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Abstract
Neural Machine Translation models are sensi-
tive to noise in the input texts, such as mis-
spelled words and ungrammatical construc-
tions. Existing robustness techniques gener-
ally fail when faced with unseen types of noise
and their performance degrades on clean texts.
In this paper, we focus on three types of re-
alistic noise that are commonly generated by
humans and introduce the idea of visual con-
text to improve translation robustness for noisy
texts. In addition, we describe a novel error
correction training regime that can be used
as an auxiliary task to further improve trans-
lation robustness. Experiments on English-
French and English-German translation show
that both multimodal and error correction com-
ponents improve model robustness to noisy
texts, while still retaining translation quality
on clean texts.

1 Introduction

Neural Machine Translation (NMT) has been
shown to be very sensitive to noise (Belinkov and
Bisk, 2018; Michel and Neubig, 2018; Ebrahimi
et al., 2018), with even small perturbations in the
inputs often leading to mistranslations. To improve
the robustness of NMT models, current research
mostly focuses on adapting the model to noisy texts
via methods such as fine-tuning (Michel and Neu-
big, 2018; Alam and Anastasopoulos, 2020), noise-
injection (Belinkov and Bisk, 2018; Cheng et al.,
2018; Karpukhin et al., 2019), and data augmenta-
tion through back-translation (Berard et al., 2019;
Vaibhav et al., 2019; Li and Specia, 2019), etc. In
these approaches, the translation model is trained
or fine-tuned on the noisy data so that it can learn
from the noise. However, methods using extra
context to help translate noisy texts have not been
investigated.

Studies in Multimodal Machine Translation
(MMT) have shown that visual information im-
proves translation quality when the textual context
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Figure 1: As showed by Caglayan et al. (2019), mul-
timodality can help translate unknown words, but fail
when there is noise in the input. The misspelled word
“song” is correctly translated as “enfant” (child) when
it is replaced with an unknown token, but translated lit-
erally as “chanson” (song) otherwise.

is incomplete (Caglayan et al., 2019; Imankulova
et al., 2020; Caglayan et al., 2020). However, as
exemplified by Caglayan et al. (2019) (Figure 1),
an MMT model trained on clean data was not able
to handle noise. When the word “son” was mis-
spelled as “song”, the model disregarded the visual
information and used the literal translation “chan-
son”. The MMT model attended to the relevant re-
gion in the image and generated the intended trans-
lation “enfant” only when the noise was masked
by a placeholder in the input, imitating an out-of-
vocabulary (OOV) example.

Given that the visual modality has been shown
to help predict unknown words, we investi-
gate whether adding multimodal information to
adaption-based methods would further improve
translation robustness. To answer this question,
we build MMT models in conjunction with noise
injection techniques and investigate their behaviour
during training and inference on both noisy and
clean data. To further improve robustness, we ex-
tend the current adversarial training method (i.e.,
training NMT models on noisy texts) and propose
an error correction training method. In addition
to training the model with noise-injected source
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sentences and their clean translation counterparts,
we introduce error correction as an auxiliary task
and add a separate decoder to the model, which is
used to denoise the source sentence.1 Our main
contributions can be summarized as:

• To the best of our knowledge, this is the first
work combining adversarial training with mul-
timodal NMT to improve translation robust-
ness. We evaluate robustness on three types
of noise that mimic errors commonly intro-
duced by humans. Systematic experiments
reveal that multimodality can improve model
performance on both known and unseen noise.

• We propose an error correction training
method for translation by introducing denois-
ing as an auxiliary task. We show that the
robustness of both NMT and MMT models is
improved with this method.

• We demonstrate that the model using visual
features also learns to correct grammatical er-
rors more accurately, indicating the potential
for multimodal monolingual error correction.

The paper is organised as follows: In Section 2,
we present the background and related work. In
Section 3, we introduce the types of noise injected
and the error correction training method. In Section
4, we describe our experiment settings, with exper-
iment results in Section 5, and further analysis in
Section 6.

2 Background and Related Work

Robust NMT Although NMT models can
achieve high performance on clean data, they are
very brittle to non-standard inputs, such as noisy
texts (Belinkov and Bisk, 2018). Different types of
noisy data have been proposed to test translation
robustness, e.g. synthetic word perturbations (Be-
linkov and Bisk, 2018), grammatical errors (Anas-
tasopoulos et al., 2019), and user-generated texts
from social platform (Michel and Neubig, 2018; Li
et al., 2019; Specia et al., 2020).

The most common approach to improve transla-
tion robustness is to train the model on noisy data,
which is referred to as adversarial training. Since
parallel data with noisy source sentences and clean
translations is difficult to obtain, the clean training

1Codes are available at https://github.com/
Nickeilf/Visual-Cues-Error-Correction

data is often injected with different types of arti-
ficial noise, e.g. random word perturbations like
character insertion/deletion/substitution (Belinkov
and Bisk, 2018; Karpukhin et al., 2019; Passban
et al., 2020; Xu et al., 2021), noise generated via
back-translation (Berard et al., 2019; Vaibhav et al.,
2019; Li and Specia, 2019), and adversarial ex-
amples generated by white-box generator model
(Cheng et al., 2018, 2019, 2020). Even though
this method has been shown to improve NMT per-
formance on noisy data, the types of noise used
thus far are not common in real data. For exam-
ple, it would be highly unlikely for human au-
thors to misspell the word “robust” as “zobust”,
but such random transformations are used when
synthesizing noisy training data for MT. In addi-
tion, back-translation paraphrases the texts to intro-
duce noise, however such noise is less realistic as
human-generated errors, which include mispellings
and grammatical errors. In adversarial approaches
for other NLP tasks, Ribeiro et al. (2020) and Ma
(2019) introduce various methods to inject both ar-
tificial and realistic noise. Inspired by these work,
we focus on three types of noise that are commonly
generated by humans in real texts and experiment
with these for the translation task.

MMT Multimodal machine translation extends
the framework of NMT by incorporating extra
modalities, e.g. image (Specia et al., 2016a) or au-
dio (Sulubacak et al., 2020). In our case, the extra
modality is given as visual features from an image
network to complement the textual context. In stan-
dard MMT, these features can be fused with the
textual representation by simple operations such
as concatenation (Caglayan et al., 2016), hidden
states initialization (Calixto and Liu, 2017), or via
attention mechanisms (Libovický and Helcl, 2017;
Calixto et al., 2016, 2017; Yao and Wan, 2020) and
latent variables (Calixto et al., 2019).

Recent research has shown that the extra modal-
ity helps translation, especially when the input is in-
complete (Caglayan et al., 2019, 2020; Imankulova
et al., 2020) or ambiguous (Ive et al., 2019; Wu
et al., 2019b). Wu et al. (2019a) hinted at the pos-
sibility of multimodality helping NMT in dealing
with natural noise stemming from the speech recog-
nition system used as a first step in their pipeline
approach to speech translations from videos. Their
results, however, were inconclusive.

Salesky et al. (2021) investigate the robustness of
open-vocabulary translation by representing texts

https://github.com/Nickeilf/Visual-Cues-Error-Correction
https://github.com/Nickeilf/Visual-Cues-Error-Correction
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clean a pink flower is starting to bloom .
edit-distance a pink flower is staring to loom .
homophone a pink flour is starting to bloom .
keyboard a pink flower is starring to bloom .

Table 1: An example of noise injected to the clean text. The noisy substitutes are marked in red.

as images followed by optical character recognition
to cover some cases of noise such as misspellings.
This is an interesting but orthogonal area of re-
search since no external visual information is used.

Therefore, it remains an open question whether
MMT can perform better than NMT on noisy texts,
and whether multimodality can be complementary
rather than redundant to previous text-based ro-
bustness techniques. The work by Caglayan et al.
(2019) is the closest to our approach, however they
focused mainly on identifying when the visual in-
formation is helpful. As such, they only performed
experiments comparing NMT and MMT in the pres-
ence of unknown words consisting of placeholders
used to mask out words in the source sentence. In
contrast, we focus on multimodal models for real-
istic noise that includes in- and out-of-vocabulary
words, such as misspellings or correctly-spelled
words used in an incorrect context.

3 Methods

In this section, we introduce our methods to im-
prove and evaluate the robustness of NMT and
MMT models. In Section 3.1, we describe three
techniques to inject realistic noise into training and
test data. In Section 3.2, we introduce our error
correction training method.

3.1 Noise Injection

In previous work on noise injection, the pertur-
bations are often arbitrary, which would result in
unrealistic noise. To simulate the natural noise in
real situations, we add constraints to the random
perturbations. We select three constrained noise
injection methods that can be applied to both train-
ing and test data, with each method simulating one
type of human-generated errors:

Edit distance A word is randomly replaced with
another word in the vocabulary where the edit dis-
tance between the two words is less than two char-
acters. The edit-distance noise simulates the oc-
currence of confusable spellings (e.g. sat vs seat)
and also some grammatical errors (e.g. horse vs

horses).

Homophones A word is randomly replaced with
another word that shares the same pronunciation.
We use the CMU Pronouncing Dictionary2 to trans-
form words into phonemes and find noisy sub-
stitutes with the same pronunciation. This simu-
lates errors made by applications such as automatic
speech recognition, or by non-native speakers.

Keyboard (Belinkov and Bisk, 2018) A charac-
ter in a word is randomly replaced with an adjacent
key on the standard QWERTY keyboard. The
keyboard noise simulates the real-life typos when
users accidentally press wrong keys while typing.

Table 1 shows examples of the three types
of noise we experimented with. The edit distance
and homophone noise types are applied on the
word level, while the keyboard noise is on the
character level. Word-level noise is more likely
to break the sentence context even though the
noisy substitutes are correctly spelled words.
On the contrary, character-level noise is likely
to introduce misspelled words and increase the
out-of-vocabulary (OOV) rate.

When constructing the noisy training or test sets,
we sample from the three types of noise follow-
ing a uniform distribution, where to each sentence
we apply only one type of noise. To avoid substi-
tuting words not carrying much contextual infor-
mation (e.g. articles and punctuations) , we only
perturb words with more than two characters. The
noise level is controlled by the hyperparameter n ,
which defines the maximum number of words re-
placed with noisy counterparts per sentence. The
noise injection procedure can be characterized as:
given a source sentence x = [x1, x2, ..., xM ] and
a target translation y = [y1, y2, ..., yN ], noise will
be injected to the clean source sentence x to ob-
tain its noisy variant x′ = [x1, ..., x

′
ai , ..., xM ],

where ai is the position of the noisy substitutes
(i = {1, 2, ..., n}).

2http://www.speech.cs.cmu.edu/cgi-bin/
cmudict?in=C+M+U+Dictionary

http://www.speech.cs.cmu.edu/cgi-bin/cmudict?in=C+M+U+Dictionary
http://www.speech.cs.cmu.edu/cgi-bin/cmudict?in=C+M+U+Dictionary
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Figure 2: Illustration of the joint training of machine translation and error correction for NMT and MMT models.
Solid lines: translation flow. Dotted lines: error correction flow. Left: NMT with error correction training. Right:
MMT with error correction training.

3.2 Error Correction Training
We introduce error correction (Ng et al., 2014;
Yuan and Briscoe, 2016) as an auxiliary task to
help improve the robustness against noisy inputs.
For that, we add a second decoder to the MT archi-
tecture, which is only used for the error correction
task. During training, the noisy sentence x′ is en-
coded by the encoder, which is shared between the
translation and correction tasks, into hidden states
h′. The hidden state representation is then fed to
both decoders. The translation decoder aims to gen-
erate a correct translation y while the correction
decoder aims to recover the original source sen-
tence x. This method is also compatible with the
MMT model, where the error correction decoder
will use both visual and textual hidden states to
recover the clean source sentences. Figure 2 gives
an illustration of the model architecture.

Compared to the standard MT model, the ver-
sion with error correction training (which we refer
to as NMT-cor and MMT-cor hereinafter) maxi-
mizes both the probability of generating correct
translations P (y|x′;θmt) and the probability of re-
covering the clean source sentences P (x|x′;θcor).

P (y|x′;θmt) =
N∏
t=1

P (yt|y1:t−1,x
′;θmt)

P (x|x′;θcor) =
M∏
t=1

P (xt|x1:t−1,x
′;θcor)

(1)

The θmt represents parameters for the translation
component and the θcor represents parameters
for the error correction component, with θmt =
{θenc,θmt_dec},θcor = {θenc,θcor_dec}. Our

hypothesis is that the auxiliary task of error correc-
tion may help the encoder with a noise-invariant
representation, which would indirectly improve the
translation of noisy sentences. During training, we
jointly optimize the sum of the translation loss and
the error correction loss, as is shown in Equation 2:

Lmt(θmt) =
1

|D|
∑

(x′,y)∈D

− logP (y|x′;θmt)

Lcor(θcor) =
1

|D|
∑

(x′,x)∈D

− logP (x|x′;θcor)

L(θ) = Lmt(θmt) + λLcor(θcor)
(2)

where λ ≥ 0 is the factor that controls the weight
of the error correction loss, and D represents the
noise-injected data consisting of triples in the form
of (x,x′,y).

4 Experiments

4.1 Datasets

We experiment with the Multi30K dataset (Elliott
et al., 2016), using both the En-Fr and En-De lan-
guage pairs. This is the standard dataset for MMT
and has been used in all open challenges on the
topic (Specia et al., 2016b; Elliott et al., 2017a;
Barrault et al., 2018). Following Caglayan et al.
(2019), we use both the train and valid splits as our
training set. The test2016-flickr set is used as our
development set for checkpoint selection. For eval-
uation, we test the models on both test2017-flickr
and test2017-mscoco sets (Elliott et al., 2017b). We
use a word-level vocabulary and build vocabular-
ies for the original source and target languages, as
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well as the vocabulary on noisy source texts.3 We
use the pre-processed data in Multi30K, which is
lowercased, normalized, and tokenized with Moses
(Koehn et al., 2007). We also performed exper-
iments using a subword-level vocabulary (BPE),
which led to further improvements, but the trend in
the results is the same (see Appendix A).

Following Caglayan et al. (2020), we use the
“bottom-up-top-down” (BUTD) features (Anderson
et al., 2018) extracted from a pre-trained Faster
R-CNN ResNet-101 object detector. Each image
is represented as 36 pooled feature vectors V ∈
R36×2048, with each vector representing a local
object region.

4.2 Models

NMT and MMT Models Our baseline NMT
model is the standard Transformer model (Vaswani
et al., 2017), with 6 layers for both the encoder and
the decoder. The hidden state size is 512 while the
feed-forward dimension is 1024. The number of at-
tention heads is set to 4. Dropout (0.3) is applied to
both self/cross-attention and the position-wise feed-
forward layer, and Pre-norm (Nguyen and Salazar,
2019) is applied to boost convergence. Our base-
line MMT model follows the same architecture and
hyperparameters as the baseline NMT model, ex-
cept for the multimodal components. We use the
serial multimodal cross-attention (Libovický et al.,
2018), where an extra cross-attention sublayer is
appended in the decoder layer to perform atten-
tion over the visual features. We also experiment
with GRU models (Cho et al., 2014), following the
hyperparameter settings of Caglayan et al. (2019).
Due to space restrictions, we include the detailed
results with GRU models in Appendix C. The GRU
results display the same trend as the experimental
results using Transformer models.

Error Correction Models The error correction
NMT/MMT models adopt the same encoder and
decoder as the baseline NMT/MMT models, ex-
cept for a second decoder added for error correc-
tion training. During training, we compute the
cross-entropy loss for translation, as well as for
error correction in the correction-based models.
In these models, the two losses are summed and
optimized jointly on the same batch. We found
the best λ value (λ ∈ {0.2, 0.2, 0.4, 0.4, 0.8}) for

3Therefore there is no OOV word in the noisy training data,
but the test data might still contain OOV words – noisy or not
– with respect to the training.

different levels of noise (number of noisy words
n ∈ {1, 2, 4, 6, 10}) during hyperparameter tuning.
See Appendix B for more details.

Training and Evaluation We use ADAM
(Kingma and Ba, 2015) as the optimizer and adopt
the noam learning rate scheduler (Vaswani et al.,
2017) with a warm-up of 8000 steps. The train-
ing batch size is 64. Models are evaluated using
the METEOR score (Denkowski and Lavie, 2014),
which is the main metric for multimodal machine
translation (Barrault et al., 2018). For the evalua-
tion of error correction, we use ERRANT (Bryant
et al., 2017) to compute the F0.5 score. During
evaluation, we select the checkpoint with the best
performance on the development set and generate
the translation and correction using beam search of
size 12. All models are implemented using nmtpy-
torch4 and pysimt5. Each model is run with three
random seeds and the average results are reported.
Each run takes approximately 2 hours to train on
an RTX 2080 Ti GPU.

5 Results

5.1 Testing for Robustness to Noise
We first evaluate the robustness of standard NMT
and MMT models trained on clean data by test-
ing on the noise-injected data. This setting rep-
resents regular models that are not specifically
adapted to noise. Figure 3 presents the change in
METEOR (∆METEOR) between standard MMT
and NMT models tested on data with different noise
levels. The ∆METEOR is consistently above 0 for
both test sets in the two language pairs. As the
noise level increases, the difference between NMT
and MMT models is larger, showing that the visual
information in the MMT model leads to predictions
that are more robust to noise.

5.2 Training for Robustness to Noise
To test models for their ability to adapt to noisy
data, we train models on data with added noise,
sampling from the three types of noise in Sec-
tion 3.1 and test them on noisy test data, with
noise added in the same fashion. METEOR score
results are shown in Table 2.

The training on noisy data is equivalent to the
“adversarial training” experiments in previous stud-
ies (Belinkov and Bisk, 2018; Karpukhin et al.,

4https://github.com/lium-lst/
nmtpytorch

5https://github.com/ImperialNLP/pysimt

https://github.com/lium-lst/nmtpytorch
https://github.com/lium-lst/nmtpytorch
https://github.com/ImperialNLP/pysimt
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flickr2017 mscoco2017
clean n=1 n=2 n=4 n=6 n=10 clean n=1 n=2 n=4 n=6 n=10

en-fr
NMT 70.6 64.2 60.2 55.2 51.8 49.4 64.2 58.3 54.3 48.8 45.7 43.2
MMT 70.9 64.7 61.0 56.8 53.7 51.1 64.4 59.3 55.4 50.1 47.8 45.2
NMT-cor — 64.9 61.6 57.4 54.7 55.0 — 59.2 55.2 51.4 48.0 47.2
MMT-cor — 65.2 62.2 59.0 56.7 55.5 — 59.6 56.4 52.4 50.0 48.9

en-de
NMT 52.3 47.2 44.3 40.2 38.4 36.7 47.5 43.5 40.2 36.8 34.0 32.5
MMT 52.6 47.7 45.2 41.3 39.3 37.6 47.7 43.9 41.0 37.9 35.1 33.9
NMT-cor — 47.9 45.6 42.9 41.4 41.1 — 44.2 41.9 38.4 36.8 36.2
MMT-cor — 48.0 46.1 43.5 42.5 41.8 — 43.9 42.3 39.7 38.2 37.4

Table 2: Results in METEOR scores of models trained and tested on different levels of noisy data. The train and
test data are injected with the same proportion of noise. n indicates the max number of noisy words in the train/test
set. *-cor indicates the models with error correction training.
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Figure 3: Performance gain from multimodality on dif-
ferent test sets when models are trained on clean data
but tested on noisy data (∆METEOR = MMT - NMT).

2019). In this setting, a text-only NMT model still
suffers from significant performance degradation
as the number of noisy words grows, for exam-
ple dropping from 70.6 METEOR on clean test
data to 49.4 under the noisiest setting for en-fr on
flickr2017. A drop is also observed for the MMT
model, however it is smaller for both language pairs
and test sets. As n becomes larger, the gain from
the visual context is more obvious, showing that
additional context in the form of image features
is increasingly important for translation when the
quality of the textual input is degraded.

With the addition of the error correction training,
both NMT and MMT models further improve their
performance, with NMT-cor even outperforming
the base MMT model. The MMT-cor model per-
forms better than both NMT-cor and base MMT
models, demonstrating that the improvements from

error correction and visual cues are complemen-
tary. Similar to the benefit from visual features, the
difference between models with and without error
correction training becomes larger when the noise
level increases.

In addition to the performance on noisy texts,
another important aspect when measuring robust-
ness is to evaluate whether the performance of the
models on clean data is harmed when the model
is adapted to the noisy data. Following Karpukhin
et al. (2019), we train models on a mixture of
noisy and clean data (0.5/0.5) and test them on
clean (original) data. Table 3 shows the perfor-
mance drop on the clean Flickr2017 En-Fr test set,
compared to the baseline NMT model trained with
clean data only.

n = 1 2 4 6 10

NMT ↓0.2 ↓1.0 ↓1.4 ↓2.0 ↓2.3
MMT ↓0.2 ↓0.7 ↓1.7 ↓2.1 ↓2.4
MMT-cor ↓0.0 ↓0.4 ↓0.9 ↓1.7 ↓2.1

Table 3: Performance drop (the lower the better)
on clean Flickr2017 En-Fr test set when models are
trained on mixed data, compared to baseline NMT
model (70.6 METEOR) trained on clean data.

The trend is same for models on the other
datasets/language pairs: the larger the proportion
of noise in the training data, the higher the perfor-
mance drop on the clean test set. However, the
largest drop in METEOR is only 2.4, showing that
mixing clean and noisy training data is a good strat-
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egy.6 Both MMT and MMT-cor show a similar
performance drop to the base NMT model, which
indicates that the use of visual context and error
correction training does not harm performance on
clean texts.

The corresponding results for Table 2 and 3 with
GRU models can be found in Appendix C, showing
a similar benefit when using multimodal informa-
tion and error correction training.

6 Analysis

Robustness on Unseen Noise Since in realistic
applications the noise distribution at test time is
unknown, we evaluate models using different noise
proportions and types at training and test time. For
the former, we test the same model (n=4) on vari-
ous test sets created with different values of n. For
the latter, we test the same model (n=4) on the test
set where words are randomly replaced with un-
known tokens (i.e. “[UNK]”) to simulate unseen
noise (noisy words from different corpora or do-
mains, e.g. new emojis). Table 4 shows results for
both cases.

n = 1 2 6 10

NMT 62.5 59.3 51.6 49.2
MMT 62.9 60.1 52.8 51.0
MMT-cor 64.1 62.0 55.5 53.8

UNK= 1 2 3 4

NMT 55.5 46.7 38.7 31.6
MMT 57.0 48.8 41.2 34.8
MMT-cor 57.9 49.9 42.6 36.1

Table 4: Performance of NMT and MMT models
trained noisy data with n=4 but tested on data with dif-
ferent noise proportion and noise types. All models are
tested on Flickr2017 En-Fr.

The overall trend is similar to the case when the
train/test noise are the same: models with visual in-
formation and error correction training achieve bet-
ter performance. The METEOR score of train/test
noise proportion mismatch is close to the score in
Table 2 under the same noise proportion, show-
ing that the models are robust to unknown noise
distributions. As for the evaluation on unknown
noise types, the MMT model outperforms the NMT

6In additional experiments, we found that models trained
on entirely noisy data show much more severe performance
drops as n becomes larger – see Appendix D.
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Figure 4: Performance gap in METEOR score be-
tween congruent decoding and incongruent decoding
(∆METEOR = congruent - incongruent).

model, which indicates the better ability of the
MMT model to handle unseen noise.

Visual Sensitivity To further probe the effect of
the visual information on MMT and MMT-cor mod-
els, we apply the incongruent decoding evaluation
approach (Elliott, 2018; Caglayan et al., 2019) by
feeding the multimodal models with incorrect vi-
sual features at test time, i.e. features taken from
a different test sample. The expectation is that the
multimodal model will suffer due to the incorrect
visual context, performing worse compared to us-
ing the correct visual features. Figure 4 shows the
performance gap between congruent decoding and
incongruent decoding.

The ∆METEOR is always positive for both
MMT and MMT-cor models, and this difference is
amplified with a larger noise ratio in the test data,
reaching up to 7.2 METEOR scores when n=10.
We note that the ∆METEOR for the MMT-cor
model is similar to the MMT model, but slightly
lower, indicating that the error correction training
helps the model recover from incorrect image fea-
tures to a small extent on noisier data.

Error Correction Quality To understand
whether visual information can also benefit error
correction, we compute the span-based correction
F0.5 score as commonly used in the Grammatical
Error Correction task (Dahlmeier and Ng, 2012).
The <noisy, corrected> and <noisy, clean>
pairs are first transformed into two lists of edits,
where adding/replacing/deleting a word at any
position counts as one edit. The evaluation is then
performed by calculating the precision/recall/F0.5
between these edit sets.

We report the results in Table 6 for both NMT-
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SRC: women are playing lacrosse with an orange ball .
NSY: women [art] playing lacrosse with an [strange] ball .
NMT: des femmes jouent au lacrosse avec une balle étrange .
NMTcor: des femmes jouent au lacrosse avec une boule étrange .

(women are playing lacrosse with a strange ball.)
MMTcor: des femmes jouent à la lacrosse avec une balle orange .
REF: des femmes jouent à la crosse avec une balle orange .

(women are playing lacrosse with an orange ball .)
COR-NMT: women are playing lacrosse with an old ball .
COR-MMT: women are playing lacrosse with an orange ball .

SRC: a man with his bicycle selling his products on a street
NSY: a [kan] with his [bicycld] selling his products on a street
NMT: un homme avec son casque vendant ses produits dans une rue

(a man with his helmet selling his products on a street)
NMTcor: un homme avec son vélo vendant ses produits dans une rue
MMTcor: un homme avec son vélo vendant ses produits dans une rue
REF: un homme avec son vélo vendant ses produits dans une rue

(a man with his bicycle selling his products on a street)
COR-NMT: a man with his bicycle selling his products on a street
COR-MMT: a man with his bicycle selling his products on a street

Table 5: Qualitative examples for both translation and error correction, where noise is indicated by the words in
square brackets. Underlined and bold words highlight the bad and good lexical choices, respectively. NSY: noisy
sentence. COR-*: corrected sentence (output from the error correction decoder).

cor and MMT-cor models trained on different val-
ues of n. The MMT-cor model outperforms the
NMT-cor model, with an improvement of up to
+1.7 and +2.6 F0.5 on the two test sets. This im-
provement indicates that visual features can also be
beneficial for error correction performance, show-
ing a potential for the task of multimodal error
correction, which has yet to be explored.

flickr2017 mscoco2017
Prec Rec F0.5 Prec Rec F0.5

n=1
NMT-cor 41.9 52.5 43.7 45.1 51.4 46.2
MMT-cor 43.3 54.0 45.1 46.5 53.8 47.8

n=2
NMT-cor 56.7 62.2 57.7 53.2 56.2 53.8
MMT-cor 57.0 63.3 58.1 52.9 56.4 53.6

n=4
NMT-cor 66.6 69.1 67.1 65.7 66.7 65.9
MMT-cor 67.7 71.5 68.5 66.1 67.6 66.4

n=6
NMT-cor 68.7 70.0 69.0 67.0 66.1 66.8
MMT-cor 70.4 71.8 70.7 68.3 67.6 68.2

n=10
NMT-cor 72.5 73.2 72.6 67.1 66.4 67.0
MMT-cor 73.9 74.5 74.1 69.8 68.6 69.6

Table 6: Error Correction score in F0.5 for both NMT-
cor and MMT-cor models.

Qualitative Examples We provide two qualita-
tive examples of the visual features and error cor-

rection training helping the model handle input
noise in Table 5 (see Appendix F for more exam-
ples). In the first example, the source sentence is
injected with the “edit-distance” noise, with “are”
and “orange” replaced with “art” and “strange” re-
spectively. Both NMT and NMT-cor models fail
to include “orange” in the translation, as it is dif-
ficult to recover from this error without visual in-
formation, while the MMT-cor model is able to
generate the correct output. The source sentence
in the second example is injected the “keyboard”
noise, with “man” replaced with “kan” and “bicy-
cle” replaced with “bicycld”. Although the train-
ing data is injected with the same types of noise,
the NMT model fails to translate correctly. The
reason might be that “bicycle” has multiple noisy
variants, such as “bicycld”, “bocycle”, etc., so the
NMT model can hardly learn a strong relationship
between “bicycld” and “vélo” (translation of “bicy-
cle”). However, the NMT-cor model could relate
“bicycld” with “bicycle”, which helps to predict the
correct translation “vélo”.

In Figure 5, we also present the attention map
of the MMT-cor system when generating the trans-
lation. The input is injected with noise by substi-
tuting “sit” with “sheet”, and “wine” with “wire”.
When generating “sont assises” (are sitting), al-
though the attention on the input text still mainly
focuses on the noisy word “sheet” (with a small
proportion focusing on the preposition “at”), the
visual attention is able to focus on the people in
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three people sheet at an outdoor table drinking wire . <eos>

trois

personnes

sont

assises

à

une

table

dehors

,

buvant

du

vin

.
0.0

0.2

0.4
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table dehors ,

buvant du vin

.

Raw image

Figure 5: Attention map of the MMT-cor system on input texts and visual features when generating the translation
from noisy input with the target decoder.

the image; therefore, the model obtains the cor-
rect information from the visual input and is able
to generate the correct translation. Similarly, the
model generates “vin” (wine) by attending to the
glasses in the images and is not distracted by the
noisy input word “wire”. The attention map for
the example when generating the error correction
output can be found in Figure 7 in the Appendix.

7 Conclusions

In this paper we propose to explore visual cues
in order to improve model robustness to noise in
machine translation. We combine adversarial train-
ing on artificially generated noisy examples with
visually-informed multimodal machine translation.
By training multimodal models on noisy data, we
show that the extra visual context can improve
translation robustness on both known and unseen
noise. We also propose a novel error correction
training method, jointly optimizing the translation
model with an auxiliary objective for correcting in-
put errors, which we show can further improve the
robustness of both text-only and multimodal trans-
lation models. Future work in this area could inves-
tigate the integration of further modalities, such as
audio in the speech translation setting. In addition
to translation, we found that the model using visual
features can also help correct errors in the source
language. This opens up a promising direction for

multimodal monolingual error correction, a task
not yet explored.

References
Md Mahfuz Ibn Alam and Antonios Anastasopoulos.

2020. Fine-tuning MT systems for robustness to
second-language speaker variations. In Proceedings
of the Sixth Workshop on Noisy User-generated Text
(W-NUT 2020), pages 149–158, Online. Association
for Computational Linguistics.

Antonios Anastasopoulos, Alison Lui, Toan Q.
Nguyen, and David Chiang. 2019. Neural machine
translation of text from non-native speakers. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3070–3080,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention
for image captioning and visual question answering.
In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6077–6086.

Loic Barrault, Fethi Bougares, Lucia Specia, Chiraag
Lala, Desmond Elliott, and Stella Frank. 2018. Find-
ings of the third shared task on multimodal machine
translation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
304–323, Belgium, Brussels. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/2020.wnut-1.20
https://doi.org/10.18653/v1/2020.wnut-1.20
https://doi.org/10.18653/v1/N19-1311
https://doi.org/10.18653/v1/N19-1311
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
http://aclweb.org/anthology/W18-6402
http://aclweb.org/anthology/W18-6402
http://aclweb.org/anthology/W18-6402


3162

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Alexandre Berard, Ioan Calapodescu, and Claude
Roux. 2019. Naver labs Europe’s systems for the
WMT19 machine translation robustness task. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 526–532, Florence, Italy. Association for
Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 793–805, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Ozan Caglayan, Loïc Barrault, and Fethi Bougares.
2016. Multimodal attention for neural machine
translation.

Ozan Caglayan, Julia Ive, Veneta Haralampieva,
Pranava Madhyastha, Loïc Barrault, and Lucia Spe-
cia. 2020. Simultaneous machine translation with vi-
sual context. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2350–2361, Online. Associa-
tion for Computational Linguistics.

Ozan Caglayan, Pranava Madhyastha, Lucia Specia,
and Loïc Barrault. 2019. Probing the need for visual
context in multimodal machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4159–4170,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Iacer Calixto, Desmond Elliott, and Stella Frank. 2016.
DCU-UvA multimodal MT system report. In Pro-
ceedings of the First Conference on Machine Trans-
lation: Volume 2, Shared Task Papers, pages 634–
638, Berlin, Germany. Association for Computa-
tional Linguistics.

Iacer Calixto and Qun Liu. 2017. Incorporating global
visual features into attention-based neural machine
translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 992–1003, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Iacer Calixto, Qun Liu, and Nick Campbell. 2017.
Doubly-attentive decoder for multi-modal neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1913–
1924, Vancouver, Canada. Association for Computa-
tional Linguistics.

Iacer Calixto, Miguel Rios, and Wilker Aziz. 2019.
Latent variable model for multi-modal translation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6392–6405, Florence, Italy. Association for Compu-
tational Linguistics.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Yong Cheng, Lu Jiang, Wolfgang Macherey, and Ja-
cob Eisenstein. 2020. AdvAug: Robust adversar-
ial augmentation for neural machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5961–
5970, Online. Association for Computational Lin-
guistics.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1756–
1766, Melbourne, Australia. Association for Compu-
tational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Com-
putational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018.
On adversarial examples for character-level neural
machine translation. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 653–663, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Desmond Elliott. 2018. Adversarial evaluation of mul-
timodal machine translation. In Proceedings of the

https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://doi.org/10.18653/v1/W19-5361
https://doi.org/10.18653/v1/W19-5361
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
http://arxiv.org/abs/1609.03976
http://arxiv.org/abs/1609.03976
https://www.aclweb.org/anthology/2020.emnlp-main.184
https://www.aclweb.org/anthology/2020.emnlp-main.184
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/W16-2359
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/P17-1175
https://doi.org/10.18653/v1/P17-1175
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/N12-1067
https://www.aclweb.org/anthology/N12-1067
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://www.aclweb.org/anthology/C18-1055
https://www.aclweb.org/anthology/C18-1055
https://doi.org/10.18653/v1/D18-1329
https://doi.org/10.18653/v1/D18-1329


3163

2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2974–2978, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Desmond Elliott, Stella Frank, Loïc Barrault, Fethi
Bougares, and Lucia Specia. 2017a. Findings of the
second shared task on multimodal machine transla-
tion and multilingual image description. In Proceed-
ings of the Second Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 215–
233, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Desmond Elliott, Stella Frank, Loïc Barrault, Fethi
Bougares, and Lucia Specia. 2017b. Findings of the
second shared task on multimodal machine transla-
tion and multilingual image description. In Proceed-
ings of the Second Conference on Machine Transla-
tion, pages 215–233, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30K: Multilingual English-
German image descriptions. In Proceedings of the
5th Workshop on Vision and Language, pages 70–
74, Berlin, Germany. Association for Computational
Linguistics.

Aizhan Imankulova, Masahiro Kaneko, Tosho Hira-
sawa, and Mamoru Komachi. 2020. Towards mul-
timodal simultaneous neural machine translation. In
Proceedings of the Fifth Conference on Machine
Translation, pages 592–601, Online. Association for
Computational Linguistics.

Julia Ive, Pranava Madhyastha, and Lucia Specia. 2019.
Distilling translations with visual awareness. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6525–
6538, Florence, Italy. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in ma-
chine translation. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 42–47, Hong Kong, China. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A Word-level vs. Subword-level

In Table 7 we present the results for NMT and
MMT models using word-level and subword-level
vocabulary. Models using byte-pair-encoding
(BPE) perform better than models with word-level
vocabulary. Nevertheless, MMT models ourper-
form NMT models when using BPE. Likewise, the
MMT-cor models are consistently better than the
MMT model when subword-level vocabulary is ap-
plied. The results show that the benefit from both
multimodality and error correction training still
holds on models with subword-level vocabulary.

flickr2017 En-Fr
clean n=1 n=2 n=4 n=6 n=10

w2w
NMT 70.6 64.2 60.2 55.2 51.8 49.4
MMT 70.9 64.7 61.0 56.8 53.7 51.1
MMT-cor — 65.2 62.2 59.0 56.7 55.5

bpe2w
NMT 70.5 65.2 61.4 56.4 53.6 51.5
MMT 70.8 65.6 62.1 58.0 54.9 53.1
MMT-cor — 65.9 63.6 60.8 58.3 57.2

bpe2bpe
NMT 70.8 65.5 61.9 56.5 53.7 51.7
MMT 71.3 66.0 62.7 58.2 55.5 53.5
MMT-cor — 66.5 64.2 61.3 58.7 57.8

Table 7: Results for word- and subword-level models
trained and tested on noisy data. The word-level (w2w)
results are used for comparison and are same as Table 2.

B Effect of λ

The value of λ controls the weight of the error cor-
rection training for NMT-cor and MMT-cor mod-
els. This is thus an important hyper-parameter. We
show the performance on translation and error cor-
rection tasks for different values of λ in Figure 6.

In terms of translation, the performance for both
NMT-cor and MMT-cor models follows the same
trend: the METEOR score first increases and then
drops as λ increases. This is reasonable since error
correction is an auxiliary task, and a large weight
for error correction task might harm models’ ability
to translate well. Nevertheless, the optimal λ value
is different for different levels of noise. Higher
values of λ help translating noisier texts. Regarding
error correction, the increase of λ always leads to
better performance.

C Results with GRU Models

In Table 8, we present the results for GRU models
trained and tested on the noisy data. Similar to
Transformer models, GRU models also benefits
from multimodality and error correction training,
and the improvement is larger on noisier data.

In Table 9, the performance drop for GRU mod-
els on clean data is presented. Both MMT and
MMT-cor shows lower drop than the NMT base-
line, confirming that the improved robustness on
noisy data does not sacrifice for the ability to trans-
late clean data.

n = 1 2 4 6 10

NMT ↓0.4 ↓0.5 ↓1.5 ↓2.3 ↓3.1
MMT ↓0.2 ↓0.9 ↓1.3 ↓2.2 ↓2.4
MMT-cor ↓0.2 ↓0.6 ↓1.6 ↓1.9 ↓2.7

Table 9: Performance drop (the lower the better) on the
clean Flickr2017 En-Fr test set when GRU models are
trained on mixed data but tested on clean data.

These results with GRU models further confirm
that both multimodality and error correction train-
ing improves translation robustness and can gener-
alise to different models.

D Performance Drop on Clean Texts
(Trained on Fully Noisy Data)

In Table 10, we present the performance drop on
clean texts for models trained on fully noisy data.
The drop on clean texts is not obvious for models
trained with smaller n while as n becomes large,
all three models suffers from a significant perform
degradation. The results indicates that the propor-
tion of noise in the training data is an important
factor for robustness. However, to a lesser extent,
the benefit from visual context and error correction
training still holds on the clean test set, which indi-
cates that the two methods do not simply trade off
the performance on clean and noisy texts.

n = 1 2 4 6 10

NMT ↓1.5 ↓2.4 ↓5.2 ↓9.3 ↓19.8
MMT ↓0.7 ↓1.9 ↓4.5 ↓8.6 ↓18.1
MMT-cor ↓0.8 ↓1.7 ↓4.4 ↓7.7 ↓15.5

Table 10: Performance drop on the clean Flickr2017
En-Fr test set for models trained on completely noisy
data, compared to baseline NMT model trained on
clean data.
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Figure 6: Effect of λ on translation and error correction tasks. Lines: translation performance in METEOR score.
Bars: error correction performance in F0.5 score. The results are tested on MSCOCO2017 En-Fr data.

flickr2017 mscoco2017
clean n=1 n=2 n=4 n=6 n=10 clean n=1 n=2 n=4 n=6 n=10

en-fr
NMT 70.3 64.9 61.1 55.9 53.0 50.7 64.7 59.5 55.4 49.2 45.8 43.7
MMT 70.9 65.3 61.9 57.5 54.5 52.0 65.2 59.7 56.5 50.9 47.4 45.2
NMT-cor — 65.2 61.8 57.3 54.6 53.1 — 59.8 55.9 50.6 48.0 45.8
MMT-cor — 65.4 62.5 58.4 56.0 54.3 — 60.3 56.6 51.5 49.0 47.3

en-de
NMT 52.3 48.0 45.3 41.5 39.7 36.8 47.3 43.5 40.9 36.2 34.6 30.7
MMT 52.5 48.5 45.9 42.5 40.6 39.4 47.4 43.9 41.3 37.7 35.3 33.7
NMT-cor — 48.6 46.3 43.1 40.7 39.1 — 44.1 41.7 37.4 35.5 33.3
MMT-cor — 48.5 46.7 44.0 42.6 41.3 — 44.3 42.0 39.0 37.3 35.6

Table 8: Results for GRU models trained and tested on different levels of noisy data. The train and test data are
injected with the same proportion of noise.

E Semantic Similarity

To study the effect of error correction training on
the shared encoder, we conduct a semantic simi-
larity evaluation for models w/o error correction
training. For that, we extract the hidden states from
the last encoder layer for each sentence and mea-
sure the average cosine similarity over all words
between noisy sentences and their clean counter-
parts. The similarity is computed as:

Sim(x′,x) =
1

k

k∑
i=1

h′i · hi

‖h′i‖ · ‖hi‖
(3)

where x′ = [x′1, x
′
2, ..., x

′
k] represents the noisy

sentence, x = [x1, x2, ..., xk] represents the clean
sentence, and h′i and hi represent the hidden state
vectors for the i-th word in the noisy/clean sen-
tences respectively.

Results are presented in Table 11. Models ap-
plied with the error correction training achieve
higher similarity between the clean and noisy hid-
den representations, suggesting that the error cor-
rection task helps learn a noise-invariant encoder

representation. It is also interesting that visual fea-
tures can slightly improve the similarity. The rea-
son might be that the model learns alignments for
both (image, clean text) and (image, noisy words).
Therefore, the image might act as a bridge connect-
ing the clean and noisy texts.

n= 1 2 4 6 10

NMT .980 .964 .935 .915 .902
NMT-cor .984 .970 .946 .928 .918

MMT .982 .968 .940 .922 .911
MMT-cor .986 .973 .952 .937 .926

Table 11: Cosine similarity between the hidden repre-
sentations for noisy and clean sentences. All models
are trained with n=4 and tested on Flickr2017 En-Fr.

F More Qualitative Examples

In the appendix we provide some qualitative exam-
ples of translation (Table 12) and error correction
(Table 13, and Figure 7).
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SRC: a man in pinstripe pants is performing a concert .
NSY: a man in pinstripe pants is [perforning] a [concett] .
NMT: un homme en pantalon beige prend un concert .

(a man in beige pants is taking a concert.)
MMT: un homme en pantalon rayé fait un concert .

(a man in pinstripe pants is performing a concert.)
MMTcor: un homme en pantalon rayé fait un concert .
REF: un homme en pantalon rayé fait un concert .

SRC: a surfer rides a big wave .
NSY: a surfer [ridez] a big [qave] .
NMT: un surfeur prend une grosse vague .

(a surfer takes a big wave.)
MMT:un surfeur avec une grosse vague .

(a surfer with a big wave.)
MMTcor:un surfeur surfe une grosse vague .
REF: un surfeur surfe une grosse vague .

Table 12: Translation examples generated by NMT, MMT and MMT-cor models. Noise is indicated by the words
in square brackets. Underlined and bold words highlight the bad and good lexical choices, respectively.

SRC: there is a black car on a race track .
NSY: there is a [blafk] [cat] on a race track .
COR-NMT: there is a black cat on a race track .
COR-MMT: there is a black car on a race track .

SRC: three girls with paper cups engage in conversation .
NSY: [ree] girls with [pape] cups engage in conversation .
COR-NMT: three girls with paper cups participate in conversation .
COR-MMT: three girls with paper cups engage in conversation .

SRC: a person is leaping between two buildings .
NSY: a [persson] is leaping between [tew] [building’s] .
COR-NMT: a person is sleeping between two buildings .
COR-MMT: a person is leaping between two buildings .

Table 13: Correction examples generated by NMT-cor and MMT-cor models. Noise is indicated by the words in
square brackets. Underlined and bold words highlight the bad and good lexical choices, respectively.
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Figure 7: Attention map of the MMT-cor system on input texts and visual features when generating the error
correction from noisy input with the correction decoder.


