a single En-
coder Transformer, Enc(.) (i.e., BERTbase with
≈110M parameters (Devlin et al., 2018)). This
encoder generates N altered embeddings, x̃n =
Enc(x, pn), for each input x and dropout prob-
ability pn. 2 A contrastive loss function is then
applied in a supervised fashion to maximize the
encoder’s capability of building downstream opti-
mized sequence representations (see Section 2.1).
After this contrastive training, the encoder param-
eters are frozen and a linear classification layer is
then trained with cross-entropy. In the remainder
of this section, we review the self-supervised con-
trastive function (Gao et al., 2021) and its extended
supervised counterpart inspired by Khosla et al.
(2020).

2.1 Contrastive Learning

Let i ∈ I ≡ {1 · · ·MN} be the index of all the en-
coded sequence embeddings X̃ ≡ {x̃1 · · · x̃MN}
in an input batch. Each sample i is forward propa-
gated N time using distinct drop-out masks, gener-

2We employ the BERTbase’s last layer’s hidden-state of the
first token of the sequence (i.e., pooled CLS embeddings) as
x̃n, which is then L2 normalized.
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ating altered views denoted as x̃j(i) = Enc(xi, pn),
where j(i) refers to the indices of the altered
view(s) for the sample i (also called positive pairs).
In self-supervised contrastive learning (Gao et al.,
2021; Khosla et al., 2020), the cost function is for-
mulated as:

Lself-sup
i

= −
∑
i∈I

log
esim

(
x̃i,x̃j(i)

)
/τ∑

b∈B(i) e
sim
(
x̃i,x̃b

)
/τ
, (1)

Where, B(i) ≡ I\{i} is the set of so called neg-
ative pairs for the anchor x̃i. τ is a temperature
scaling parameter. sim(.) stands for any similar-
ity function such as cosine similarity or the inner
product.

The main shortcoming of self-supervised con-
trastive learning is that since the class labels of
the inputs are ignored, the samples from the same
class might end up being employed as the negative
pairs (e.g. B(I)) and therefore hurt the training per-
formance. For instance, in CoLA (Warstadt et al.,
2018) the aim is to determine whether the input is
grammatical or ungrammatical. An unsupervised
contrastive learning in this case might employ a
grammatically correct sentence as the negative pair
for the input anchor (see Figure 1).

In order to avoid this limitation and make the sys-
tem able to learn in a supervised fashion, Khosla
et al. (2020) extended Equation 1 to account
for input labels. Given M annotated samples
{x̃i, ỹi}i=1...M passedN times through the dropout
masks, the supervised contrastive learning loss is
defined as:

Lsup
i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
esim

(
x̃i,x̃p

)
/τ∑

b∈B(i) e
sim
(
x̃i,x̃b

)
/τ
, (2)

Where P (i) ≡ {p ∈ B(i) : ỹp = ỹi} is the posi-
tive pair set distinct from sample i and |.| stands for
cardinality (for details on derivation of Equation 2
see Khosla et al. (2020)). SupCL-Seq employs
Lsup
i as contrastive loss function.

3 Experiments

We performed a set of experiments to i) eval-
uate the effect of number and level of dropout

Task Drop-out Batch size Score

CoLA

[0.0,0.1,0.2,0.3,0.4] 800 61.2
[0.0,0.1,0.2,0.3] 640 57.9
[0.0,0.1,0.2] 480 58.9
[0.0,0.1] 320 57.9
[0.1,0.1] 256 60.7

RTE

[0.0,0.1,0.2,0.3,0.4] 800 63.5
[0.0,0.1,0.2,0.3] 640 62.4
[0.0,0.1,0.2] 480 69.3
[0.0,0.1] 320 63.8
[0.1,0.1] 256 65.3

Table 1: Effects of different dropout masks and num-
ber of views on CoLA and RTE tasks. Score denotes
Matthews Correlation Coefficient.

passes on two challenging datasets (see 3.1); ii)
compare the performance of a standard BERTbase
(Devlin et al., 2018) architecture with a SupCL-
Seq-empowered BERTbase model on several bench-
marks in GLUE (Wang et al., 2018) (see 3.2); iii)
compare the performance of SupCL-Seq with the
self-supervised contrastive approach introduced by
Gao et al. (2021) in a subset of tasks (see 3.3);
and, finally, iv) assess whether the improvements
achieved with our approach are solely due to aug-
mentation (i.e., dropout masks) and to which ex-
tend contrastive loss helped (see 3.2.1).

3.1 Dropout Levels
In order to study the effect of the number and the
level of dropout passes, we assessed the perfor-
mance of several configurations of BERTbase on
CoLA (Warstadt et al., 2018) and RTE (Dagan
et al., 2006) datasets. Gao et al. (2021) empirically
showed that using two distinct dropout masks with
the same probability of p = 0.1 lead to the highest
performance in their settings. In our supervised
experiments, instead, we can generate views with
different levels of noise, as the system can always
rely on their labels. Therefore we choose different
parameters, using intervals of 0.1 for the dropout
probabilities. Table 1 reports the results for both
datasets. While clear improvements are visible on
CoLA when more masks are applied, experiments
on RTE show that this is not always the case. In
the latter dataset, in fact, performance fluctuates
largely across the settings, achieving the highest
score when three passes are used. This suggests
that the number and level of dropout passes is a
task-dependent hyper-parameter.

3.2 GLUE Tasks
In order to assess the benefit of SupCL-Seq,
we compared the performance of a standard
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System QQP CoLA MRPC RTE STS-B SST-2 QNLI WNLI MNLI
Nr. Training Samples 363k 8.5k 3.5k 2.5k 5.7k 67k 108k 635k 392k
BERTbase - Standard 71.2 55.2 86.6/80.3 64.6 88.0/87.7 92.6 90.5 56.6 84.1
BERTbase - SupCL-Seq 85.9 61.2 89.7/85.7 69.3 89.3/89.1 93.2 91.0 56.6 84.5
BERTbase - Dropout Augmented - 60.9 88.9/84.5 63.1 80.4/81.6 93.4 - - -

Table 2: GLUE Test results. BERTbase - Standard is our implementation using the reported hyper-parameters
in Devlin et al. (2018) for each task. BERTbase - Dropout Augmented is the standard version trained also on
augmented samples. Matthews Correlation Coefficient is reported for CoLA, Pearson/Spearman correlations for
STS-B, F1/Accuracy for MRPC , F1 score for QQP, and accuracy scores are reported for the other tasks.

BERTbase architecture with the one of a SupCL-Seq-
empowered BERTbase model on numerous tasks
from the GLUE benchmark (for a detailed descrip-
tion of each task see Wang et al. (2018)). GLUE
also includes a regression task (i.e., STS-B), which
requires no architecture modifications 3. For the
classification experiments, we deploy the hyper-
parameters reported in Devlin et al. (2018). Ap-
pendix A details our grid-search-based training de-
tails for SupCL-Seq. Results are described in Ta-
ble 2, rows one and two. As it can be noticed, in all
cases the SupCL-Seq-empowered BERTbase model
obtains equal or higher performance compared to
the standard implementation.

3.2.1 Is it the dropout augmentation or the
loss-function?

In order to study whether the performance gain ob-
served in the previous experiments is solely due
to the dropout augmentation, we ran a new set of
experiments on the smaller datasets (i.e., MRPC,
RTE, STS-B and SST-2) in which the standard
BERTbase is trained also on the augmented sam-
ples (for the training parameters, see Appendix A).
Table 2, third row, shows the results. While we no-
tice performance gains compared to the BERTbase
- Standard in a few tasks, augmentation does not
always help. For example, the score for the aug-
mented row is lower in the RTE dataset. Interest-
ingly, dropout augmentation significantly hurts the
performance (≈ 8 points) in STS-B dataset, where
MSE loss is employed. We also observe that for
all CoLA, MRPC and STS-B, SupCL-Seq outper-
forms the augmented variant, suggesting that its
gains are due to the combination of augmentation
and contrastive learning, rather than from only the
former.

3To employ SupCL-Seq, we rounded to first decimal digit
and grouped by similar labels, employing the Mean Squared
Error (MSE) Loss for the baselines.

System RTE CoLA MRPC
BERTbase - Self-supervised-CL 55.6 35 79/68.3
BERTbase - SupCL-Seq 69.3 61.2 89.7/85.7

Table 3: Comparison of unsupervised and supervised
contrastive loss.

3.3 Supvervised Versus Unsupervised
contrastive Learning

Since, to the best of our knowledge, the only pre-
vious attempt of using contrastive learning for im-
proving sequence representation in NLP was per-
formed by Gao et al. (2021) – they used a self-
supervised approach to improve the semantic repre-
sentation, adopting a loss similar to Equation 1 –, in
Table 3.3 we compare the performance of a linear
layer trained on top of their representations with the
one of a linear layer trained on top of our represen-
tations, which are instead optimized in a supervised
fashion while the parameters of the base model are
kept frozen. SupCL-Seq significantly outperforms
the re-implementation of Gao et al. (2021), with
larger gains in non-semantic tasks (e.g. CoLA),
suggesting that our representations are optimized
for the given downstream tasks.

4 Discussion and Conclusion

In this paper, we introduced SupCL-Seq a super-
vised contrastive learning framework for optimiz-
ing sequence representations for downstream tasks.
In a series of experiments, we showed that SupCL-
Seq leads to large performance gains in almost all
GLUE tasks when compared to both a standard
BERTbase architecture and an augmented BERTbase
(i.e., improvements are not only due to augmenta-
tion). We also investigated the effect of number
and level of dropout passes, finding that this has
to be treated as a task-dependent hyper-parameter,
to be fine tuned in a validation set. Finally, we
compared our supervised approach to the self-
supervised method by Gao et al. (2021), showing
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consistent performance improvements, especially
in non-semantic tasks, where the self-supervised
approach is weaker. These encouraging results
open the door to multi-task learning applications
of SupCL-Seq, where the optimization needs to be
constrained towards multiple objectives.

Acknowledgments

We would like to thank the reviewers and the chairs
for their insightful reviews and suggestions.

References
Ting Chen, Simon Kornblith, Kevin Swersky, Moham-

mad Norouzi, and Geoffrey E. Hinton. 2020. Big
self-supervised models are strong semi-supervised
learners. CoRR, abs/2006.10029.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. CoRR, abs/2104.08821.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin
Stoyanov. 2020. Supervised contrastive learning for
pre-trained language model fine-tuning. In Interna-
tional Conference on Learning Representations.

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw,
Ali Razavi, Carl Doersch, S. M. Ali Eslami, and
Aäron van den Oord. 2019. Data-efficient im-
age recognition with contrastive predictive coding.
CoRR, abs/1905.09272.

Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan.
2020. Supervised contrastive learning. CoRR,
abs/2004.11362.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2020. Deep learning based text classification: A
comprehensive review. CoRR, abs/2004.03705.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2015. Training
convolutional networks with noisy labels. 3rd In-
ternational Conference on Learning Representations,
ICLR 2015 ; Conference date: 07-05-2015 Through
09-05-2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. CoRR, abs/1805.07836.

http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2004.03705
http://arxiv.org/abs/2004.03705
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1805.07836
http://arxiv.org/abs/1805.07836


3403

A Training Details

Task Learning Rate Batch Size dropout
CoLA 5e− 05 128 [0.0, 0.1, 0.2]
MRPC 1e− 4 128 [0.0, 0.05, 0.1, 0.2]
RTE 1e− 4 48 [0.0, 0.1, 0.2]
STS-B 1e− 4 64 [0.0, 0.05, 0.1, 0.2]
SST-2 5e− 05 320 [0.0, 0.1, 0.2]
WNLI 1e− 04 320 [0.0, 0.1, 0.2]
QNLI 5e− 05 48 [0.0, 0.2]
QQP 5e− 05 16 [0.0, 0.2, 0.3, 0.4, 0.5]
MNLI 5e− 05 8 [0.1, 0.1]

Table 4: Contrastive learning training details per GLUE
task. All of the tasks were trained for 5 epochs (except
QNLI, QQP and MNLI that were trained for 2, 1 and 3
epochs respectively) and τ = 0.05.

SupCL-Seq is implemented on top of the Hug-
gingface’s trainer python package (Wolf et al.,
2019)4. For the sim(.) (similarity) function, we
employed inner dot product. For supervised con-
trastive learning, we employed the hyperparameters
detailed in Table 4. We used a grid search strat-
egy for our hyperparameter optimization, where
the number of dropouts and their corresponding
probability were set to two (i.e. [0.1, 0.1]) and five
respectively ([0.0, 0.1, 0.2, 0.3, 0.4]). For the learn-
ing rate we employed a range of [5e− 05, 1e− 4].

4https://github.com/huggingface/transformers

https://github.com/huggingface/transformers

