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Abstract

Rapid progress in Neural Machine Transla-
tion (NMT) systems over the last few years
has focused primarily on improving transla-
tion quality, and as a secondary focus, improv-
ing robustness to perturbations (e.g. spelling).
While performance and robustness are impor-
tant objectives, by over-focusing on these, we
risk overlooking other important properties. In
this paper, we draw attention to the fact that for
some applications, faithfulness to the original
(input) text is important to preserve, even if it
means introducing unusual language patterns
in the (output) translation. We propose a sim-
ple, novel way to quantify whether an NMT
system exhibits robustness or faithfulness, by
focusing on the case of word-order perturba-
tions. We explore a suite of functions to per-
turb the word order of source sentences with-
out deleting or injecting tokens, and measure
their effects on the target side. Across several
experimental conditions, we observe a strong
tendency towards robustness rather than faith-
fulness. These results allow us to better under-
stand the trade-off between faithfulness and ro-
bustness in NMT, and opens up the possibility
of developing systems where users have more
autonomy and control in selecting which prop-
erty is best suited for their use case.

1 Introduction

Recent advances in Neural Machine Translation
(NMT) have resulted in systems that are able to
effectively translate across many languages (Fan
et al., 2020a), and we have already seen many
commercial deployments of NMT technology. Yet
some studies have also reported that NMT systems
can be surprisingly brittle when presented with
out-of-domain data (Luong and Manning, 2015),
or when trained with noisy input data contain-
ing small orthographic (Sakaguchi et al., 2017;
Belinkov and Bisk, 2018; Vaibhav et al., 2019;
Niu et al., 2020) or lexical perturbations (Cheng
et al., 2018). Uncovering these sorts of errors

has lead the research community to develop new
NMT models that are more robust to noisy inputs,
using techniques such as targeted data augmen-
tation (Belinkov and Bisk, 2018) and adversarial
approaches (Cheng et al., 2020). Unfortunately an
approach that (over-)emphasized robustness can
lead to “hallucinations”—translating source input
to an output that is not faithful to the source, and
sometimes is even factually incorrect (Vinyals and
Le, 2015; Koehn and Knowles, 2017; Wiseman
etal.,2017; Nie et al., 2019; Kryscinski et al., 2020;
Maynez et al., 2020; Tian et al., 2020; Gonzélez
et al., 2020; Xiao and Wang, 2021). Moreover,
such an approach hinges on the key assumption
that orthographic, lexical or grammatical variants
in the input are mistakes, to be corrected by the
translation system. This ignores the wealth of ap-
plications where it may be preferable for a system
to offer more faithfulness to the original text.

It is worthwhile to consider the diversity of appli-
cations where having a faithful translation (opting
literal translation over paraphrasing) is desirable.
First, consider an automatic language tutoring sys-
tem: a (human) second-language learner will often
produce language that has grammatical mistakes of
various types. This learner can be empowered by
having a (Al-produced) faithful translation, so that
s/he can see what mistakes were made vs. what
would be the more common phrasing. Second, re-
call that many languages, including English, use
word order to encode argument structure informa-
tion (cf. Isabelle et al. 2017): while “the dog bit
the man” might be more frequent compared to “the
man bit the dog”, the latter has a very clear mean-
ing that we may wish to preserve in some (albeit
rarer) cases. Third, consider poetry: it is often
the case that unusual word order is used to influ-
ence rthythm and rhyme. It would be a shame if all
our state-of-the-art NMT systems lost such poetic
beauty in translation.

In short, by their very design, NMT systems
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Figure 1: Machine translation systems (a—d) tend to favor robust or faithful translations as measured by computing
the difference between faithfulness and robustness scores across seven languages (aggregated across all pertur-
bations). Although models with different sizes were analysed, we did not find a strong correlation between the
robustness or faithfulness to the model sizes. But, M2M-100-1.2B showed a higher tendency to be robust when
compared with M2M-418M or mBART (smaller that M2M-1.2B model).
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Figure 2: Averaging across languages and NMT sys-
tems shows they tend to favor robust translations, al-
though this varies for different perturbations.

preferentially output “normative” language (regard-
less of whether the nonstandard languages affects
spelling, word order, or choice of vocabulary).
Isozaki et al. (2010) note that word order is an
important problem in distant-language translation.
When we increase model robustness (at least with
the solutions proposed to date), we generally en-
force even stronger tendencies towards the norm,
at the expense of diversity of language, of thought,
and, perhaps, of our very culture. Although Bisazza
et al. (2021)’s observation on word order flexibil-

ity only minimally affect the performance of NMT
systems is encouraging towards building robust
systems, the trade-off on preserving diversity in
expression is seldom understood. We believe it
will be necessary in future to propose solutions
that can explicitly enable a better trade-off between
robustness and faithfulness, and can give the user
autonomy and control in specifying their prefer-
ence. It is therefore our goal with this work to draw
attention to this important compromise, and to pro-
vide tools to detect, quantify, and compare such
aspects of NMT systems.

More specifically, this paper is not only the first
to deeply analyze the effects of particular pertur-
bations on existing NMT systems, but is the first
to investigate their effects in the sphere of gen-
eration. We investigate 16 unique perturbations
that fall into three categories—Dependency tree
based, PoS-tag based and Random Shuffles. We
introduce two novel metrics for evaluating ma-
chine translation models’ preference for robust-
ness or faithfulness. Taking English as the com-
mon source, we run a case study with three widely
used Transformer-based machine translation mod-
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els —Helsinki/OPUS machine translation model
(Tiedemann and Thottingal, 2020), the multilingual
BART model (Liu et al., 2020a), and the Many-to-
Many Multilingual translation model (Fan et al.,
2020a) (in two sizes)—into 7 target languages from
several families (German, French, Spanish, Italian,
Russian, Chinese, and Japanese).

Across several experimental conditions, we ob-
serve a strong tendency towards robustness rather
than faithfulness (Figure 1) that varies somewhat
depending on the particular perturbation (Figure 2).
More specifically, we observe that (1) state-of-the
art NMT systems tend to produce translations that
are unaffected by the noisy source (more robust),
(2) accuracy (BLEU score) correlates with model
robustness, (3) certain perturbations involving part-
of-speech-based word reordering tend to further
encourage robustness, and (4) results vary by some-
what by target language, with the models produc-
ing translations of Japanese that are more faithful
than for the other languages (except for Helsinki-
OPUS). Overall, our analysis suggests that over-
emphasizing accuracy and robustness may limit
richer development and broader usefulness of NMT
systems.

2 Related Work

The idea to randomly shuffle linguistic elements to
evaluate NLP model performance goes back fairly
far (Barzilay and Lee, 2004; Barzilay and Lapata,
2008), and has even been used to determine which
tasks are “syntax-light” in human sentence pro-
cessing (Gauthier and Levy, 2019). Recent work
on classification tasks, such those on the GLUE
benchmark (Wang et al., 2018), has shown that
pre-trained Transformer-based models trained with
a masked language modeling objective are shock-
ingly insensitive to word order permutations. (Si
et al., 2019; Sinha et al., 2020; Pham et al., 2020;
Gupta et al., 2021; Sinha et al., 2021). Given these
recent findings, we might expect insensitivity to
word order permutation in the sphere of generation
as well, leading to robust machine translations.
The mismatching of default word orders between
target and source has long been an important con-
sideration for multilingual tasks including auto-
matic machine translation. Ahmad et al. (2019)
find that word order agnostic models (recurrent
neural networks) trained to dependency parse can
transfer better than word order sensitive ones (self-
attention) to distantly related languages. Also in

the context of transfer, Zhao et al. (2020) propose
for reference-free MT that the delta between orig-
inally ordered and permuted sentences be used as
an evaluation technique. Even when considering
multilingual sequence labeling tasks in general, Liu
et al. (2020c¢); Kulshreshtha et al. (2020) find that
limiting word order information in the multilingual
setting can enable models to achieve better zero-
shot cross-lingual performance. Taken together,
these works also suggest that our models tend to
overfit on source word order to the detriment of
that of the target, which might lead one to predict
that our models will be more robust than they are
faithful in our case as well.

However, NMT systems have use cases in di-
verse applications that require the preservation of
word order, local syntax and other linguistic compo-
nents (Zhang et al., 2020). Translation systems that
are contingent on preserving syntax and semantics
are used as interpretors to decode the interaction
between components of a neural network (Andreas
et al., 2017). Further, in practical applications like
translating a sentence that is a mixture of two dif-
ferent languages requires the MT systems to strike
some balance between preserving L1 syntax and/or
word-order and correctly adhering to the grammati-
cal rules of L2 (Renduchintala et al., 2016).

In NLP tasks, where the end-user could be a hu-
man, benchmarking the robustness of NLP systems
is done by evaluating a model’s performance on
willfully perturbed examples that could potentially
expose fragility of the systems (Goodfellow et al.,
2014; Fadaee and Monz, 2020). Towards averting
such scenarios, efforts along the lines of building
robust models with adversarial training have been
a common topic of study in natural language pro-
cessing (Rajeswar et al., 2017; Wu et al., 2018).

Our word order perturbations also share some
points of synergy with work across NLP that aims
to devise supplementary heuristics to explicate
the inner workings of our machine learning sys-
tems. For specific NLP tasks, probe tasks are en-
gineered to measure specific kinds of linguistic
knowledge encoded in the systems (Conneau et al.,
2018; Sheng et al., 2019; Kim et al., 2019; Jeretic
et al., 2020; Parthasarathi et al., 2020; Ribeiro et al.,
2020). Swapping the arguments of verbs is a clas-
sic way to measure the effects of word order both
in humans (Frankland and Greene, 2015; Snell and
Grainger, 2017) and in models, largely because
changing the order of verbal arguments maintains
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high word overlap between related examples (Wang
etal., 2018; Kann et al., 2019; McCoy et al., 2019);
However, although limited word order permuta-
tion is applied in this case, it is generally restricted
to licit, grammatical sequences of words. When
perturbation has been used to evaluate model per-
formance, the utilized perturbation functions have
been predominantly fairly simple, including reverse
and word shuffle, and usually target only single
sentences (Ettinger, 2020; Li et al., 2020; Sinha
et al., 2020). For tasks like dialogue prediction
that requires multiple input sentences, perturbation
functions like reordering the conversation history
have been adopted (Sankar et al., 2019). To the
best of our knowledge, the set of perturbation func-
tions we propose is the most detailed set explored
thus far, perturbing not only tokens, but PoS and
dependency structure.

Changing the order of words in the context of
NMT also has its roots in classical, syntactically
sophisticated models that used parses (of various
kinds) to pre-order abstract syntactic representa-
tions as an early step in a multi-step translation
pipeline from source to target (Collins et al. 2005;
Khalilov et al. 2009; Dyer and Resnik 2010; Genzel
2010; Khalilov and Sima’an 2010; Miceli-Barone
and Attardi 2013 i.a.). Our approach differs from
these approaches in that our main aim is not to
incorporate word order changes into the transla-
tion pipeline itself, but, instead use them to better
understand the behavior of NMT models.

3 Metrics

Let g, be a sentence where x takes one of two
values: e if it is a sentence in the source lan-
guage (English) or o if it is a gold target sentence.
Let ®._,, denote a translation pipeline from the
English source (e) to a target language (o) and
to + Pe_yo (ge) foralanguage o € O ~ {German
(de), French (fr), Spanish (es), Italian (it), Russian
(ru), Japanese (ja), Chinese (zh)}.

Let ¥ denote a perturbation function such that
9, < U (gy); then let the translation of perturbed
input g_ be t; « Peyp (g2).

Let x (s, sj) be a scoring function that rates the
similarity between two sentences (s; and s;), where
si,8j € Lg. The choice of x can be any of the
widely used sentence similarity metrics like BLEU
(Papineni et al., 2002a), METEOR (Lavie and Agar-
wal, 2007), ROUGE (Lin, 2004), or Levenshtein-
distance (Levenshtein, 1966). For our purposes,

we experiment with BLEU-4, BLEURT (Sellam
et al., 2020), BERT-Score (Zhang et al., 2019) and
Levenshtein score as choices of x denoted by a
B or L in the superscript respectively (but see §7
for discussion of other k). The value of x linearly
scales with the similarity between s; and s;.

We define three metrics 51, B2, and «. [
is our measure of robustness to perturbation by
quantifying the similarity according to x between
the translation of a perturbed sentence in source
into the target, and the gold sentence in target:
B+ = Zf\il (9o, t; );» where N denotes the
number of samples! perturbed by W that we used
(see Table 1 in the Appendix for more information
on N by perturbation and language).

B2 is computed as a similarity score between
the translation of the perturbed source sentence
and applying the same perturbation operation on
the target sentence to measure degree of faithful-
ness of translations by machine translation system:
Ba %Zi]ilﬁ(go_v o )i

The difficulty of the perturbation function
is measured with «, which scores the similar-
ity between perturbed sentence and the unper-
turbed sentence in the source language: e <—

1 N _
N 2im1 5 (Ges 9o )i

B measures the standard translation perfor-
mance metric on any given source-target sentence
pair: 8 + 3 ZZD:1 % (gos to);» Where D is the size
of the dataset.

4 Perturbations

We propose 16 different functions to perturb the
structure of an input sentence. The perturba-
tions can be broadly classified in three categories—
Random Shuffles, PoS-tag Based and Dependency
Tree Based—comprised of 4, 8, and 4 perturba-
tion functions respectively. The functions vary in
complexity and linguistic sophistication so that we
can score whether a model translates faithfully or
stays robust to the perturbed inputs. We applied all
perturbations in seven languages—de, fr, ja, ru, zh,
it, and es—and describe each perturbation in turn
below. See Figure 3 for a selection of examples.
Some of the perturbations we explore are “pos-
sible”, in the sense that applying them will re-
sult (in most cases) in a grammatical sentence

"Perturbation functions have certain entry conditions to be
applied on a sample. For example, verbSwaps mandates that
there is at least 2 verbs in the sample. So, in a D size dataset
not all samples can be perturbed with all the functions, so we
define N independent to D.
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TreeMirrorPost: to live a decent place he could n’t find
Tom said .

TreeMirrorPre: said find place live to a decent he could
n’t Tom .

TreeMirrorIn: live to place a decent find he could n’t
said Tom .

RotateAroundRoot: live find said Tom he could n’t a
decent place to .

WordShuffle: place to could live said decent a Tom n’t
find he .

Reversed: live to place decent a find n’t could he said
Tom .

VerbSwaps: Tom live he find n’t said a decent place to
could .

NounSwaps: Tom said a decent place could n’t find he to
live .

NounVerbSwaps: said Tom could he n’t a decent place
find to live .

NounVerbMismatched: live a decent place find could
n’t he said to Tom .

ShuffleFirst: he Tom find could said n’t a decent place to
live .

ShuffleLast: Tom said he could n’t find a decent live
place to .

(a)

(b)

Figure 3: Effect of the different perturbation functions on the sentence — Tom said he could n’t find a decent place
to live. The perturbation functions do not inject new tokens or delete a token to perturb the sentence.

(either in the source language, or in some ver-
sion of another existing language that is instead
supplied with the words of the source). Others
are “impossible” (Moro, 2015, 2016). For exam-
ple, it has been long noticed that human grammar
rules operate on hierarchical structure resulting in
rules of the form “move the hierarchically closest
auxiliary” as opposed to “move the linearly clos-
est auxiliary” when forming questions (Chomsky
1962/2013; Ross 1967; Crain and Nakayama 1987,
i.a.). Standard American English exemplifies this:
when we form a question from “The man who is
tall was happy”, we say “Was the man who is tall
happy?” not “Is the man who tall was happy?”’
(McCoy et al. 2020, cf. Chomsky 1957, Ch. 3).
To explore more fully the behavior of the NMT
models, we include several permutations that nei-
ther adhere to the descriptive rules of the source
language nor to any grammars across all known
human languages (i.e., are “impossible”).

4.1 Random Shuffles

The perturbations in the Random bin treat the sen-
tence as though it were a mere sequence of tokens;
they reorder the tokens without any reference to
their higher order linguistic properties (i.e., PoS
or dependency information). Thus, random per-
turbations can be seen as the most basic type of
“impossible” word order perturbation. We use three
different random shuffles— Word-Shuffle, Shuffle-
First-Half, Shuffle-Last-Half and Reversed—none
of which result in any recognizable linguistic struc-
ture. Word-Shuffle shuffles the entire sentence at

random (cf. Sinha et al. 2020); for a sentence of
length n, there are (n — 1)!, possible random per-
mutations. Shuffle-First- and Shuffle-Last-Halves
shuffle only the corresponding half of a sentence
while keeping the other half unperturbed. Reversed
reverses the token ordering in a sentence.

4.2 Part-of-Speech tag Based Perturbations

This set of perturbations uses the PoS tags from a
parser to generate perturbations for a sentence, so
that we can localize any effects of robustness or
faithfulness to particular linguistic categories.

PoS Swaps. When a sentence has more than one
token with a particular PoS, the positions of those
tokens are exchanged without affecting the rest of
the sentence structure.” Although the meanings
of the sentences are altered, the result generally is
grammatical (or near grammatical, see Figure 3(b)),
meaning that these swaps are “possible”. In this
class of permutations, we consider Noun swaps and
Verb swaps.

PoS x-PoSy Swaps. The position of a token with
a particular PoS tag X € {noun,adv} is inter-
changed with the linearly closest token with PoS
tag Y € {verb,adj} leaving the rest of the sen-
tence unperturbed. In this class, we consider
Adverb-Verb swaps and Noun-Adjective swaps
(which tend to result in grammatical sentences),

ZExcept for cases where person agreement might be af-
fected, for example when verb-swapping “am” for “are” in /
am happy that they are here— I are happy that they am here.
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ROOT ROOT
VE‘RB VE‘RB
NSUBJ waited NOUN NOUN waited NSUBJ
PR(‘)PN ADP D}‘ET train train D]‘ET ADP PR(‘)PN
J(‘)c f(‘)r t}‘le lh‘e l'(‘)r J(‘)e

(a) Original (b) Mirrored

Figure 4: For tree based perturbations, we mirror the
dependency tree and perform InOrder, PreOrder (Root-
Left-Right), and PostOrder (Left-Right-Root). (The
grammatical relations are excluded for brevity.)

as well as Noun-Verb swaps (which tend to result
in ungrammatical sentences).

PoSnoun-PoSverp, Mismatched Swaps. While
Noun-Verb Swap replaces each noun with the verb
closest to it, the mismatched swap exchanges the
position of a noun with the verb farthest from it,
which results in displacing all verbs and nouns from
their original positions.

Functional Shuffle. Functional tokens (i.e., con-
junctions, prepositions and determiners) are re-
ordered so that they occupy the original position of
another functional token in the perturbed sentence.

Verb-At-Beginning. This perturbation moves a
verb to the beginning of the sentence as a prefix
without disturbing the remaining relative positions
within the text. If the sentence has multiple verbs,
the first verb found when parsing the sentence will
be moved to the beginning.

4.3 Dependency Tree Based

The dependency tree structure of a sentence con-
veys its grammatical structure. Perturbing the de-
pendency tree in a language like English—which
expresses verb-argument relationships largely via
word order— could have several effects: the se-
mantics of the sentence will be changed, and the
base word order might now be indicative of a dif-
ferent family of languages. Therefore, we inves-
tigate dependency tree perturbations with an eye
towards determining whether perturbations that re-
sult in sentence structures from another family (e.g.,
Japanese) will be more faithfully translated.

Tree Mirror (Pre/Post/In). While an In-Order
traversal of a sentence’s dependency tree (Figure 4)
provides the right parse of the sentence, we per-
form Pre-Order, Post-Order and In-Order traversals

on the mirrored dependency tree. Although the
perturbed sentences largely preserve each word’s
position with respect to its local neighbors, since
they are ungrammatical, their meanings (if there
are any) are much harder to understand.

Rotate Around Root. The sentence is perturbed
by rotating the tree around its root and then subse-
quently performing an In-Order traversal.

4.4 Distribution

We observe in Figure 5 that the dependency tree-
based perturbation functions have less overlap with
the PoS tag-based perturbations across languages,
but higher intra-category similarity scores.

. I
= 0.4

m (.3

Perturbations

T
L T e == T - N = Y & S U X R )

w02

w1

= 0.0

treeMirrerin
nounSwaps
verbAtBeginning
verbSwaps
adverbVerbSwap
reversed
wordShuffle

treeMirrorPre
treeMirrorPo
rotateAroundRoot
nounAdjSwap
functionalShuffle

nounverbSwap
shuffleHalvesFirst

noun‘VerbhMismatched
shuffleHalvesLast

Perturbations

Figure 5: x (¥;(s), ¥;(s)) highlight the differences be-
tween the three categories of perturbations in English.
The trend is similar across the other languages (Fig-
ure 14 (Appendix)).

Similarly the PoS tag-based functions have un-
derstandably higher similarity with other PoS tag-
based functions than with Shuffle or Dependency
tree perturbation functions.

S Experiments

We experiment with some of the state of the art
translation models — OPUS translation models
(Tiedemann and Thottingal, 2020), MBART (Liu
et al., 2020b), Facebook’s M2M (Fan et al., 2020b)
(both 418M and 1.2B models). We construct the
perturbed dataset using the eval set of OPUS corpus
(Tiedemann and Thottingal, 2020) in 7 different
languages paired with English as source —French
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(fr), German (de), Russian (ru), Japanese (ja), Chi-
nese (zh), Spanish (es), and Italian (it). Our experi-
ments> have a twofold objective: (1) compute the
robustness (1) and faithfulness (32) of the trans-
lations in different languages when the input is
perturbed, and (2) analyse the 51 and (2 scores
with different levels of perturbations.

6 Results

6.1 Faithfulness vs. Robustness

For each language paired with English, we perturb
the source English and the gold target language
with the perturbation functions proposed in §4. We
measure 51 and B with BLEU-4 (Papineni et al.,
2002b), BLEURT (Sellam et al., 2020) and BERT-
Score (Zhang et al., 2019) as the choice for k. As
BERT-Score and BLEURT were forgiving to the
flaws* in predictions towards being robust, we base
our analysis with BLEU-4 as the choice of .

We observe that 3; scores are generally higher
than S35 scores across the perturbation functions and
across all the languages, indicating that the transla-
tion system is largely unfazed when presented with
unnatural, ungrammatical input (see Figure 1)°.
Given these results, the model acts as though it
makes an intermediate “hallucination” that some-
how either recreates the unperturbed input before
translating it, or “hallucinates” an unperturbed tar-
get without much reference to the perturbed source.

6.2 Patterns in 3; and (5, and Length

Given our results, we would like to know whether
there are any particular properties of particular ex-
amples or of permutations which lead models to be
more or less robust. Towards that end, we observe
the correlations between (a) 5 vs 81/82 (b) £1 vs
B2, and (¢) B1/82 vs Length of source sentence.

B vs 1/82. We find that our 31 does correlate
with BLEU-4 on the translation of the original,
unperturbed gold English sentence and gold target
language. We show correlations of 81 and S5 with
B in Figure 7. The Spearman’s rank correlation
between 31 and [ is larger than between S5 and (3;
in the former we observe a medium strength effect
and in the latter a small effect, although language
does play a role (e.g., Chinese has the largest 3;

3The code for reproducing the metrics and perturbation
functions can be found in the code repository here.

*Figure 8, 9, and 10 in Appendix C.

SMore discussion can be found in Figure 13 in Appendix
D.

correlation with BLEU, but among the smallest /32
correlation with BLEU).

(51 vs B2, Figure 6(a) shows that the correlation
between robustness and faithfulness to be present,
but weak. By definition, the model can either be
faithful or robust and when it is both, then that sug-
gests only a higher a, or a lower perturbation diffi-
culty. Usually this occurs when sentences are very
short—for short sentences, fewer permutations are
possible, and different permutation functions are
more likely to collapse onto the same word orders.

B1/B82 vs Length. The length of the source sen-
tence has different effects on the scores depending
largely on language. But, it is intuitive to under-
stand that the model is better able to fix a word
order perturbation when the sentences are short,
resulting in higher /3; score for shorter sentences.
The opposite is true for 32 where longer sentences
generally have higher (35 score.

There is some relationship between which per-
mutation function generated a permuted exam-
ple and its ag score (Figure 12). The top
5 permutation functions with high ag scores—
{shuffleHalvesLast, shuffleHalvesFirst, verbAtBe-
ginning, nounVerbSwap, nounVerbMismatched }—
and with low ag scores—{treeMirrorPost, word-
Shuffle, reversed, treeMirrorin, treeMirrorPre}.
The mix of examples from different perturbation
categories at different levels of g score, as well as
the fact that 51 scores are higher than s, suggests
that models’ attempting to correct the perturbed in-
put may not be because they understand language,
but instead it might be due to correlations between
certain n-grams in the sentence. We also observe
that 31 decreases with increasing aé, which also
supports this argument.

7 Discussion

Languages Vary. One way to think about the
models’ tendency towards behaving robustly is to
take them to be hallucinating an unperturbed re-
sponse even when the word order of the original is
perturbed. The difference between 51 and 5o (Fig-
ure 1) shows a ranking across languages, and with
perturbation functions. Among the languages anal-
ysed, Japanese in Helsinki is generally more robust
than the other languages. However, we note that
our findings could also be attributed to the strength
of the translation system—Japanese in Helsinki has
the highest performance (Table 2) and the strong

3211


https://github.com/ppartha03/UMT

0.8

— de

07 fr

es

06 __

05— W

— zh

& 04 ja
0.3
02
01
0.0

0.0 02 04 06 08 1.0
B
(@) B1vs B2

02 04 06 0.8
Length

(c) B1 vs Length

0.8

THE g TR

0.2 0.4 0.6 0.8
Length

(b) e vs Length

02 04 06 0.8
Length

(d) B2 vs Length

Figure 6: We observe the length of the source sentences to differently correlate with the two scores. The robustness
score, (31, is higher for shorter source sentences, while the opposite is true for 5, suggesting that the model’s ability
to see through the syntactic errors has a limitation on the length. Also, the model being able to stay faithful in longer
sentences can be explained with higher c. hinting at their lower difficulty.

correlation between 5 and (31 support the argument.
Also, the weak 5, and (32 scores of Chinese trans-
lation model could also be attributed to the general
poor performance of the translation systems for the
language (Table 2 shows that the /3 scores of the
Chinese model are too low).

Perturbation Functions. Among the perturba-
tion functions, FunctionalShuffle evoked the most
robust generation across all languages while mod-
els were most faithful on TreeMirrorln and Re-
versed. Recall, however, the fact that all languages
fall to the left of 0 in Figure 1 and 2 means that all
models are reasonably robust. More work is needed
to suggest clear ways of training a model to con-
trol its faithfulness or robustness. We believe our
perturbation methods can be used to guide model
selection by helping to determine just how faith-
ful or robust a model should be based on specific
downstream requirements.

Across Models. Although models have different
numbers of parameter, we observe in Figure 1 that
the models are in general more robust than faithful.
The performance of the non-Helsinki models sug-
gests slightly higher NMT performance could be
attributed to the greater representational capacity of
the model. In Figure 1 we observed the robustness
to correlate largely with the NMT performance (3).

Alternate choices for ~. To further understand
the role of metric on our results, we explored a few
other translation metrics, including BERT-Score
and BLEURT. But, we found that these metrics
6 overlook minor errors towards being robust to
perturbed sentences. It makes it unclear whether
that is the model’s tendency or the metric that is
improving the robustness. Hence, we found BLEU
to be a more stable metric for the study.

®Figure 8, 9, 10 and 11 show a comparison between 3,
and f2 computed with the different metrics.

3212



N \

i 4 4 41

o S
P

de fr B u zh es it
Languaae

(a) Helsinki-Opus

- 5 {
: 1‘ <
e 2 4
@ %’

de fr B zh es it

n
Lanauace

(c) mBARTS0

Lanauaae

(b) M2M-100-418M

> 4 F
o 4 pd | 1A
- Pp >'>> 4

Lanauaae
(d) M2M-100-1.2B

I:le_

Figure 7: The correlation of p(3, 35) as P and p(35, BP) as BL shows that the robustness of the translation
system has a strong correlation with the performance of the machine translation system. The faithful translations
have a weak correlation, indicating that the easier to translate examples are difficult for the model to do word-to-

word translations on.

Unnatural translations. Although rare, exam-
ples for which reordering the source results in a
better target translation do exist. Similarly to the
prediction flips observed by Sinha et al., a frac-
tion of the translations have 31 scores greater than
7. This suggests that the model might require the
source sentences to be in a particular order to attain
the expected translation. Our work opens up poten-
tial avenues for probing datasets for flips as a way
to measure “unnaturalness” of models’ translation
algorithms.

Conclusion. Overall, it is important to under-
stand how NMT systems behave on such mal-
formed input—should a model be robust and risk
“hallucinating” an input, or should it be faithful,
taking the input at face-value, and provide word-by-
word translations. Particular examples might differ
in whether a robust or a strongly faithful approach
is warranted; for example, we wouldn’t want to
badly translate poetry that was using nonstandard
word order for creative effect. Our novel metrics
and perturbation functions allow one to quantify
how systems strike a balance between robustness

"Table 3, 4, 5, and 6 in Appendix explain this in detail.

and faithfulness in NMT, both on the corpus level
and at the level of particular examples.
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A Packages and Tools

We use Python 3.7, pytorch 1.7.1, transformers
4.2.2 for the experiments. For tokenization and
parsing, we use Spacy 3.0.0 (Honnibal et al.,
2020)? for all the languages.

B Sample statistics

C [ivsf

Figure 8, Figure 9, and Figure 10 show the com-
parison of the 31 and 3 scores across the different
perturbations on the different translation tasks.

D o,

Language
t u zh B g ir

es

treeMirrorPre
treeMirrorPo
treeMirrorin
rotateAroundRoot
nounSwaps
verbAtBeginning
verbSwaps
adverbVerbSwap
nounverbSwap
nounVerbMismatched
nounAdjSwap
functionalShuffle
shuffleHalvesFirst
shuffleHalvesLast
reversed
wordShufile

Perturbations

Figure 12: o2

E Measured MT Performances

F 5i>8

In some corner cases, we observed the 31 to be
greater than 3. This suggests that the model, at
least in those cases, opts an unnatural understand-
ing of the syntax for the translation.

Shttps://spacy.io/
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Perturbations de fr ru ja es it zh

TreeMirrorPre 3869 3732 3201 1580 7004 3009 155
TreeMirrorPost 3862 3726 3199 1525 7001 3009 147
TreeMirrorln 3862 3726 3199 1525 7001 3009 147
VerbAdvSwaps 944 831 74T 1297 1287 615 1649
VerbSwaps 2019 2084 1496 4376 3714 1582 3703
NounAdjSwaps 508 967 631 985 1863 600 469
FuncShuffle 1197 1274 383 7004 2666 666 229
NounVerbSwaps 3777 3624 2821 4798 6664 2687 6746
NounVerbMis 3005 2989 2623 4102 5448 2189 5932
ShuffleLastHalf 3905 4002 3213 4997 7083 3030 7084
VerbAtBeginning 3584 3410 3939 1817 7135 3729 7084
RotateAroundRt 3904 4002 3212 4997 7082 3030 7074
WordShuffle 3905 4002 3213 4997 7083 3030 7084
ShuffleFirstHalf 3905 4002 3213 4997 7083 3030 7084
NounSwaps 3747 2242 2954 4912 5936 1934 6545
Reversed 3904 4002 3212 4997 7082 3030 7074
Total 5k 5k 5k 5k 10k 5k 10k

Table 1: The distribution of samples under different perturbation functions across the different languages. The
trend shows that there might be some parts-of-speech that are minority — Adjective, Adverb — across the languages.
This does not affect the analysis in the paper.

Language

Helsinki-OPUS

mBART

M2M_100_418M

M2M_100_1.2B

German
Russian
French
Japanese
Italian
Spanish
Chinese

0.40 £ 7.77 x 1076
0.39 +9.51 x 1076
0.45 + 7.66 x 1076
0.69 +4.01 x 1076
0.39+9.74 x 106
0.47 +£8.34 x 1076
0.08 £2.95 x 1076

0.30 £ 7.10 x 106
0.24 +8.00 x 1076
0.35+7.15 x 1076
0.07+1.64 x 1076
0.37 +£9.67 x 1076
0.30 £ 7.47 x 1076
0.09 +3.25 x 1076

0.25+7.96 x 1076
0.23+8.36 x 1076
0.30 £ 6.89 x 106
0.07+1.77 x 1076
0.30 £9.93 x 106
0.34+7.75 x 1076
0.07 £ 2.96 x 1076

0.34 £8.80 x 1076
0.28 +8.53 x 1076
0.37 £8.33 x 1076
0.10 £2.72 x 106
0.35 +9.52 x 1076
0.39 £9.96 x 1076
0.10 +5.07 x 1076

Table 2: Performances in BLEU-4 (/) of our NMT models. We can see that the models have a poor performance
on Japanese and Chinese datasets with an only exception of Helsinki-OPUS model having 0.69 BLEU on Japanese.
This could be attributed to the fact that the validation data are from OPUS and the distributions between the train
and validation set on Japanese language are too close and unique. This explains the poor performance on Japanese
by the other models. Also, we observed the size of the model to affect linearly the performance of the model
(comparing models mBART, 418M and 1.2B).

Language Helsinki-OPUS ‘ mBART M2M_ 100 418M M2M_100_1.2B

German
Russian
French
Japanese
Italian
Spanish
Chinese

514
643
693
608
914
575
501

334
382
601
0
644
958
560

373
388
516
)
408
410
322

399
512
592
16
509
527
230

Table 3: Number of flips by language and model. We found no relation between the number of flips a model might
exhibit when presented with perturbed data to its size or performance in NMT task (). At this point we think this
is just a noise and might have more to do with the dataset than the models themselves.
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Figure 8: We present the results only averaged from reactions to perturbations across the 4 models to showcase the
trend of 3, scores being generally higher than 32 scores across the different perturbations in different languages.
The scores computed using BLEU-4 records the differences by better showcasing that harder perturbations having
lower (31 and [, scores, while on the other perturbations the models being robust is highlighted well.
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suitable metric for measuring faithfulness and robustness of the models.
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Figure 10: The BERT-score can be observed to be too forgiving of the perturbations in the text thereby not having
any difference to the scores across languages. The sheer lack of discriminating perturbed vs unperturbed makes

BERT-score a less suitable candidate for the task.
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Perturbations

(g) M2M-100-1.2B Bf
Figure 13: Models ignore precise word order they are presented with: Compare the heat maps showing higher

(1 than By values on average across languages. Models tend to recover more when faced with PoS tag-based
perturbations: Figure 12 generally shows darker shades for PoS tag-based perturbations than for the others. This
means that models find it harder to ignore word order for sentences perturbed with Dependency tree-based and

Random perturbations than with PoS tag-based ones.
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The heatmap illustrates average of Levenshtein distances between different perturbations. The map

Figure 14

shows interesting patterns that naturally differentiate the dependency tree based, PoS-based, and random perturba-

tion categories. It is interesting to observe the pattern being consistent across the different languages.

Length

(b) B2 vs ae (c) Length vs a.

(a) B1 Vs ae

Figure 15: Models tend to be more robust and more faithful for easier perturbations (e is higher). The longer
sentences having higher . has more to do with most of our perturbation functions targeting specific sentence
constituents, leaving majority of the sentence unperturbed. [Length is normalized with the length of the longest

sentence in every language +1 to compute a value between [0, 1).]
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mBART  g. ge B B/ ¥
The problem was too much for me. was The problem too much for me . 0.00 0.61 nounVerbSwp
de They don’t even know why. do They n’t even know why . 0.43 0.56 nounVerbSwp
Tom took part in the race. Tom took part race in the. 0.00 1.00 nounVerbMis
That’s what makes me nervous. That makes what ’s me nervous . 0.37 0.54 verbSwaps
fr If you cannot come, I’ll eat alone. you If not can come , I "1l eat alone . 0.27 0.61  shuffleHFirst
It’s been raining since last night. It ’s been raining since night last . 0.36 0.64 nounAdjSwp
Is there a shorter road to get there? a shorter road there Is to get there ? 0.00 0.53 nounVerbSwap
es Just ignore what Tom said. Just ignore what said Tom. 0.36  0.59 shuffleHLast
Do you want to play football with us? play you Do to want football withus ?  0.50 1.00  verbSwaps
What do you think about her? her about What do you think ? 0.00 0.61 treeMirrorPo
it I’ve read every page except the last one. I ’ve read every page except the one last.  0.36  0.59 nounAdjSwap
He threw a stone at the dog. threw He a stone at the dog . 0.42 1.00 wordShuffle
I’ll tell him this afternoon. 1’11 tell him this afternoon . 0.00 0.54 nounSwaps
ru Have you ever seen a car accident? a car accident seen Have you ever ? 0.50 1.00 rotateArouRt
I’m sure that you’ll succeed. succeed “m I sure that you "1l . 0.43 0.64 verbAtBegin
How heavy is your suitcase? your suitcase How heavy is ? 0.00 0.76 treeMirrorPo
zh That dog runs very fast. fast very runs dog That . 0.00 0.61 reversed
Tom is hiding a terrible secret. hiding is Tom a terrible secret . 0.41 0.54 nounVerbMis
Opus ge 9e B B1 v
Did you bring a hair dryer? a hair dryer Did you bring ? 0.00 0.54 treeMirrorPo
de It’s a river that has never been explored. It ’s a river that has explored been never.  0.42 0.59 nounVerbSwap
I may go to Boston next month. go may I to Boston next month . 0.37 0.52 nounVerbMis
Yes, my name is Karen Smith. Karen Smith Yes , my name is . 0.00 0.61 treeMirrorPo
fr Why didn’t you call me last night? did you n’t Why call me last night ? 0.50 1.00 shuffleHFirst
Our fridge doesn’t work anymore. does Our fridge n’t work anymore . 0.00 0.54 nounVerbSwap
Have you ever been on TV? been Have you ever on TV ? 0.34 0.62 verbAtBegin
es I’'m looking forward to your coming to I coming looking forward to your ‘'mto  0.45 0.51  verbSwaps
Japan. Japan .
We left him some cake. We some left cake him . 0.0 0.54 wordShuffle
Have you tried online dating? you Have tried online dating ? 0.45 0.76 nounVerbSwap
it What did you do this morning? What this do you morning did ? 0.00 1.00 wordShuffle
She was able to read the book. read She was able to the book . 0.35 0.65 verbAtBegin
Tom knew that I was lonely. Tom knew that lonely was I . 0.43 0.64 nounAdjSwap
ru He said he would come tomorrow. come he said would He tomorrow . 0.47 1.00 nounVerbMis
You can stay if I want to. You can stay if to want I. 0.45 0.54 shuffleHLast
Joseph said to them, “It is like I told you, Joseph saying to them , “ It are like I 0.48 1.00  verbSwaps
ja saying, ‘You are spies!’ said you , is, ‘ You told spies ! ’
Don’t be overcome by evil, but over- Do n’t overcome overcome by evil ,but  0.42 1.00  verbSwaps
come evil with good. be evil with good .
How amiable are thy tabernacles, O hosts of LORD O, tabernacles thy are  0.42 0.65 reversed
LORD of hosts! amiable How !
He has completely lost all sense of duty.  He has lost completely all sense of duty. 0.45 0.54  verbAdvSwap
zh We have a white cat. We have a cat white . 0.35 0.84 nounAdjSwap
The main question is how does Tom feel. = The main question does how is Tom feel.  0.47 0.61  verbSwaps

Table 4: Samples from across different languages and perturbations where the models translated better when the
source sentence was perturbed (a 14 Sinha et al. 2020). Although such flips made only a small fraction, we observed
the unnaturalness understanding of the syntactic structure in translation task.
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M2M-418  g. 9e B pr ¥

Do you know who they are? you Do who know are they ? 0.38 0.54 nounVerbSwp
de You remind me of Tom. remind me of Tom You . 0.00 0.51 treeMirrorPre

That architect builds very modern That architect builds very houses mod- 0.00 0.47 nounVerbMis

houses. ern .

Can I get you a cup of tea? you a cup of tea get Can 1 ? 0.46 0.53 rotateArndRt
fr I use the Internet as a resource for my use I the Internet as a resource for my 0.30 0.67  verbAtBegin

research. research .

There’s a serious problem. serious There ’s a problem . 0.49 0.51 wordShuffle

You are not a dog. Are you a cat? You are not a dog . Are a cat you ? 0.34 0.59 nounSwaps
es The cat jumps on top of the table. of cat jumps on top The the table . 0.00 0.61 funcShuffle

Does Tom enjoy watching horror horror movies Does Tom enjoy watching  0.29  0.56  wordShuffle

movies? ?

I was very tired last night. very tired last night I was . 0.00 0.61 treeMirrorPo
it You shouldn’t be alone. You be n’t should alone . 0.00 1.00 verbShuffles

She published two collections of short  She published two collections stories 0.37 0.68  shuffleHLast

stories. short of.

They re still not safe. still not safe 're They . 0.38 0.54 treeMirrorln
ru Let me talk with Tom. talk Let me with Tom . 0.00 0.76 verbAtBegin

Go away! I hate you! away Go ! you I hate ! 0.00 0.64 treeMirrorPo

I love music. love I music . 0.00 1.00 verbAdvSwap
zh He paid double fare. paid He double fare . 0.00 1.00 verbAtBegin

I doubt that I'm a good writer. I doubt that a good writer *'m L. 0.43 0.60 nounSwaps

M2M-1.2 g, Je B b1 v

Tom is not happy to be here. Tom is not happy here be to. 0.34 1.00 ShuffleHLast
de You should give up smoking. You give should up smoking . 0.00 1.00 verbSwaps

I know who you are. I know you who are . 0.43 1.00 nounSwaps

Tom drowned in the ocean. drowned in ocean the Tom . 0.00 0.84 treeMirrorPre
fr She saw it, too. saw She it , too . 0.00 0.54 verbAtBegin

Of course you can stay. Of course stay can you . 0.43 0.64 nounVerbMis

Being able to use a computer is advanta- Being able to a computer use is advanta- 0.38 0.64 nounVerbMis
es geous. geous .

He never forgets to pay a bill. He never bill forgets to pay a . 0.00 0.54 wordShuffle

Never betray the trust of your friends. betray trust of friends your the Never . 0.0 0.54 treeMirrorPre

Tom isn’t a member of our club. n’t a member of our club is Tom . 0.35 0.56 rotateArndRt
it I think she’s 40 years old. think I ’s she 40 years old . 0.37 0.68 nounVerbSwp

There’s enough food for all of you. There ’s enough food for of all you . 0.37 0.59 funcShuffle

I saw Tom this morning. Tom I saw this morning . 0.00 1.00 shuffleHFirst
ru He said he would come tomorrow. said come tomorrow he would He . 0.47 1.00 treeMirrorPre

I will be busy next week. week next busy be will I . 0.00 0.64 reversed

You remind me of Tom. me remind Tom of You . 0.00 0.51 nounSwaps
zh That dog runs very fast. That dog runs fast very. 0.38 0.81 shuffleHLast

This photo was taken in Nara. taken was This photo in Nara . 0.47 0.61 nounVerbMis

Table 5: Samples from across different languages and perturbations where the models translated better when the
source sentence was perturbed. Although such flips made only a small fraction, we observed the unnaturalness in
the understanding of the syntactic structure in translation task. This is similar to the observations made by Sinha

et al. (2020).
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Perturbations de fr ru ja es it zh

treeMirrorPre 82 127 138 142 9 123 3
treeMirrorPo 43 76 107 93 4 84 4
treeMirrorln 15 9 28 25 3 34 1
rotate AroundRoot 92 172 186 150 76 121 162
nounSwaps 101 113 98 106 40 109 142
verbAtBeginning 241 180 277 351 17 274 234
verbSwaps 109 87 140 122 83 75 76
adverbVerbSwap 62 34 72 76 25 58 52
nounVerbSwap 163 273 232 321 58 220 198
nounVerbMismatched 95 152 179 200 28 105 145
nounAdjSwap 24 74 74 76 14 39 14
functionalShuffle 51 90 75 51 58 26 6
shuffleHalvesFirst 186 316 303 348 74 255 210
shuffleHalvesLast 286 279 354 301 71 300 219
reversed 4 10 16 9 12 27 38
wordShuffle 63 73 114 101 22 71 106
Perturbations Helsinki-Opus mBART50 M2M-100-418M M2M-100-1.2B
treeMirrorPre 196 121 144 163
treeMirrorPo 158 92 72 89
treeMirrorIn 34 26 27 28
rotate AroundRoot 356 245 167 191
nounSwaps 268 198 119 124
verbAtBeginning 522 396 326 330
verbSwaps 282 174 111 125
adverbVerbSwap 143 94 61 81
nounVerbSwap 529 364 293 279
nounVerbMismatched 304 263 152 185
nounAdjSwap 102 77 61 75
functionalShuffle 159 73 32 93
shuffleHalvesFirst 615 423 329 325
shuffleHalvesLast 525 393 372 520
reversed 32 30 25 29
wordShuffle 180 102 126 142

Table 6: The distribution count of flips by every perturbation functions across the languages and models show that
Helsinki-Opus recording the highest flips. While the trend is similar across the models the maximum flips in Opus
models could be attributed to the experiments being done on the validation set of the datasets the Opus models
were trained on. Although it is not clear whether the specific overlap between the train and dev sets cause the flips
and we leave that to the future work. Among the languages,ru and ja accounted for majority of the flips and we
hypothesize that it could be some artifact of the dataset that causes it more than the model itself.
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