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Abstract

The understanding of time expressions in-
cludes two sub-tasks: recognition and normal-
ization. In recent years, significant progress
has been made in the recognition of time ex-
pressions while research on normalization has
lagged behind. Existing SOTA normalization
methods highly rely on rules or grammars
designed by experts, which limits their per-
formance on emerging corpora, such as so-
cial media texts. In this paper, we model
time expression normalization as a sequence
of operations to construct the normalized tem-
poral value, and we present a novel method
called ARTime, which can automatically gen-
erate normalization rules from training data
without expert interventions. Specifically, AR-
Time automatically captures possible opera-
tion sequences from annotated data and gen-
erates normalization rules on time expressions
with common surface forms. The experimen-
tal results show that ARTime can significantly
surpass SOTA methods on the Tweets bench-
mark, and achieves competitive results with ex-
isting expert-engineered rule methods on the
TempEval-3 benchmark.

1 Introduction

Temporal information plays an important role in
natural language. The research community divides
the understanding of time expressions into two sub-
tasks: recognition and normalization (UzZaman
et al., 2013). The first task is to annotate time
expressions from free text, and the second one
is to annotate the temporal values and types of
the recognized time expressions. Some recent re-
search work (Zhong et al., 2017; Zhong and Cam-
bria, 2018; Ding et al., 2019) achieved significant
improvements on the recognition task comparing
with classic rule-based or semantic parsing sys-
tems, while the researches on normalization have
lagged behind. Normalization methods often rely
on expert-designed rules or grammars to model the

compositional structure of time expression, which
are domain-sensitive and not sufficient enough on
covering emerging corpora.

To avoid the performance limitation and the la-
bor cost of manually designing rules for different
corpora, we study the problem of automatically
generating normalization rules from annotated data.
There are some challenges to achieve this goal.
Firstly, the surface text forms of natural language
expressions are diverse, and the normalized value
of time expressions may not directly correspond
to their surface text form. (e.g., both the expres-
sion “May” and “this month” could be normalized
to “2021-05”.) Secondly, time expressions have
rich semantic structures which are not explicitly
reflected in their annotations. The implicitness of
semantic structure makes supervised approaches
hard to apply to the task of generating normaliza-
tion rules. Besides, the annotations in practical
datasets are noisy, which challenges the robustness
of data-driven methods.

To achieve the goal, we regard time expression
normalization as a sequence of operations to con-
struct the normalized temporal value of specific
types. We assume that the surface form of time
expressions activates the corresponding normaliza-
tion sequence. The normalization rules are defined
as the alignment between surface form pattern and
activated operation sequences, as demonstrated in
Example 1. Section 3 will describe operations and
normalization rules in details.

Example 1. The time expression “last Oc-
tober” can be normalized by the rule (Pat-
tern=“last MONTH:$1”, Type=Instant, Opera-
tions=(ToLast[Year], ModifyEnum[$1])), where
the type “Instant” indicates that the normalized
value should be a date or time instant, the first op-
eration decreases the current value on year field by
1, and the second operation modifies the value on
month field by the “MONTH” variable obtained
from the expression (i.e., October).
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We name the method for automatically gener-
ating normalization rules as ARTime 1. ARTime
computes the difference between the base value
and the annotated value of input time expression to
capture possible operation sequences, aligning the
captured sequence with the surface form of the time
expression to construct candidate rules. It ranks
the noisy candidates by their frequency to distin-
guish the good rules. When applying the rules for
normalization, ARTime attempts to dynamically
search a rule composition for unmatched expres-
sions to improve the coverage of generated rules.
The whole normalization process only relies on a
small set of pre-defined lexicon of temporal values
(e.g, numeric values and time units), and does not
need the intervention of human experts.

The rest sections are organized as follows: The
second section summarizes related research work.
The third section introduces the representation of
temporal values and time expressions in detail. The
fourth section describes the framework and main
components of ARTime. The fifth section reports
the evaluation results of ARTime on two bench-
marks. The last section concludes this paper.

2 Related Work

Understanding time expressions in natural lan-
guage has long attracted the attention of re-
searchers. The TIDES research program pro-
posed TIMEX (Setzer and Gaizauskas, 2000)
and TIMEX2 (Ferro et al., 2005), which are
standalone annotation schemes of time expres-
sion with detailed descriptions of temporal values.
The TERQAS workshops conceptualized TimeML
(Pustejovsky et al., 2010) based on TIMEX and
TIMEX2. TimeML became an ISO standard in
2009. Bethard and Parker (2016) pointed out that
the classic annotation schemes failed to show the
semantic composition structure of of time expres-
sions and proposed the Semantically Composi-
tional Annotation of Time Expressions (SCATE).
However, applying SCATE to existing corpus re-
quires to manually re-annotate the expressions in a
more complex way, and many of the existing SOTA
methods can not handle annotation in SCATE for-
mat directly (Laparra et al., 2018).

On the recognition of time expression, an early
study shows that the complexity of time expres-
sions is limited, and finite state automata or regex

1Our codes are available at https://github.com/
nju-websoft/ARTime

expression can be effective for recognizing those
expressions (Hobbs et al., 1997). Mainstream
recognition methods can be roughly divided to
surface-structure-based methods (Verhagen et al.,
2005; Strötgen and Gertz, 2010; Strötgen et al.,
2013; Chang and Manning, 2012; Lee et al.,
2014; Zhong et al., 2017; Ding et al., 2019) and
sequential-tagging-model-based methods (Bethard,
2013; Ning et al., 2018; Zhong and Cambria, 2018).
Research work in recent years achieves signifi-
cant improvements on the recognition. SynTime
(Zhong et al., 2017) defines generic but heuristic
rules on a group of time-related triggering token
types. TOMN (Zhong and Cambria, 2018) uses the
SynTime defined token types instead of the classic
BIO-tagging scheme for the CRF model. PTime
(Ding et al., 2019) generalizes time expressions in
training data to sequential patterns and selects a
subset of the patterns for recognition. However,
these studies only focus on the recognition.

The normalization of time expression is dom-
inated by methods with expert designed rules or
grammars. HeidelTime (Strötgen and Gertz, 2010;
Strötgen et al., 2013, 2014) uses regex rules on
time tokens and modifiers to combine recognized
tokens and filter ambiguous expressions. SUTime
(Chang and Manning, 2012) proposes a 3-layered
temporal pattern language. It firstly extends rec-
ognized tokens to string, then composes and fil-
ters the strings to get temporal values. Angeli and
Uszkoreit (2013) use an EM-style bootstrapping
approach to learn a PCFG parser on pre-defined
preternminals. UWTime (Lee et al., 2014) uses a
combinatory categorical grammar to parse possible
meanings of time expressions. It selects meanings
for recognized expressions via a linear classifier
with context-dependent features. CogCompTime
(Ning et al., 2018) provides a rule-based standalone
normalizer conceptually built on Zhao et al. (2012),
which achieves the SOTA normalization results on
the (UzZaman et al., 2013) dataset. There are also
some efforts on understanding event-related expres-
sions. Tissot et al. (2015) analyzes time expres-
sions in clinical notes. TweetTime (Tabassum et al.,
2016) improves existing methods by establishing
an external event knowledge base. According to
existing studies (UzZaman et al., 2013; Tabassum
et al., 2016), rule-engineering can achieve good re-
sults on covered expressions but are hard to extend
to emerging corpora.

In this paper, we focus on automatically recover-

https://github.com/nju-websoft/ARTime
https://github.com/nju-websoft/ARTime
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ing the semantic structure of expressions without
any compositional annotations. The latest work
on recognition inspired our idea of using surface
form patterns to activate normalization rules, and
we replace the labor cost of designing rules by the
automatic rule generation.

3 Time Expression Normalization as a
Sequence of Operations

We model the normalization of a time expression
as a sequence of operations defined on time fields,
which can construct a temporal value of specific
type. The normalization rule is defined as a triplet
consists of a surface form pattern, a type of tempo-
ral value, and an operation sequence. The follow-
ing subsections introduce the above concepts.

3.1 Time Fields
The time fields can be simply treated as time units
with lower and upper bound constraints on values.
Each temporal value can be denoted by a series
of non-overlapping fields. For example, ISO:8601
represents a date value in the format “yyyy-MM-
DD”, where “MM” represents the “month” field
with lower bound 1 and upper bound 12.2

3.2 Type of Temporal Values
According to TimeML, we classify the temporal
value into 3 types according to their formats. 1) In-
stant for representing date and time (e.g., “2021-05-
17T12:00”), 2) Duration for denoting the amount
of intervening time in a time interval (e.g, “P2M”
represents 2 months.), and 3) Approximate refer-
ence for representing approximate referring value
(e.g, “PAST_REF”).

3.3 Operations
ARTime takes the function of time expression as
changing a base temporal value to a target value.
The semantic of a time expression is represented
by a sequence of operations defined the temporal
fields. We design ten types of operations for AR-
Time (as listed in Table 1. The operations take 5
kinds of parameters: 1) integer values v, 2) time
units u, 3) temporal fields f , 4) enumerable tem-
poral constant e, and 5) approximate reference r
(i.e., Past, Present and Future). Most of the oper-
ations are designed for temporal values of instant

2In real applications, the upper bound of a time field can
denoted by a larger explicit or default time unit. For exam-
ple, the field with the name “month” can be represented as
“monthOfYear” or (month, year).

type, while ApproxRef and Add are designed for
approximate reference values and duration values
respectively. Specifically, we use a MakeSet oper-
ation to represent the TIMEX3 type “SET”.

In the execution of operations, we require the
operations be arranged in order. Operations on
larger fields should be executed first. Operations
on the same fields will be arranged according to
their type. The operations independent to the base
(e.g, ModifyVal) should be executed first. The rea-
son to use descending order of granularity is that
the order corresponds to the way humans under-
stand time fields. For example, the token “day”
denotes “dayOfYear” in “the first day in 2021” and
“dayOfWeek” in “the first day in this week”. Its
meaning depends on the larger fields mentioned in
the context. Arrange operations according to their
type is to prevent redundant sequences. Example
2 explained why executing some operations later
may overriding the execution results of previous
operations.

Example 2. Considering the base value “2021-
01”, we have

ToNext[Month] (“2021-01”)

=“2021-02”,

ModifyEnum[May] (“2021-02”)

=ModifyEnum[May] (“2021-01”)

=“2021-05”

, which indicates that executing the subsequent
ModifyEnum[May] might make ToNext[Month] a
redundant operation.

3.4 The Surface Form Pattern of Rule

In our design, each rule has a surface form pattern
to determine whether it can be applied to an input
expression. The pattern in our approach is simi-
lar to the sequential pattern in PTime (Ding et al.,
2019), which is defined as a sequence consisting
of token types and untyped tokens. A token type
consists of multiple values, and each value has a
corresponding regex to capture its various surface
forms. We only use 6 token types listed in Table 2
for obtaining variable values. The 6 types includ-
ing 4 kinds of enumerable temporal constants (i.e,
the first 4 rows in the table), time units, and in-
equality modifiers (denoted as “IN_EQ”) collected
from HeidelTime.

In our method, only the tokens referring to tem-
poral values that appear in the operation sequences
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Table 1: The temporal operations used in ARTime.

Action Description

ModifyVal[v, f ]
Modify the value in f to v.
(e.g, ModifyVal[5,Day,Week](“2021-05-17”)=“2021-05-21”)

ModifyEnum[e]
Use the enumerable constant e to modify the corresponding field.
(e.g, ModifyVal[Summer](“2021-05-17”)=“2021-SU”)

CountEnum[v, e, f ]
Find the v-th e in field f .
(e.g, CountEnum[1,Friday,Month](“2021-05-17”)=“2021-05-07”)

Equal[f ]
Let the target value equals to the base on field f .
(e.g, Equal[1,Friday,Month](“2021-05-17”)=“2021-05”)

ToBegin/End[f ]
Modify the value in f to its begin/end point.
(e.g, ToBegin[Month,Quarter](“2021-05”)=“2021-04”)

For/Backward[v, u]
Increase/decrease current value by v u.
(e.g, Backward[2, Month](“2021-05”)=“2021-03”)

ToNext/Last[u]
Increase/decrease current value by one u.
(e.g, ToNext[Month](“2021-05”)=“2021-06”)

MakeSet[f ]
Denote that the current value are sets of f .
(e.g, MakeSet[Week](“2021”)=“2021-WXX”)

Add[v, u]
Add v u to the current value, only works for duration values.
(e.g, Add[2, Month](“P1Y”)=“P1Y2M”)

ApproxRef[r]
Mean the value is the approximate reference r.
(e.g, ApproxRef[Past](“2021-05”)=“PAST_REF”)

Table 2: The token types.

Type Contents

MONTH January, Jan., Feb., etc.
WEEK Sunday, Sun., etc,

SEASON Spring, Summer, etc.
DAY_TIME moring, afternoon, etc.
TIME_UNIT year, month, etc.

IN_EQ a mere, no more than, etc.

will be generalized to the corresponding type. For
example, the token “day” in rule (Pattern=“several
day later”, Type=ApproximateReference, Opera-
tions=(ApproxRef[FUTURE_REF]) is not gener-
alized to corresponding type “TIME_UNIT” since
the operations do not require a unit variable.

4 Framework of ARTime

Figure 1 illustrates the normalization process of
ARTime. The pre-processing step is adopted from
the corresponding components in PTime. The rest
normalization procedures can be divided into two
parts, 1) generating rules (i.e., the left part of Figure
1) and 2) applying the generated rules (i.e. the right
part of Figure 1). Since the TimeML standard does
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Figure 1: The framework of ARTime.

not annotate the base value of each time expres-
sion, we simply use the document creation time
as a substitute in capturing the possible operation
sequences. The following sub-sections describe the
key techniques in ARTime. Section 4.1 details how
to capture possible operation sequences. Section
4.2 describes how to generate rules from the noisy
results. Section 4.3 describes how to use the gener-
ated rules to normalize input time expressions.
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4.1 Capturing Possible Operations
By regarding temporal values as vertices and
operations as directed edges connecting the base
values to the normalized values, the task of
reasoning possible operation sequence can be
formalized as searching paths on the graph of
temporal values, where each path corresponds to a
sequence of operations (as demonstrated in Figure
2). The main challenge is that there could be a
great quantity of paths between two values, and
not all of them correspond to meaningful expres-
sion in daily communications (e.g., the sequence
(ToEnd[Quarter,Year],ToBegin[Month,Quarter])
is legal in semantic but unnatural).

ToLast[Year]ModifyVal[2020, Year]

2021-05-17

2020(-05-17)

2020-Q4

ToEnd[Quarter, Year]

2020-10

ToBegin[Month, Quarter]

M
odifyE

num
[O

ctober]

Forw
ard[5, M

onth]

Figure 2: Some operation paths from “2021-05-17” to
“2020-10”

Our method is based on the assumption that
practical time expressions are low-redundancy
sequences. i.e., we prefer direct sequences
like (Equal[Day])(“today”) rather than the com-
plex ones of the same meaning such as (To-
Last[Week],Forward[37,Day])(“7 days after a
week ago”).

We implement the process by a heuristic depth-
first search (DFS) algorithm described in Algo-
rithm 1. The main idea is to guide the search pro-
cess by the difference between the base value and
the annotated value. In each iteration, we ensure
that the current value Vc and the target value Vt are
the same on fields of granularity not less than the
iterated field f . (line 1). We enumerate a smaller
field f ′ (line 8) and check if there are some op-
erations a on field f ′ corresponds the difference
between Vc and Vt from f ′ to f (line 13-14). In
the enumeration of a (line 12), we only consider
no-redundancy sequences of th e partial order intro-
duced in section 3.3. Specifically, we accelerate the
process by requiring all numeric values that appear
in the search results must also appear in the input

Algorithm 1 The DFS algorithm for changing Vc

to Vt, where pool is the pool of usable numeric
values for acceleration.

1: function DFS(Vc, Vt, f , pool)
2: if f = 1/∞ then . 1/∞ is a virtual field for

the termination condition

3: return Vc = Vt

4: S ← ∅
5: for f ′ ∈ {f ′|1/∞ ≤ f ′ < f} do
6: ∆ = Vt[f :f ′] − Vc[f :f ′]

7: if ∆ = 0 then
8: S+ = DFS(Vc, Vt, f

′, pool)

9: for a ⊂ {operations on f} do
10: if Vc.exec(a)− Vc 6= ∆ then
11: continue
12: if ¬(numVals(a) ⊆ vPool) then
13: continue
14: pool′ ← pool − numVals(a)
15: V ′ ← Vc.exec(a)
16: sol← DFS(V ′, Vt, f

′, pool′)
17: if haveSolution then
18: S = S ∪ (a + sol)

19: return S

time expression (line 15-16).
Given the time expression T with anno-

tated value Va and the base time Vb, we ob-
tain possible operation sequences by calling
DFS(Vb, Va,∞,numVals(T )), where∞ is a vir-
tual time unit as the initialization condition and
numVals is the function for collecting appeared
numeric values.

4.2 Constructing and Filtering Rules

All the captured operation sequences will be used
for constructing candidate rules. We firstly find the
values appear in both the surface form and the op-
eration sequence, then replace its appearance with
corresponding token types and variable symbols to
construct candidate rules. For example, given the
expression “this month” and operation sequence
Equal[Month], the replacement result will be “this
TIME_UNIT:$1” and Equal[$1].

The generation produces many noises since there
are more than one sequence from one time value to
another. We distinguish good rules by a quite sim-
ple intuition that more general patterns and more
correct rules should appears on more expressions.
We rank the candidate rules by their frequency and
the frequency of their patterns on training corpus,
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then select the most frequent rules for normaliza-
tion. We suppose that there is no need to drop the
low frequency rules. The reason is that a low fre-
quency rule either be replaced by more generalized
rules (e.g., the second rule in Example 3), or do
capture some meaningful token patterns that are
difficult to generalize (e.g., “as soon as possible”).

Example 3. Consider the expression “last month”
and normalized value “2021-04” and suppose that
there are two candidate rules,
· (“last TIME_UNIT:$1”⇒ ToLast[$1]),
· (“last month”,⇒ ModifyEnum[April]).
The first one is correct and can handle similar ex-
pressions (e.g., “last year”), while the second one
only holds on the coincidence appearance of the
base value “2021-05” .

4.3 Applying Rules For Normalization
Given an input expression, ARTime will try to find
a matchable rule to normalize it. If it can not match
any generated rules, ARTime will attempt to search
a consecutive composition of rules and stop words
to cover it. The stop words include connecting sym-
bols (e.g., “-”), determiners (e.g., “this”), preposi-
tions (e.g., “to”) and so on.

The search process is performed by a segmen-
tation algorithm (i.e., the dynamic programming
algorithm described in Algorithm 2.) The algo-
rithm tries to cover the input expression except for
stop words in it (line 6-7) with minimum rules (line
11-13). For the case that there are multiple compo-
sitions of the same size, we simply choose the one
that contains the most frequent rules. After that,
we assume that all the operations in chosen rules
are useful and merge them into a new sequence
according to the order described in section 3.3.

5 Evaluation

5.1 Datasets
We use the TempEval-3 (UzZaman et al., 2013)
benchmark and the Tweets benchmark proposed
by Zhong et al. (2017).3 The statistics of the two
benchmarks are illustrated in Table 3.

TempEval-3 (UzZaman et al., 2013) is a sub-task
in SemEval 2013 consisting of English news ar-
ticles. We follow the previous study (Lee et al.,

3Benchmarks with lots of event-related time expressions
like Wikiwars (Mazur and Dale, 2010) and Tabassum et al.
(2016)’s tweets dataset are not used in our evaluations. The
reason is that understanding those expressions requires the
external knowledge of the events, which is not our focus.

Algorithm 2 The segmentation algorithm for un-
matched expressions.

1: function SEGMENT(T : expression,R: rules)
2: Initalize F ← to an array of empty sets.
3: F[0] ← {∅}
4: for i← 1 to |T | do
5: C ← ∅
6: if isStopword(T[i]) ∧ F[i−1] 6= ∅ then
7: C ← C ∪ {F[i−1]}
8: for j ← 0 to i− 1 do
9: if F[j] = ∅ then

10: continue
11: if ∃r ∈ R.match(r, T[j+1:i]) then
12: C ← C ∪ {F[j] ∪ {r}}
13: if C 6= ∅ then
14: F[i] = argminc∈C |c|
15: return F|T |

Table 3: The statistics of the datasets. The Doc., Token,
and Exp. columns report the number of documents, to-
kens, and time expressions in the datasets respectively.

Dataset Doc. Token Exp.

TimeBank 183 61,418 1,243
AQUAINT 73 33,973 579

TempEval-3 Eval 20 6,375 138
Tweets train 742 15,571 892
Tweets test 200 4,198 237

2014) to use corrected TimeBank (Pustejovsky
et al., 2003) and AQUAINT as its training datasets.

Tweets (Zhong et al., 2017) is a new benchmark
consisting of English tweets. The annotators tend
to annotate years in a finer granularity (e.g. the
annotation “... in 〈T value=2014-XX-XX〉2014〈/T〉”
means “a day in 2014”.) These annotations are
legal according to TimeML, but do not conform
to the intuition of expert designed rules in exist-
ing methods. Thus we provide the alter-version
Tweets-M by annotating the year expressions as is.

5.2 Compared Methods

We compare ARTime with 4 normalization systems,
HeidelTime (Strötgen et al., 2013), UWTime (Lee
et al., 2014), SUTime (Chang and Manning, 2012)
and CogCompN (Ning et al., 2018). HedidelTime
is the SOTA purely-rule-based system. UWTime
achieves the SOTA performances on TempEval-3.
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Table 4: The accuracy(%) of normalization results on gold recognition annotations. The best results are in bold,
and the second-best results are underlined.

Method TempEval-3 Tweets Tweets-M

Type Value Type Value Type Value

HeidelTime 81.2 76.1 76.4 66.2 76.4 71.3
SUTime 83.3 70.3 89.5 83.5 89.5 88.6
UWTime 88.4 82.6 76.4 71.3 76.4 76.4

CogCompN 91.3 83.4 86.5 70.9 86.5 75.9
ARTime 84.8 75.4 93.2 87.3 93.2 89.0

ARTime+H 90.6 81.9 94.5 84.4 94.5 89.5

SUTime outperforms the other ones on social me-
dia texts according to Tabassum et al. (2016). Cog-
CompN is the standalone normalizer of CogComp-
Time (Ning et al., 2018) which achieves SOTA
results on TempEval-3.

We also evaluate the performance of compared
normalization methods in real applications. We
implement end-to-end systems with 3 SOTA recog-
nition methods, SynTime (Zhong et al., 2017),
TOMN (Zhong and Cambria, 2018), and PTime
(Ding et al., 2019). We directly use the output of
HeidelTime, SUTime, and UWTime for end-to-end
comparison because that they use the same rules
(or grammar) for recognition and normalization.

5.3 Evaluation Metrics

We use the scripts4 provided by TempEval-3 for
evaluation. For the normalization results, we re-
port the accuracy of normalized temporal results
with gold mentions. For the end-to-end results, we
report the F1 score of normalized types, and the pre-
cision (Pr), recall (Re), and F1 score of normalized
temporal values.

5.4 Experimental Results

5.4.1 Normalization Results
Table 4 reports the normalization results on gold
recognition annotations. ARTime surpasses other
methods and shows better adaptability and robust-
ness on Tweets (i.e., +3.8 points on the original
Tweets). The performances of the compared meth-
ods dramatically vary on the different corpus. All
compared methods except SUTime achieve very
poor results on Tweets, while SUTime achieves
the worst results on TempEval-3. ARTime’s per-
formances are not very well on TempEval-3. The

4https://bitbucket.org/kentonl/uwtime/
src/master/evaluation_tools/

main reason is that the training data and the test
data of TempEval-3 are annotated separately, and
the insufficiency of training data severely hurts the
performance of purely data-driven methods like
ARTime according to previous study (Ding et al.,
2019). For example, the test data of TempEval-3
includes 2 expressions about “flu season” (It should
be normalized as winter), our method cannot han-
dle them since none of the training expressions con-
tains the word “season”. Besides, the normalized
values of some expressions rely on the tenses of cor-
responding utterances and need to be re-computed
by post-modification (Strötgen and Gertz, 2010;
Lee et al., 2014). (e.g, “finished in June” denotes
“June in last year” for base temporal values like
“2021-05”). The above problems can be alleviated
by introducing prior knowledge. We transform the
expert rules in HeidelTime into ARTime’s formats
as pre-defined rules, name the combined approach
as ARTime+H. ARTime+H achieves a good bal-
ance on different domains with the best results on
Tweets-M and competitive results on TempEval-
3. (i.e, 1.5 points lower than the SOTA results on
values.)

5.4.2 End-to-end Results

Table 5 reports the end-to-end results on TempEval-
3 and Tweets-M. ARTime with the SOTA recog-
nition method (PTime) outperforms the existing
methods with an improvement of +2.2 points on
the F1 scores of normalized values on Tweets-M.
The results of ARTime on TempEval-3 are not good
enough, but can be easily improved by introduc-
ing the same prior knowledge used in HeidelTime.
ARTime+H with SynTime achieve the second-best
results on the F1 score on values without losing the
advantages on Tweets (1.4 points higher than the
best results achieved by compared methods).

https://bitbucket.org/kentonl/uwtime/src/master/evaluation_tools/
https://bitbucket.org/kentonl/uwtime/src/master/evaluation_tools/
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Table 5: The end-to-end results(%) on TempEval-3 and Tweets. The best results are in bold, and the second-best
results are underlined.

Method TempEval-3 Tweets-M

Type Value Type Value

Reco. Norm. F1 Pr Re F1 F1 Pr Re F1

HeidelTime 83.3 80.2 76.1 78.1 84.4 88.0 71.3 78.8
SUTime 81.9 67.8 70.3 69.0 87.8 85.4 88.6 87.0
UWTime 85.7 85.9 79.7 82.7 83.6 93.7 74.7 83.1

SynTime
CogCompN 88.5 80.0 81.2 80.6 86.5 77.0 74.7 75.8
ARTime 86.3 78.6 74.6 76.6 93.9 91.9 86.5 89.1

ARTime+H 90.1 82.2 80.4 81.3 94.4 90.3 86.5 88.4

TOMN
CogCompN 89.3 82.0 79.0 80.4 86.1 75.7 73.4 74.5
ARTime 86.2 80.3 71.0 75.4 89.3 91.1 86.1 88.5

ARTime+H 88.7 82.8 76.8 79.7 93.3 89.5 86.1 87.7

PTime
CogCompN 85.5 82.4 78.3 80.3 88.0 76.7 76.4 76.5
ARTime 83.0 75.8 72.5 74.1 94.7 89.7 88.6 89.2

ARTime+H 86.0 79.9 77.5 78.7 95.2 89.1 89.5 89.3

Table 6: The statistics(%) of negative samples in the
normalization results

Errors TempEval-3 Tweets-M

Unseen Pattern 41.2 50.0
Tense Error 17.6 11.5
Bad Rule 8.8 19.2
Annotation Error 8.8 3.8
Others 23.5 15.4

5.4.3 Analysis

We categorize the negative samples in the normal-
ization results of ARTime by their causes in Table
6. About half of the negative samples are due to
unseen patterns that can not be captured by our
rules. Another problem is the errors caused by
tense in the context. Some existing systems apply
post-modification tricks by comparing the tense
to the positivity of the difference between the out-
put value and the base value. If our method can
correctly utilize the oracle tense information, the
accuracy on TempEval-3 can increase to 79.7%
(+4.3 points). There are also some cases that the
rules generated in our method do not fit the input
expressions (The 3rd row in Table 6).

We also manually analyzed the rules used in the
test process to show what extent the introduction
of expert rules replaces the automatic generation

Table 7: The statistics of rules in the normalization re-
sults of ARTime+H.

Dataset Auto Full Ratio(%)

TempEval-3 34 36 91.9%
Tweets-M 40 42 95.2%

in ARTime+H, the results are illustrated in Table 7.
The “Full” column reports the number of rules used
in normalizing the expressions, and the “Auto” and
“Ratio” columns report how many of those rules can
be covered by automatically generation. From the
results we can know that the automatic generation
can cover over 90 percent of the manual rules and
adding about 2 rules are enough for ARTime.

5.4.4 Running Efficiency

All the results of ARTime are obtained by a single-
threaded Scala implementation on a personal work-
station with an Intel Xeon CPU E5-1607 v4 @
3.10GHz CPU and 128GB RAM. In average, AR-
Time generates ∼4.8 candidate rules for each ex-
pression. The offline training process took ∼16.3
minutes on TempEval-3 and ∼13.5 minutes on
Tweets. The test process took ∼47 seconds on
TempEval-3 and ∼46 seconds on Tweets.
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6 Conclusion

In this paper, we mainly focus on automatically
generating rules for time expression normalization.
The main contributions of this paper are summa-
rized as follows:
· We model time expression normalization as

an operation sequence to construct the normalized
temporal value, and ten basic operations are defined
for time expression normalization.
· We present a novel method, called ARTime,

for generating normalization rules from training
data without expert interventions. Specifically, AR-
Time captures possible operation sequences from
annotated data and generates candidate rules on
time expressions with common surface forms, and
finally obtains normalization rules by ranking the
candidate rules.
· Our experimental results show that ARTime

outperforms SOTA methods on the Tweets bench-
mark, and achieves competitive results with ex-
isting expert-engineered rule methods on the
Tempeval-3 benchmark. The end-to-end results
when combining ARTime with time expression
recognition systems are also very competitive.

There are still some rooms to improve ARTime.
One of the future work is to generate more high-
quality rules. The other is to enable ARTime to use
the tense and event information in context.
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