Bandits Don’t Follow Rules:
Balancing Multi-Facet Machine Translation with Multi-Armed Bandits

Julia Kreutzer and David Vilar and Artem Sokolov
Google Research

{jkreutzer, vilar,

Abstract

Training data for machine translation (MT) is
often sourced from a multitude of large cor-
pora that are multi-faceted in nature, e.g. con-
taining contents from multiple domains or dif-
ferent levels of quality or complexity. Natu-
rally, these facets do not occur with equal fre-
quency, nor are they equally important for the
test scenario at hand. In this work, we pro-
pose to optimize this balance jointly with MT
model parameters to relieve system developers
from manual schedule design. A multi-armed
bandit is trained to dynamically choose be-
tween facets in a way that is most beneficial for
the MT system. We evaluate it on three differ-
ent multi-facet applications: balancing transla-
tionese and natural training data, or data from
multiple domains or multiple language pairs.
We find that bandit learning leads to competi-
tive MT systems across tasks, and our analysis
provides insights into its learned strategies and
the underlying data sets.

1 Introduction

Parallel training data for machine translation (MT)
is commonly sourced and combined from multi-
ple large sub-corpora to obtain the maximum num-
ber of training examples. The WMT shared tasks,
for example, provide a number of distinct train-
ing corpora since (Koehn and Monz, 2006). Such
corpora are multi-faceted in nature, consisting of
a generally unbalanced mixture of data sources
that differ from each other in word distribution, do-
main or other traits. Examples of such differences
could range from strongly heterogeneous data like
distinct languages for training multi-lingual sys-
tems (Dong et al., 2015; Firat et al., 2016; Arivazha-
gan et al., 2019) to rather subtle variations in data
provenance (e.g. human-generated vs. machine-
produced data crawled from web), through a mid-
strength variation in multi-domain MT (Farajian
et al., 2017; Miiller et al., 2020; Pham et al., 2021).
The nature of data facets and their identity is known
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Training Data Bandit

Figure 1: Multi-armed bandits for NMT data selection.

at training time, either from the data sources di-
rectly, for example meta-data from data collec-
tion pipelines, or can be provided by dedicated
classifiers—but this important information is dis-
carded when mixing and shuffling them for train-
ing (Arjovsky et al., 2019; Teney et al., 2020).
Thus, the optimal balance of facets needs to be de-
cided beforehand, and with the requirements at test
time in mind. At test time, facets may be equally
important, but they might not all have the same
amounts of training data. These data balancing de-
cisions are time-consuming and expensive as they
often require multiple iterations for striking the
right balance between, on the one hand, robust per-
formance at test time on underrepresented facets
and, on the other hand, preserving valuable linguis-
tic and lexical information contained in the higher-
represented ones. For additional complication, po-
tential positive and negative transfer between facets
should be taken into account (Arivazhagan et al.,
2019; Wang et al., 2021). The complexity of these
decisions exacerbate as training data grows.

Even with established data balancing heuristics
in place (e.g. upsampling with a tuned tempera-
ture 7' (Devlin, 2019; Arivazhagan et al., 2019)),
different balances might be needed at different
stages of training. This realization kick-started
a development of training curricula (Bengio et al.,
2009) which, despite efforts in neural MT, have
yet to produce a recipe applicable to concrete data
at hand (Zhang et al., 2018). Existing curricula

!'Sampling from an annealed and renormalized empirical
distribution over facets f, p(f) = softmax¢(In(p(f))/7).
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presuppose fixed notions of difficulty and come
with hand-crafted schedules, often inspired by the
human learning process (Kocmi and Bojar, 2017;
Zhang et al., 2018; Platanios et al., 2019). Such ap-
proaches are brittle in that they may not generalize
well across tasks, and there has been evidence that
even the reverse of the initially hypothesized order
works well (Bengio et al., 2009; Wang et al., 2018;
Zhang et al., 2018). This suggests that our human
intuitions about difficulty and data succession may
not correspond to the optimization process of an
NMT system (Li and Gong, 2021).

In this paper we argue for automatically learned
and adaptive data curricula, where the learning
system explicitly chooses a facet at each point
in training, and does not depend on presupposed
schedules. This has three major advantages: First,
it relieves system developers from lots of manual
work. Second, it can improve quality by ignoring
irrelevant, redundant or already learned data. Third,
it can directly optimize for a uniform performance
objective to maintain quality on all facets. As a
side effect, post-training analyses may improve
data interpretability and efficiency (Gascé et al.,
2012). However, outsourcing data decisions to an
auxiliary ML model sacrifices some of control and
understanding. In particular, multiple training data
selection strategies can lead to models of compa-
rable quality, especially when measured by crude
metrics like BLEU.

We formulate multi-faceted training as a
multi-armed bandit learning problem, where the
arms/actions correspond to the available facets in
the training data. At each training step, the bandit
chooses one facet for the MT system to train on and
receives a reward signal whether this choice was
beneficial for the training progress (see Figure 1).
We implement the EXP3 algorithm (Auer et al.,
2002) as proposed for automated curriculum learn-
ing (Graves et al., 2017) (§2), and evaluate it on
three different multi-facet applications for machine
translation. These require balancing training data
that is natural or translationese (§4.1), comes from
a variety of domains (§4.2), or from many different
languages (§4.3). To the best of our knowledge
this is the first study that addresses these problems
jointly and provides a competitive solution to all of
them. We analyze the effects of different reward
signals and chosen facets over time, shedding new
light on the importance of different facets for each
of the tasks.

2 Learning to Select Data with Bandits

Learning a data curriculum can be framed as a
multi-arm bandit problem, where the decision to
train on a particular subset of data is outsourced to a
bandit algorithm that is learned alongside the main
task (Graves et al., 2017). After the bandit chooses
a facet, the NMT system is updated on a uniformly
sampled batch of data from this facet. The system
then provides a reward to the bandit, telling how
successful this selected batch of data was in terms
of overall training progress (see Figure 1).

Formally, the bandit selects actions from a set
A which is a discrete set of ids. In each round ¢,
the bandit selects an action a’ € A and observes
a scalar loss, 3t = cht, where Y is the complete
but unobserved loss vector for each possible action.
The bandit parameters are updated to minimize
the regret R = E[Y_,y’] — min, >, V! of not
playing the arm that is best in hindsight. We operate
in a fully adversarial setup assuming that reward
vectors Y can be arbitrary, i.e., they can depend
on the full history, data etc., but cannot be adaptive
to the selected action a’.

With a collection of subsets of training data
(facets), covering the full training data, UD, = D,
the EXP3 algorithm proceeds as follows (Auer
et al., 2002; Graves et al., 2017):

Algorithm 1: Multi-Facet EXP3 for NMT

Input : NMT model 69, number of facets n,
exploration rate v, bandit learning
rate yu, training facets D,
Result: Sequence of arms {a',a?,...,a’}
1 Initialize weights w = 0 € R"
2 fort=0,...,7Tdo
exp(Wa) 4

3 Wt(a) = (I—V)W
t

32

sample a' ~ 7
sample a batch B! uniformly from D,
NMT update step on B’ to get §'*!
measure learning progress 3¢

update w, = wg + py'fa = a'] /7' (a)

®w N S s

The regret R behaves as O(v/1'Ind) (Auer et al.,
2002), so in the limit the bandit will do as good
as the best arm from A, i.e., R/T — 0 as T —
oo. Graves et al. (2017) used a slightly modified
algorithm EXP3.S (Auer et al., 2002) that competes
against any sequence of actions to reflect dynamic
changes. In practice, we found the performance of
the vanilla EXP3 sufficient for NMT.
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Measuring learning progress Graves et al.
(2017) propose a variety of reward functions for
measuring learning progress. In this work, we fo-
cus on rewards that are functions of the loss value:

e loss: the plain loss objective value, £(6%);
e pg: absolute prediction gain, £(0%) — L(6¥F1);
e pgnorm: relative pg, 1 — L(0'T1) /L(6Y).

They can be evaluated on the training batch B! or
on a development batch Bé ., (denoted with prefix
dev-). Due to the ambiguity of what can lead
to high losses on the training set—such as noisy,
unseen or untypical examples—rewards calculated
on batches sampled from dev sets (that in our work
contain an equal mix of facets) proved to be more
successful in our experiments. This also allowed
us to inject the equal importance of facets into
the rewards. We calculate rewards on randomly
sampled batches, since it is cheaper than on the full
dev set (Kumar et al., 2019). This is not an issue for
EXP3, as it allows rewards to be non-deterministic:
it provably converges for adversarial feedback, and
so for identically distributed random rewards too.
We linearly re-scale the rewards to [0; 1] clipping
them between the 20th and the 80th quantiles of
the most recent Sk rewards (Graves et al., 2017).

Training costs The memory overhead of training
the bandit alongside the main NMT is negligible
since it only requires the storage of reward and
sampling statistics across arms (see Algorithm 1).
There is no overhead in terms of speed for the
loss reward since it is already computed dur-
ing the normal MT training, but a second forward
pass is needed to calculate prediction gains (pg or
pgnorm). With the cost of a forward pass c, the ad-
ditional computational cost per iteration is O(c) for
one evaluation batch, independent of the number of
facets. This is notable cheaper than recent methods
based on gradient similarity that require backward
passes on training and development sets for each
facet, plus a gradient update for a parametrized
policy (Wang et al., 2020a).

3 Experiments

Data To ensure that our recipe generalizes to mul-
tiple setups we empirically tested our approach on
three different tasks varying across several dimen-
sions (Table 1):

1. Natural vs. translationese: For large-scale
en—de translations we model two facets with

Corpus Lang. pairs Facets Entropy Sent.
Nat.-Transl. 1 2 96.9% 5T
Multi-domain 1 5 85.4% 1.5M
TEDS57 diverse 8 8 78.9% 766k
TEDS7 related 8 8 73.1% 586k
OPUS100 M20/02M 99 99 91.6% 55M
OPUS100 M2M 198 198 92.7%  109M

Table 1: Overview of multi-faceted training data sets.
The entropy of the frequency distribution of facets as
present in the corpus is measured in percents of the
maximum natural entropy.

a subtle distinction, namely the distinction of
“translationese” and “natural” target sides (§4.1).
The difficulty lies in the weak demarcation be-
tween classes of signals, large provenance di-
versity of data and the overall large data size.

2. Multi-domain: We train a multi-domain NMT
system for en—de with mid-size training data
(8§4.2). The automated curriculum has to bal-
ance facets of the same language, but with sub-
tle domain-specific differences.

3. Multilingual: We experiment with multilingual
NMT models on two small-scale subsets of 8
language pairs from the TEDS57 dataset and the
large-scale OPUS100 set with 99 language pairs
(§4.3). Facets are defined as language pairs and
they are related to varying degrees, so reward
signals are expected to vary in terms of dynam-
ics and strength.

Implementation We implemented the Trans-
former model (Vaswani et al., 2017) in JAX (Brad-
bury et al., 2018), using the neural network library
Flax (Heek et al., 2020) (more details in §A.1).
After training we select the model for testing that
obtained the highest SacreBLEU score (Post, 2018)
on development sets containing a balanced selec-
tion of all facets.

4 Results

For each task we evaluate whether the bandit-
directed training schedules can outperform the zero-
effort “take-it-all” approach where datasets are con-
catenated and training examples are presented in
random order. In addition, we compare it to task-
specific best practices, and investigate which strate-
gies are learned by the bandit schedules.

4.1 Natural vs. translationese NMT

Setup We train a big Transformer on the
concatenation of the News Commentary (v15),
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Av Translationese Natural Translationese Natural
& WMT20 WMT20-paraph WMT20-rev WMT18 WMT18-paraph WMT18-rev

Baseline 26.42 27.64 9.23 22.87 52.19 12.61 34.00

Tagged 27.12 | 28.05(29.37) 9.96 23.92 52.24 (50.85) 13.12 35.44

loss 27.37 27.81 9.37 24.36 50.34 12.73 39.61
_ bg 27.66 28.32 9.48 24.66 51.52 12.96 39.03
S pgnorm 26.40 27.49 9.30 22.42 51.37 12.33 35.48
@ dev-loss 27.47 28.19 9.49 23.99 51.57 12.64 38.94

dev-pg 27.39 27.53 9.28 24.56 51.18 12.67 39.12

dev-pgnorm 27.22 27.68 9.40 24.35 50.21 12.67 38.98

Baseline+CDS 27.74 29.52 9.76 23.85 53.62 12.99 36.71
_ Tagged+CDS 27.50 | 29.17 (28.98) 10.00 23.58 53.60 (50.18) 13.17 35.46
"§ dev-pgnorm+CDS | 28.01 29.09 9.72 24.20 53.60 13.07 38.44
M

Table 2: WMT en-de: BLEU scores on the natural vs. translationese task. Source tags for tagged baselines
correspond to the test set’s facet; for translationese sets, BLEU for the natural tag is in brackets.

ParaCrawl (v5.1), Europarl (v10) and Common-
Crawl training corpora.” Since natural vs. trans-
lationese facets are not explicitly marked in the
corpora, we train two neural LMs for the target
language, one on natural text and one on trans-
lated text, and select the higher-scoring one as label
(§A). We are interested in improving the natural-
ness of the translation output, but this is hardly
measured by automatic metrics, because standard
reference translations are translationese, so BLEU
might even give contradictory signals (Freitag et al.,
2020b). Therefore, we also evaluate on the reverse
direction WMT?20 set, i.e. the reversed test set for
de-en (suffix ‘-rev’), which consist of original
German text. This serves as a proxy for measur-
ing the naturalness of the system output. We ad-
ditionally use the references provided by Freitag
et al. (2020b) which were paraphrased versions of
the official ones, with the goal of improving their
naturalness (denoted with the suffix ‘-paraph’ in
the results). The bandit development set contains
2000 sentences of equal mixture of natural (the
‘rev’ part) and translationese sentences from the
WMT19 newstest, and the final evaluation is on
faceted WMT18 and WMT?20 news test sets.

As a simple controlled translation, we also train
tag-based baselines (Riley et al., 2020), where
source tags correspond to facets, also during test-
ing. As the natural mode is what often desired, we
additionally evaluate translations with the ‘natural’
tag for translationese sets.

Results All bandit approaches improve over the
baseline (Table 2) by around 0.5-0.9 BLEU on av-
erage across test sets (except for pgnorm), but the
individual tendencies vary across reward choices.

2WMT2020 news translation task.

The dynamics of the bandit arm probabilities (§D,
Figure 5) reveal that most rewards prefer the nat-
ural part of data since it is harder to learn for the
NMT system and results in consistently higher loss
values; except for pgnorm, which also loses on the
reverse set. Additional data filtering by Contrastive
Data Selection (CDS) (Wang et al., 2018) leads
to major improvements for the baseline on transla-
tionese and natural test sets. This approach filters
the training data by removing 30% of sentences
that are considered noisy by a model iteratively
trained on trusted data (here NewsCommentary
v15). It was trained independently of the natural
and translationese distinction, so the CDS improve-
ments are due to a generally improved quality of
the training data. It strengthens bandit results in a
similar way, gaining about 0.3 and 1.7 BLEU on
two natural tests set while performing comparably
on the others, which shows that both approaches
are complimentary—we speculate that CDS re-
moving noisy examples allows bandits to better
focus on truly difficult examples. Comparing the
dev-pgnorm bandit without CDS and the base-
line with CDS on natural ‘rev’ test sets suggests
that the bandit could compensate the lack of data
filtering.

4.2 Multi-Domain NMT

Setup We follow the multi-domain setup by
Miiller et al. (2020) using the data re-split by Aha-
roni and Goldberg (2020). By construction it con-
tains in-domain data from five domains and no aux-
iliary general-domain data, thus preventing data
augmentation with pseudo in-domain data selec-
tion (Axelrod et al., 2011). The goal of this evalua-
tion is to improve uniformly on all domains using
a mixed training set. As in prior work, we use
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Avg | Med IT Law Koran Subs

Size (k) 291.2 | 248.0 467.3 2229 18.0 500.0

% Aharoni and Goldberg (2020) | 40.2 | 533 421 572 20.9 27.6
A Ours 3942 | 51.65 4147 55.08 2124 27.67
Uniform (7 = 00) 39.26 | 51.91 4424 5093 2234 26.90

:‘é Upsampled (7 = 5) 38.78 | 51.11 41.10 52.87 23.07 25.72
» Proportional (1 = 1) 40.40 | 52.83 44.65 5453 2123 28.76
Inverse Proportional (7 = —1) | 40.03 | 53.43 4497 51.84 2270 27.20

Pg 40.26 | 53.38 46.42 51.44 2219 27.85

_ bgnorm 38.78 | 51.76 4597 50.03 2143 24.72
é loss 39.12 | 50.63 42.89 51.19 23.08 27.83
@ dev-loss 39.96 | 50.22 4248 55.68 2334 28.06
dev-pg 40.56 | 53.35 42.66 5595 22.62 28.23
dev-pgnorm 40.56 | 53.23 4299 55.89 22779 27.92

Table 3: Test BLEU scores on the multi-domain task. Rewards in bold improve over the baseline uniformly.

the base Transformer architecture, and, where
possible, try to match the training setup from (Aha-
roni and Goldberg, 2020) (§A). However, we were
not able to exactly replicate their scores due to
inevitable implementation differences.

Results The two most successful bandit data se-
lection strategies (dev—-pg and dev-pgnorm)
converge faster than the baseline (Figure 2) and
achieve better scores (up to +1.7 point above the
baseline on some domains and 1.1 points on aver-
age). Analysing the evolution of facet sampling
probabilities (§D, Figure 6), we find that dev-pg
and dev-pgnorm focused largely on Law and
Subtitles domains. We hypothesize that these re-
wards are capitalizing on the higher sentence quan-
tity and hence potential diversity of the higher-
resource domains. At the same time, they quickly
neglect the IT and Koran domains, which may
be structurally simple and/or monotonic. Not fre-
quently training on examples from latter domains
does not lead to a decrease of translation quality
on them. In general, gains in quality over the base-
line are not related to the sampling preferences of
the bandits. This highlights the difficulty of de-
signing a proper schedule manually and prior to
training using intuition only. Static temperature-
based sampling yields gains tied to the availability
of resources, (e.g. improvements for 7 = 1 on
the high-resource domains, and 7 = —1 on the
low-resource domains, except for 7 = 5 which
gains only for Koran), but they—in contrast to the
dynamic bandits—fail to improve on all domains.
This shows that the additional flexibility of the
bandits to adapt the sampling distribution during

BLEU

loss
pg ——

34 - pgnorm
dev-loss
dev-pg
dev-pgnorm
| baseline

L L L L L L L
50000 100000 150000 200000 250000 300000 350000 400000 450000 50000C
Iterations

Figure 2: Evaluation scores on the mixed development
set during training for the multi-domain task.

training is beneficial for equitable quality gains.

4.3 Multilingual NMT

Setup In multilingual MT, parallel training data
is often paired with English, so there are three
major training setups for multilingual translation:
many-to-one (M20), learning to translate many
languages into English; one-to-many (O2M), trans-
lating from English, and many-to-many (M2M).
We experiment with M2O translations for the
diverse and related subsets of the multilin-
gual TED dataset (Qi et al., 2018). The two subsets
cover 8 languages with very different data sizes,
selected as pairs of related languages of different
size (Neubig and Hu, 2018) or a set of diverse lan-
guages from different language families and with
different scripts (Wang et al., 2020b). There are
large discrepancies in the sizes of the subsets for
each language, e.g. be has only 4.5k sentences,
while the related ru has 208.4k. This makes it

3194



valuable for testing the behavior of the bandit with
facets that are linguistically similar but very dif-
ferently scaled. For a more data-balanced setup,
we experiment with the OPUS100 dataset (Zhang
et al., 2020), which contains up to 1M of training
examples sampled from the entirety of the OPUS
collection of parallel corpora from various do-
mains (Tiedemann and Nygaard, 2004) for 99 lan-
guages paired with English, of which 94 come with
test sets. As a result, the data has large inter- and
intra-facet diversity. For both evaluation scenarios
we train SentencePiece models (Kudo and Richard-
son, 2018) on a re-balanced corpus (Nguyen and
Chiang, 2017; Fan et al., 2020)3 to create a vocab-
ulary of 32k tokens, add target language tags and
train Transformer base models. We construct a
balanced development set by randomly selecting
a fixed number of sentences from the language-
specific development sets (500 for TED; 100 for
OPUY) to reflect our interest in high quality across
all languages. Rewards for the bandit are com-
puted on samples from this balanced dataset. We
compare with static uniform sampling distributions
(T = 00) over facets, and size-proportional (7 = 1)
or upsampled (7 = 5) distributions, since they have
been reported successful in previous works (Wang
et al., 2020b; Zhang et al., 2020). They sample
batches of a single language at each step, while the
vanilla baseline samples mixed-language batches
from the shuffled concatenated data.* All other
hyperparameters can be found in §A. We report
experiments with the dev-pgnorm reward since
it performed best.

TED Results Tables 4 and 5 compare our results
on the diverse and related subset with the
most recent work of Wang et al. (2020b), who pro-
posed a dynamic data scheduling algorithm (Multi-
DDS) based on gradient similarity between train-
ing and development data. On average, our im-
plementations of batch-wise uniform or propor-
tional sampling yield similar results to theirs for the
diverse set, but on the related set they per-
form slightly worse, because Wang et al. (2020b)
train on more data for s1 (61.5k) and pt (185k)
than is contained in the publicly available dataset,
resulting in a difference of 8 and 5 BLEU on re-

3Upsampling all languages to the maximum size.

“The literature has been divided whether to mix batches
(Aharoni et al., 2019; Zhang et al., 2020, 2021; Li and Gong,
2021) or not (Firat et al., 2016; Wang et al., 2020b).
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Figure 3: Total number of batches trained on for each
language throughout training for TED-diverse M20.

spective languages.’ The bandit consistently out-
performs the mixed-batch baseline (‘Base’) and
performs similarly to proportional sampling of
language-specific batches (‘Proportional’). Triv-
ially sampling languages according to their size is
a good heuristic for both setups despite the large
data discrepancies between languages, corroborat-
ing previous findings on this dataset (Neubig and
Hu, 2018; Li and Gong, 2021). It yields better re-
sults than a uniform sampling scheme (and than
the commonly used 7 = 5) which a practitioner
might have chosen without prior knowledge about
the task. The bandit automatically discovers this
insight without having access to explicit size in-
formation, as can be seen in Figure 3 for the di-
verse set (related: §C, Figure 4). Compared to size-
proportional sampling, it slightly upsamples all
smaller languages and slightly downsamples some
of the larger ones (el, bg, £r), but not as strongly
and consistently as the 7 = 5 upsampling. This led
to an improvement of the translation quality of the
lowest-resource languages, and was incentivized by
the equal presence of languages in the balanced de-
velopment set used for reward calculations. With a
similar incentive but much more expensive updates,
Multi-DDS’s gains over proportional sampling are
also on the smallest datasets.

OPUS100 Results We compare against the M20
and O2M benchmark results set by Zhang et al.
(2021), averaging results for less than 0.1M sen-
tence pairs (‘Low’), more than 1M (‘High’) and
medium-sized ones (‘Med’). Zhang et al. (2021)
also use a Transformer base, but report averaged
results for the last 5 checkpoints and create un-
balanced vocabularies of twice the size of ours,
resulting in a higher-capacity model. Our baselines
therefore score slightly below. The bandit clearly

SDownloaded from https://github.com/
neulab/word-embeddings-for-nmt.
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Avg bs mr hi mk el bg fr ko

Size (k) 958 | 57 98 188 253 1343 1744 1923 2056

Ours Base 2543 [ 2159 1000 2073 29.90 3374 3473 3570 17.06

Uniform (7 = c0) | 24.81 [ 21.52 948 19.99 3046 3322 33.70 35.15 15.03

Upsampled (r = 5) | 26.01 | 2347 10.19 2126 31.13 34.69 3494 3644 16.00

Wang etal. Q0200) b ortional (7 = 1) | 26.68 | 2343 10.10 2201 3106 3562 3641 37.91 1691

MultiDDS-S 27.00 | 25.34 1057 2293 3205 3527 3577 3730 1681

Uniform (1 = 00) | 24.47 [ 2172 8.13 17.84 29.18 33.37 3422 3599 1531

Static Upsampled (7 = 5) | 26.04 | 24.60 9.56 19.68 30.81 3471 3554 3674 16.68

Proportional ( = 1) | 26.85 | 22.00 9.73 21.02 32.57 3627 37.37 3829 17.57

Bandit dev-pgnorm 2630 | 23.88 1041 2070 31.18 34.10 3587 36.81 1747
Table 4: BLEU on diverse TED data for many-to-one models.

Avg az be gl sl tr ru pt cs

Size (k) 732 | 59 45 100 19.8* 1825 2084 S1.8* 103.1

Ours Base | 2287 | 1191 17.19 2664 22.56 22.66 21.83 3487 25.17

Uniform* ( = 00) | 22.63% | 8.81 14.80 2522 27.32% 20.16 2095 38.69% 25.11

o Upsampled* (r = 5) | 24.00% | 1042 1585 27.63 28.38% 21.53 21.82 40.18% 2626

Wang etal. 20200) o tional* (- — 1) | 24.88% | 1120 1717 27.51 28.85% 23.09 2289 41.60% 26.80

MultiDDS-S* 25.52% | 1220 19.11 2937 29.35% 22.81 2278 41.55% 27.03

Uniform (7 = 00) 2030 | 8.10 1209 2435 1921 2053 2022 3399 2395

Static Upsampled (r = 5) | 21.92 | 971 15.14 26.18 20.84 2179 21.18 3531 25.18

Proportional (r = 1) | 23.60 | 11.88 1580 27.69 2290 2373 2290 37.38 26.49

Bandit dev-pgnorm | 2351 | 1218 18.00 2776 2176 2336 2272 3651 2582

Table 5: BLEU on related TED data for many-to-one models.

outperforms the vanilla baseline and static size-
proportional sampling in both directions, and for
M20 also uniform sampling, as reported in Table 6.
It performs slightly weaker than the static upsam-
pling approach. Uniform sampling is competitive
for O2M, because it evenly balances the target lan-
guage occurrence. M2M bandits improve over the
baseline as well, on average +0.6 for M20 and +1.2
for O2M (§B), with the largest gain of +3.6 BLEU
on O2M for the lowest-resource languages.

There is no correlation between training data
size and BLEU on the test set for the baseline, nor
between the sampling frequencies of the bandit and
training data size for any of the directions (in con-
trast to the TED experiments). The bandits pursue
selective strategies with very frequent switches be-
tween facets. For M20 11% of all training steps
were done on n1, and more than half the languages
were sampled in less than 0.5% steps each. For
0O2M, samples from fy, ga, ky, mg and ug were
used in more than 3% of steps each, and again
around half the languages were trained on for less
than 0.5% steps. Comparing M20 and O2M top-5
sampled languages, we find 4 of those to be high-
resourced (1M training examples) for M20, but for
O2M these are all mid to low-resourced with 27k-

*Trained on larger data than publicly available.

591k examples (details in §C). Surprisingly, the
languages which are rarely sampled do not stand
out with low translation quality. The selection of
domains for the data sets is not controlled for in
this benchmark (Zhang et al., 2021), so we suspect
domain effects might be interfering with BLEU
reporting, in that some test sets might be more spe-
cialized than others, especially low-resource lan-
guages which are mainly covered by technical or
religious data sets in OPUS.

5 Related Work

Model-based data selection van der Wees et al.
(2017) reported first empirical success of hand-
crafted schedules for data from different do-
mains which are chosen according to cross-entropy
scores of RNN-NMT models. Wang et al. (2018)
proposed an online data denoising approach,
where noise is measured as the difference of log-
probabilities between a learning model and the
same model fine-tuned on small set of trusted data.
Batches are composed of sentences with the high-
est contrastive data scores (CDS) corresponding to
the least noisy sentences. Our approach is similar
to the above in that the multi-armed bandit acts on
the online learning success of the MT model, but
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M20 Oo2M

All Low Med High | Al Low Med High

Base Zhang et al. (2021) | 29.27 29.71 30.10 28.55 | 20.93 18.02 2236 21.39
Ours 28.41 29.53 2754 2844|1978 19.72 18.65 20.51
Uniform (7 = 00) 29.06 31.55 27.52 28.85|22.07 23.68 1991 22.67

Static  Upsampled (7 =5) | 30.15 32,72 28.48 30.00 | 22.07 23.68 20.18 2249
Proportional (- = 1) | 28.07 29.70 27.29 27.80 | 19.39 18.84 18.05 20.49

Bandit dev-pgnorm ‘ 29.53 31.64 27773 29.66 | 20.30 21.77 1823 2091

Table 6: Average BLEU across languages pair groups for M20 & O2M models evaluated on OPUS100 test sets.

it is significantly cheaper since it does not require
contrastive models nor a pre-defined schedule. Fur-
thermore, the requirement of trusted data is lifted.

Difficulty-based curricula Kocmi and Bojar
(2017) apply the idea of curriculum learning (El-
man, 1993; Bengio et al., 2009) to RNN NMT by
simple ordering data in buckets corresponding to
increased difficulty. Zhang et al. (2018) combine
non-reusable buckets of difficulties with a manual
schedule and achieve small improvements on small
data with RNNs. Platanios et al. (2019) apply a
competence-based schedule with lengths and rarity
to Transformer NMT that re-samples already used
examples as long as they fall under the current com-
petency. Many works on manually designed cur-
ricula note that presenting examples in the reverse
order (hard-to-easy) works comparably well (Ben-
gio et al., 2009; Wang et al., 2018; Zhang et al.,
2018), which may be a sign of flawed intuitions.
Our proposed solution groups data into facets rather
than difficulty levels and reveals counterintuitive
but effective schedules.

Learned curricula Apart from (Graves et al.,
2017), whose curriculum learning bandits we adapt
for NMT, (Kumar et al., 2019) is closest to our
work. They frame the data selection task as an RL
problem and define actions as data clusters corre-
sponding to bins of CDS scores (Wang et al., 2018).
The same idea of representative batches is reused
for multi-armed bandits enhanced with state repre-
sentations in (Kumar et al., 2021). In (Wang et al.,
2020a) another RL algorithm is deployed for opti-
mizing a distribution over training examples using
the alignment of training and development gradi-
ents as rewards, requiring two backward passes on
every step and an additional forward pass on an
auxiliary neural net. In contrast to the RL-based
approaches, we use light-weight bandits without

state representations, which reduces memory and
time complexities drastically.

Bandit learning in MT Multi-armed bandits
were used in MT to improve general quality, ei-
ther from online simulated user feedback (Sokolov
et al., 2015, 2016, 2017; Kreutzer et al., 2017,
2018b) or from offline logs (Lawrence et al., 2017,
Kreutzer et al., 2018a) for domain adaptation.
Naradowsky et al. (2020) applied bandit algorithm
to select the best NMT system for a particular trans-
lation task, when maintaining of multiple such sys-
tems is possible. More generally, RL approaches
also seek to improve quality by focusing on more
task-informed objectives (Shen et al., 2016) and im-
proved approximations to the NMT policies (Bah-
danau et al., 2017). Unlike these approaches, we
treat the NMT model as a black box and do not
intervene with its inner workings (see Figure 1).

Translationese vs. natural MT Toral et al.
(2018) have shown that the original language a sen-
tence has been written in has a big impact on trans-
lation quality, i.e., translating a sentence originally
written in the source language is more difficult than
translating (back) a sentence that was originally
written in the target language and then translated
into the source language. This second condition
is ‘unnatural’ for the actual use case of transla-
tion systems, but occurs frequently in translation
evaluations, if the same dataset is used for eval-
uating both translation directions. To avoid such
artifacts, source sentences for evaluation should be
been written originally in the source language (Bar-
rault et al., 2019). Recently, Vanmassenhove et al.
(2021) showed that MT outputs present lower lexi-
cal diversity than human produced texts. MT sys-
tems generating outputs closer in style to the origi-
nal target text are preferred by human judges (Fre-
itag et al., 2020a). Hence our motivation (§4.1) to
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produce more natural sounding translations.

Multi-Faceted MT Multi-task learning (Caru-
ana, 1997) for NMT was introduced by Luong et al.
(2016) with the motivation to support a primary
tasks with auxiliary data from related tasks. When
understanding languages as tasks (Dong et al.,
2015; Firat et al., 2016), one single MT model
can be used to translate between a multitude of lan-
guages and in particular also between translation
pairs that were not in the training set (Johnson et al.,
2017; Aharoni et al., 2019). To address the prob-
lem of data imbalance Devlin (2019); Arivazhagan
et al. (2019) proposed temperature sampling to up-
sample low-resource languages and downsample
higher-resource ones (with 7 > 1), that has since
turned into the go-to data weighting strategy (Fre-
itag and Firat, 2020; Xue et al., 2020). While
it is a convenient solution and often outperforms
uniform weighting (7 = 1), it reduces the char-
acteristics of languages to their size and reflects
the assumption of a zero-sum game in joint train-
ing (Xue et al., 2020), ignoring more complex in-
teractions (Fan et al., 2020; Wang et al., 2021). Our
experiments reveal that even very unbalanced and
counter-intuitive schedules can lead to improved re-
sults across the board thanks to more intricate and
automated sampling. Closest to our work are recent
approaches to schedule data based on inter-facet
gradient similarity (Wang et al., 2020a,b), which
are more computationally expensive.

6 Discussion and Conclusion

We showed that a simple application of the EXP3
algorithm (Auer et al., 2002; Graves et al., 2017)
to the training of a black-box NMT system is
a cheaper and non-invasive alternative to task-
specific expensively hand-crafted curricula and to
heavy RL-based approaches. Bandit-optimized
data usage leads to improved performance com-
pared to the baselines across the board, and some-
times even faster convergence. On the difficult
task of improving naturalness of translations we
gained +0.5-0.9 BLEU on natural on average; on
the multi-domain task up to 1.7 points on certain
domains using 72% of the baseline’s time to con-
verge; on the multilingual MT task on average—by
+1.2 points for translations of 94 languages into
English, and by +0.6 points for the reverse.

We found intuitive explanations for the learned
policies on some of the tasks, but our ability to
interpret bandit actions with human reasoning is

very limited especially when the number of facets
and training steps grow, and also defeats the pur-
pose of replacing possibly flawed human intuitions
with learned curricula. As opposed to the expen-
sive development cycles (“train-interpret-retrain’)
of post-training data interpretability methods (Koh
and Liang, 2017) the bandits directly act on their
understanding of what is beneficial for the task at
hand. After training we can report for each model
how much each facet actually mattered, which
would increase the transparency of model report-
ing (Mitchell et al., 2019), especially for large-scale
models (Raffel et al., 2020; Xue et al., 2020).

Finally, there are a few limitations of our ap-
proach: Being stateless, unlike RL approaches (Ku-
mar et al., 2019), bandits might be short-sighted
and keen on exploiting easy data first. Our exper-
iments, though, show that this, with a sufficiently
large exploration rate, does not seem to be the case
for the tested applications and is not an obstacle to
practical use. Another limitation are additional hy-
perparameters to be set (learning and exploration
rates, and reward definitions). Again, we found
it relatively easy to navigate in practice by stop-
ping unpromising runs early (~50k steps in our
runs, cf. Figure 2); moreover, the hyperparameters
tend to generalize across tasks. We believe that
the flexibility provided by the reward definitions
would allow to inject domain knowledge and/or
signals from potentially multiple objectives, and
prior knowledge of the data imbalance could be
reflected in the exploration rate.

Our implementation of EXP3 samples facets in
homogeneous batches, but the current SOTA mod-
els use heterogeneous ones (Arivazhagan et al.,
2019). This introduces a limitation and a potential
hindrance for optimization (Li and Gong, 2021),
that we hope to address in future work by learning
a sampling distribution over individual sentences.
With steadily growing training data from more and
more sources (Raffel et al., 2020; Xue et al., 2020),
it would also be desirable to model facet hierarchies
or intersectionalities, e.g., differentiating between
domains and translationese vs. natural within each
language pair for a multilingual model.
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A Hyperparameters

A.1 Transformer implementation

We abstained from adding the plethora of archi-
tecture and pre-processing tweaks common for
systems competing in MT benchmarks, and ex-
perimented with bare bone Transformer models
in order to reduce confounding effects, and keep
the code and resulting experiments minimal and
clean (Kreutzer et al., 2019).°

To verify the implementation, we tested it on
the WMT 14 en—de benchmark, where it scores
27.8 BLEU (without ensembling) vs. 27.3 reported
in (Vaswani et al., 2017).

A.2 Natural vs. translationese

We used the same configuration as the big Trans-
former model from (Vaswani et al., 2017), except
for the MLP dimension which was increased to
8192. Training on TPUv2, we used a learning rate
of 0.01, warmup 10000, label smoothing of 0.1,
dropout of 0.1 and 96 as batch size. The maximum
length during training was set to 100. Decoding
was done with beam size 4 and maximum length
140 during beam search.

Details on the LM classifier: The first LM was
trained on monolingual news crawl data provided
by the organizers of the WMT campaign, which
comes from news sites originally written in the de-
sired language. The second dataset was generated
by (forward) translating data in the source language
into the target language by a previously trained MT
system. Note that, although we train only on MT
generated data, we will use this last LM for iden-
tify both human and machine translated data in the
training corpus. Our experiments show that this
method can help identifying both types of trans-
lationese texts, probably due to the fact that MT
output exacerbates the characteristics of transla-
tionese text. Inspired by (Riley et al., 2020), for
each sentence we compare the model score of each
of the LMs, and select the class corresponding to
the one which produces a better score.

A.3 Multi-domain

Following (Miiller et al., 2020), we applied the
standard Moses preprocessing pipeline (removing

®For our pre-processing pipeline, that is built on top of Ten-
sorflow Datasets, we found that increasing shuffle buffer had
a significant positive effect on baseline performance, there-
fore all experiments were performed for the shuffle buffer size
value that was optimal for baselines.

non-printing chars, normalizing punctuation, tok-
enizing, truecasing and length filtering) to all splits
of the data, including the test set. The Subtitles
part was limited to 500k sentences and concate-
nated data was preprocessed jointly with 32,000
BPE merges (Sennrich et al., 2016), resulting in
a 32,298 vocabulary entries. Maximum training
length was 100 post-BPE tokens.

We used the same configuration as the base
Transformer model from (Vaswani et al., 2017).
Training on TPUv2 used learning rate 0.01,
warmup 4,000, label smoothing 0.1, dropout 0.2
and nominal batch size 256. Decoding was done
with beam size 5 and maximum length 256 dur-
ing beam search. BLEU score were calculated
with SacreBLEU on deBPE’ed and detokenized
sentences w.r.t. similarly preprocessed references.

The bandits used the learning rate of 0.1 and
exploration rate of 0.25, found by grid search over
the range [0.001, 0.01, 0.1] and [0.5, 0.25, 0.1]
respectively.

A4

TED For TED we train the models on 4 V100
GPUs with a batch size of 64 sentences for 50k
steps, a warmup period of 4k steps for a learning
rate schedule with linear increase and square-root
decay and a base learning rate of 0.0625. Training
sentences up to a length of 512 tokens are consid-
ered. For inference, beam width is set to 4. Models
are validated every 2k steps. for OPUS100 5. Ban-
dit learning and exploration rate were tuned over a
grid search over the range [0.001, 0.01, 0.01] and
[0.1, 0.2, 0.3, 0.4, 0.5] respectively, with training
up to 10k training steps. For the diverse task the
best setting was (0.1, 0.3) and for the related
task (0.01, 0.2).

Multilingual

OPUS100 For OPUS the models are trained with
a total batch size of 256 sentences, 1k warmup
steps and the same learning rate schedule as for
TED. For inference we use beams of width 5. Mod-
els are trained for 500k steps and validated every
8k. The best configuration of bandit learning and
exploration rate is (0.01, 0.5) for all settings (M20,
O2M, M2M).

SentencePiece For balanced subword represen-
tations we upsample all languages to the maximum
size across languages and then using the SP option
large_corpus to subsample uniformly from
their concatenation.
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M20 oM
All Low Med High | Al Low Med High
Base 2131 2594 20.10 19.90 | 1836 15.64 17.78 20.00
dev-pgnorm | 21.93 26.09 20.61 20.81 | 19.58 1936 17.96 20.69

Table 7: M2M: Avg BLEU across languages for OPUS100’s 94 test sets grouped by training corpus size as

in (Zhang et al., 2021).
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Figure 4: Ratio of training batches from each language
throughout training for TED-related M20.

B OPUS100 M2M

Table 7 lists the result for many-to-many translation
for the OPUS100 benchmark.

C Multi-lingual bandit strategies

Figure 4 shows the ratio of training batches from
each language, averaged across the complete train-
ing run. The corresponding diagram for the diverse
subset is in Figure 3. Again, we find that the bandit
mimics the proportional sampling strategy, with
slight upsampling of the lowest-resource pairs.

Table 8 lists the top 5 sampled languages for
each OPUS setting. For M2O these are largely
high-resource pairs, for O2M low-resource pairs,
and for M2M pairs with English as target were
generally sampled more, but the top 5 are a mix of
high- and resource languages.

Setting  Lang. % Train. Batches Train. Size Test BLEU
nl-en 10.7 M 28.86
cs—-en 3.5 IM 27.39
M20 ms—-en 3.0 IM 27.32
sh-en 2.9 267k 28.30
sr—-en 2.8 1M 57.21
en-fy 5.9 54k 35.19
en-ga 4.8 290k 12.20
Oo2M en-ky 4.7 27k 18.72
en-mg 3.6 591k 16.52
en-ug 3.6 72k 9.61
as-en 4.3 138k 29.24
ta-en 2.5 227k 0.91
M2M  li-en 2.1 26k 51.28
fa-en 2.0 IM 20.28
da-en 1.4 M 19.81

Table 8: Top 5 sampled languages for M20, O2M, and
M2M OPUS.
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D Bandit arm probabilities

In Figures 5 and 6 we plot the evolution of bandit arm (facet) sampling probabilities over time to illustrate
the learned curricula for the en—de natural vs. translationese and multi-domain tasks. Best viewed in
color.
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Figure 5: Evolution of probabilities during training on the WMT en-de task (without CDS filtering). See §4.1
for interpretation.
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Figure 6: Evolution of probabilities during training on the multi-domain task. See §4.2 for interpretation.
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