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Abstract

Knowledge representation learning (KRL) has
been used in plenty of knowledge-driven tasks.
Despite fruitfully progress, existing methods
still suffer from the immaturity on tackling
potentially-imperfect knowledge graphs and
highly-imbalanced positive-negative instances
during training, both of which would hinder
the performance of KRL. In this paper, we pro-
pose Contrastive Completion Coding (C3), a
novel KRL framework that is composed of two
functional components: 1. Hierarchical Archi-
tecture, which integrates both low-level stan-
dalone features and high-level topology-aware
features to yield robust embedding for each
entity/relation. 2. Normalized Contrasitive
Training, which conducts normalized one-to-
many contrasitive learning to emphasize dif-
ferent negatives with different weights, deliv-
ering better convergence compared to conven-
tional training losses. Extensive experiments
on several benchmarks verify the efficacy of
the two proposed techniques and combing
them together generally achieves superior per-
formance against state-of-the-art approaches.

1 Introduction

Knowledge graph (KG), as a well-structured repre-
sentation of knowledge, plays an important role in
a variety of knowledge-driven applications. Upon
KG, knowledge representation learning (KRL) (Lin
et al., 2018) aims to embed the high-dimension and
usually discrete features of entities/relations into
a low-dimension vector space. These learned rep-
resentations, by encoding the underlying semantic
relationships among entities/relations, are able to
facilitate various downstream tasks, such as ques-
tion answering (Bordes et al., 2014), recommen-
dation (Wang et al., 2019b) and relation extrac-
tion (Bastos et al., 2021) to name some. As a basic
research topic, KRL has always attracted many at-
tentions of researchers in relevant domains.

∗Corresponding author.

Previous KRL methods generally consider KG
completion (a.k.a link prediction) as the learning
goal. In particular, they define certain score or
energy function to accomplish the training by push-
ing up the score with respect to the observed pos-
itive triplets while simultaneously pushing down
the score in terms of those negative ones (Ahrabian
et al., 2020). To further take the KG connectivity
into account, recent works propose to take advan-
tage of graph neural network (GNN) (Vashishth
et al., 2019; Ye et al., 2019) to exploit graph topol-
ogy in KRL (Dettmers et al., 2018). The GNN-
based approaches have dominated the state-of-the-
art performance in popular benchmarks.

Despite fruitful progress they have achieved, ex-
isting methods still suffer from the immature ability
on tacking incomplete/noisy KG and imbalanced
positive-negative pairs. Regarding the first issue, it
is hard to construct perfect KG in practice owing
to the expensive annotation effort, let alone that
the information in KG is dynamically updating and
it is difficult to detect the change at any time. In
this situation, using GNN to aggregate information
among noisy instances will increase the spread of
noise and cause detriment to knowledge represen-
tation learning.

In terms of the second issue, it is common that
the number of negative instances is much greater
than that of positive instances, and the importance
of different negative instances differs greatly. Re-
calling the training loss in previous KRL methods
(such as the margin-based (Chechik et al., 2009)
and logistic-based (Gutmann and Hyvärinen, 2010)
loss), it coequally compares each positive instance
with only one negative instance at each training
iteration. In this way, it not only restrains the in-
teraction between positive-negative instances, but
also overlooks the different weights of different
negative samples to each positive instance, which,
in general, would lead to bias and slow training
convergence. Taking the triple (Kobe Bryant, na-
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tionality, United States) for example, we replace
the tail entity with others to generate negative triple
set, including (Kobe Bryant, nationality, Italy) and
(Kobe Bryant, nationality, Michael Jordan). In fact,
for the second triple, Michael Jordan is not even
a nation name and such negative fact should be
weighted less compared to others, such as the first
triple.

To address the both issues as mentioned above,
this paper proposes Contrastive Completion Cod-
ing (C3), a novel framework to allow robust and
efficient KRL. C3 is mainly composed of two func-
tional parts: 1. Hierarchical Architecture, which is
designed to preserve mixed information from both
low-level (embedding net) and high-level (GNN)
features of each instance. By ensembling different
levels of features, we can make full use of topology
structure by GNN while effectively suppressing the
dispersion of noise over imperfect KG. 2. Normal-
ized Contrasitive Training, which maximizes the
normalized probability of the positive instance over
all potential candidates that includes more than one
negative sample. In this manner, the importance
of different negative triples will be automatically
reflected with regard to the positive instance during
training. Indeed, this objective is also known as
InfoNCE, a kind of mutual information loss that
has been applied widely in machine learning and
computer vision (van den Oord et al., 2018; Hjelm
et al., 2019; Chen et al., 2020).

We summarize our contributions as follows:

• We propose hierarchical KRL to deal with rep-
resentation learning on imperfect KG. By in-
tegrating both low-level (embedding net) and
high-level (GNN) features of each instance,
C3 can exploit the topology-aware message
passing while suppressing the noisy and in-
valid propagation by GNN.

• We develop a Normalised One-to-Many Con-
trastive Objective to train the model on imbal-
anced positive-negative pairs. To be specific,
we adopt InfoNCE, a kind of mutual informa-
tion loss to attend the different importance of
different negative sample, giving rise to more
effective learning.

• Extensive experimental evaluations on two
link prediction benchmarks, FB15k-237 and
WN18RR, reveal that the two proposed tech-
niques are effective and compatible with each
other, and the proposed C3 generally outper-
forms various state-of-the-art counterparts.

2 Related Work

Our work is closely related to two main branches
of study in knowledge representation learning and
contrastive loss.

2.1 Knowledge Representation Learning

Knowledge Representation Learning (KRL) is a
widely studied field (Xie et al., 2018) with pre-
text tasks like KG completion. Traditionally, one
line of research focuses on designing score or en-
ergy functions in margin-based models (Bordes
et al., 2013; Wang et al., 2014; Xie et al., 2018;
Ahrabian et al., 2020) or un-normalized probability
models (Dettmers et al., 2018; Jiang et al., 2019;
Balažević et al., 2019b). However, all of the above
works adopt margin-based losses or logistic-based
losses, which overlook the importance of differ-
ent negative samples. In contrast, our C3 uses a
new training strategy, InfoNCE for training, which
incorporates negative samples with a multiclass
classification problem with a Soft-Max and cross-
entropy loss.

For KG is a special graph-structured data, some
works use a graph neural network (Schlichtkrull
et al., 2018; Wang et al., 2019a; Ye et al., 2019;
Vashishth et al., 2019) to extract the semantic struc-
ture information of KG. In this work, we use an
embedding network and a GNN to learn different
levels’ features of instances in KG and preserve mu-
tual information between context and both them.

2.2 Contrastive Loss

Contrastive losses measure the distance, or simi-
larity, between representations in the latent space,
which is one of the key differences between con-
trastive learning methods and other representa-
tion learning approaches (Le-Khac et al., 2020).
Motivated from energy-based models (LeCun and
Huang, 2005), Chopra et al. (2005) first introduce
and then reformulate in (Hadsell et al., 2006) the
original margin-based loss and its generalised ver-
sion (Chechik et al., 2010; Collobert and Weston,
2008; Weinberger and Saul, 2009). Another form
of contrastive loss is the logistic-based loss (Gut-
mann and Hyvärinen, 2010) , which is an esti-
mation method for an un-normalised probabilistic
model that avoids the need to evaluate the partition
function through a proxy binary classification task.
Instead of this form, Józefowicz et al. (2016) extend
the un-normalized probability loss to a normalized
probability loss. van den Oord et al. (2018) first
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Figure 1: Overview of Contrastive Completion Coding framework. C3 is mainly composed of two functional parts:
1. Hierarchical Architecture, which is designed to preserve mixed information from both low-level (embedding
net) and high-level (GNN) features of each instance. 2. Normalized Contrasitive Training, which maximizes the
normalized probability of the positive instance over all potential candidates that includes more than one negative
sample. |V|: the number of entities, |R|: the number of relations, d: the dimension of representations. Light green
and light blue denote low-level features. Dark green and dark blue represent high-level features. The yellow vector
is the representation of context. In the score table, green denotes positive score and red represents negative score.
We can see a noise triple (Juanita is Michael Jordan’s ex-wife, not the current wife) in the upper right corner of the
KG, which will be learned by the GNN and affect the quality of knowledge representation.

prove that minimising this loss based on NCE is
equivalent to maximising a lower bound on the
mutual information. Chen et al. (2020) further
elaborate on it advantages over other losses. For
addressing the imbalance between positive triples
and negative triples during KRL training, this nor-
malized one-to-many training objective is also used
in our model.

3 Contrastive Completion Coding

In this section, we first present the problem defini-
tion in our task, and then follow it up by providing
the details of our architecture framework and the
training strategy in Figure 1.

3.1 Problem Definition

Knowledge Graph is defined as G =(V,R, T ),
where V , R, T represent the set of entities, re-

lations and triples, respectively. Each triple (h, r, t)
∈ T indicates the relation r ∈ R between the head
entity h ∈ V and the tail entity t ∈ V . We usually
assume that information can flow along both direc-
tions of every edge. So for each triple (h, r, t) ∈ T ,
its inverse triple (t, r−1, h) is also included in G.

KRL aims to represent entities of KG in a low-
dimensional vector space {ev(v) ∈ Rn|v ∈ V}
and relations {er(r) ∈ Rn|r ∈ R}, where n de-
notes representation dimension. ev(v) and er(r)
represents the embedding of entity and relation,
respectively. To do so, KRL usually conducts the
KG completion task (a.k.a link prediction) as the
pretext task. For example, in the case of tail entity
inference, common KRL methods contend that the
positive embedding should achieve the larger score
than all other negative embeddings, w.r.t. to context
consisting of the head entity and relation. In form,
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KRL objective:

S(ev(t+), g(ev(h), er(r)))�
S(ev(t−), g(ev(h), er(r))),

(1)

where g (·) represents the completion function that
returns the representation of context (h, r), t+ and
t− denote a positive instance and a negative in-
stance, respectively, and (h, r, t−) 6∈ G. S(·) de-
notes the scoring function, which will be discussed
in Section 3.2.

3.2 Hierarchical Architecture
As introduced before, embedding each entity and
relation with i.i.d. function will omit the graph
structure that is capable of characterizing high-
order interactions. On the contrary, employing
GNN alone for embedding learning will be vul-
nerable to imperfect KG. For the sake of robust
embedding, this work combines both the low-level
standalone features and high-level topology-aware
features. Specifically, we propose a GNN based
hierarchical encoding method. Intuitively, not theo-
retically, different levels of features can be regarded
as different views of context-instance. We imply
that the low-level representation is to capture the
feature view of each node instance, and the high-
level representation is to characterize the topology
view of the whole KG.
Encoding Function. First, we define the low-level
instance feature zL obtained from the i.i.d. embed-
ding network eL(·) as follows:

zvL = evL(v); z
r
L = erL(r), (2)

where the superscripts v and r denote an entity and
a relation, respectively.

Then, the high-level instance feature zH ob-
tained from the graph-aware encoding function
eH(·;G) is defined below:

zvH = evH(v;G); zrH = erH(r;G), (3)

where eH(·;G) is implemented by a specific
GNN (Vashishth et al., 2019).
Completion Function. For inferring the missing
part of the triple, the completion function is pro-
posed to encode the context representation c.

c = g(zv, zr), (4)

where the completion function g(·) can be imple-
mented as any type of Addition, Multiplication,

Decomposition, MLP, Convolution, etc. We also
define cL and cH are the context representation vec-
tors, which are generated by the compeltion func-
tion using (zvL, z

r
L) and (zvH , z

r
H) respectively.

Scoring Function. The scoring function S(·) mea-
sures the similarity or distance between two inputs.
A trivial form of S(·) is given by a inner/dot prod-
uct between two vectors S(z, c) = z>c. This
is a most commonly used measurement in litera-
ture (Dettmers et al., 2018; Vashishth et al., 2019).
Another popular option is utilizing the cosine simi-
larity, S(z, c) = z>c

‖z‖‖c‖ , whose value is bounded
between -1 and 1, and equal to 0 for orthogonal
vectors. Unless otherwise specified, we adopt the
cosine similarity in our method.

To allow hierarchical scoring, we contrast the
context vector c with both low-level feature zL and
high-level feature zH as a weighted combination:

S(z, c) = ρSL(zL, cH) + (1− ρ)SH(zH , cH)

= ρ
z>LcH

‖zL‖ ‖cH‖
+ (1− ρ)

z>HcH
‖zH‖ ‖cH‖

,

(5)
where 0 ≤ ρ ≤ 1 is a hyper-parameter that con-
trols trade-off of both levels. We will discuss this
hyper-parameter in Section 4.5. The reason why
we choose the combination in Eq. 5 to calculate the
hierarchical score is mainly for the consideration
of calculation efficiency and experimental effect.
We will discuss it in detail in Section 4.3. Albeit
its simplicity, our experiments support that such
simple linear combination is sufficient to provide
desired performance.

3.3 Normalized Contrasitive Training

With the scoring function at hand, the last step
is how to formulate a training objective to ful-
fil the ranking in Eq. 1. There exist two typ-
ical training losses including the margin-based
method (Chechik et al., 2009) and the logistic-
based method (Lin et al., 2018).

Specifically, the margin-based objective is given
by

Lmargin = max
(
0, γ + S(z+, c)− S(z−, c)

)
,

(6)
as well as the gradient w.r.t. c:

∇cLmargin =

{
z+ − z−, S(z+,c)−S(z−,c)<γ;
0, otherwise.

(7)
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As for the logistic-based method, it considers
a surrogate binary classification task using the
logistic-based loss function. To be specific, it com-
putes

Llogistic =− Ep+ [log σ(S(z+, c))]

− Ep− [log(1− σ(S(z−, c))],
(8)

along with the gradient w.r.t. c as follow:

∇cLlogistic = σ(−c>z+)/z+ − σ(c>z−)/z−,
(9)

where σ(·) is the Sigmoid function.
Although these two kinds of losses have been

applied widely in KRL, they contrast the one-to-
one difference between the positive and negative
instances, which is unable to handle the imbalance
between positive triples and negative triples dur-
ing training, provided that the number of negatives
are usually far greater than that of positives. In
addition, by checking their gradients, the update
directions by these two objectives are distributively
related with each instance without further drawing
the different importance of different negative. In-
spired by (Ahrabian et al., 2020; Chen et al., 2020),
it is essential to mine “hard” negative samples to
avoid easy pairs that provide no substantial learning
signal in any learning system.

In order to overcome this limitation, we pro-
pose to apply a normalized one-to-many training
objective (one positive and many negatives at a
time). In particular, we sample a candidate set as
Z =

{
z+, z−1 , . . . ,z

−
N−1

}
with one positive in-

stance but apply all possible negative samples in
the objective function, leading to a total sample
number as N . Different entity could have differ-
ent number of negative samples, hence N varies.
We then compute the score between each candidate
and the context c. By applying a Soft-Max (Bishop,
2006; Goodfellow et al., 2016) on all scores, the
training target is to maximize the normalized score
of the positive instance, leading to

LN = −E
G

[
log

exp(S (z+, c))∑
zj∈Z exp(S(zj , c))

]
, (10)

with the gradient given by

∇cLN = (1− exp(S (z+, c))∑
zj∈Z exp(S(zj , c))

)z+

−
∑
z−

exp(S (z−, c))∑
zj∈Z exp(S(zj , c))

z−.

(11)

From Eq. 11, we can see that the gradients of
the negatives are no longer treated equally and are
weighted by the relativity to the sum of the ex-
ponentiate scores of all samples. If this term is
large, then the corresponding negative sample will
greatly influence the gradient and the training pro-
cess. This property is clearly different from the
conventional gradient in Eq. 7 where the weights
of all negative samples are the same (i.e. 1). In
this way, the training will focus more on the cru-
cial negative sample with large relativity, yielding
better convergence. We will compare its effective-
ness with other training losses in the experiments
Section 4.5.

Note that Eq. 10 is also known as InfoNCE loss
that is initially proposed in CPC (van den Oord
et al., 2018). It is proved that InfoNCE is actually a
lower bound of mutual information, in other words,

I(z, c) ≥ log(N)− LN. (12)

Following normalised-temperature cross-
entropy (NT-Xent) loss (Chen et al., 2020), we
also use a temperature parameter τ to control the
sensitivity of the scoring function. Note that the
temperature τ determines the attraction-repulsion
radius around the context, and thus acts similarly
as the margin γ in the margin-based loss.

In summary, the objective of C3 is derived as

LN = −E
G

[
log

exp(S(z+, c)/τ)∑
xj∈G exp(S(zj , c)/τ)

]
.

(13)
For better readability, we illustrate the flowchart

of our method in Algorithm 1.

4 Experiments

4.1 Setup
Datasets. We evaluate our C3 models on
two standard link prediction datasets: FB15k-
237 (Toutanova and Chen, 2015) that is cre-
ated from FB15K (Bordes et al., 2013) and
WN18RR (Dettmers et al., 2018) which is a subset
of WN18 (Miller, 1995).
Baselines. We compare our C3 with the
following previous state-of-the-art KRL meth-
ods: TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al.,
2016), R-GCN (Schlichtkrull et al., 2018), KB-
GAN (Cai and Wang, 2018), ConvE (Dettmers
et al., 2018), SACN (Shang et al., 2019), Hy-
pER (Balažević et al., 2019a), RotatE (Sun
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WN18RR FB15k-237

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

TransE (Bordes et al., 2013) .226 .501 - - .294 .465 - -
DistMult (Yang et al., 2014) .43 .49 .44 .39 .241 .419 .263 .155
ComplEx (Trouillon et al., 2016) .44 .51 .46 .41 .247 .428 .275 .158
R-GCN (Schlichtkrull et al., 2018) - - - - .248 .417 .151
KBGAN (Cai and Wang, 2018) .214 .472 - - .278 .458 -
ConvE (Dettmers et al., 2018) .43 .52 .44 .40 .325 .501 .356 .237
SACN (Shang et al., 2019) .47 .54 .48 .43 .35 .54 .39 .26
HypER (Balažević et al., 2019a) .465 .522 .477 .436 .341 .520 .376 .252
RotatE (Sun et al., 2019) .476 .571 .492 .428 .338 .533 .375 .241
ConvR (Jiang et al., 2019) .475 .537 .489 .443 .350 .528 .385 .261
VR-GCN (Ye et al., 2019) - - - - .248 .432 .272 .159
TuckER (Balažević et al., 2019b) .470 .526 .482 .443 .358 .544 .394 .266
COMPGCN (Vashishth et al., 2019) .479 .546 .494 .443 .355 .535 .390 .264
SANS (Ahrabian et al., 2020) .480 .571 - - .336 .531 - -

Our C3 .492 .572 .508 .451 .360 .549 .397 .266

Table 1: KG completion performance of our C3 and several recent models on FB15k-237 and WN18RR datasets. The results
of all the baseline methods are taken directly from precious papers (’-’ indicates missing values). We find that C3 outperforms
all the existing methods on both WN18RR and FB15k-237 datasets. We achieve state-of-the-art results.

et al., 2019), ConvR (Jiang et al., 2019), VR-
GCN (Ye et al., 2019), TuckER (Balažević et al.,
2019b), COMPGCN (Vashishth et al., 2019) and
SANS (Ahrabian et al., 2020).
Implementation Details. For all experiments, we
adopt SGD with momentum as the optimizer to
train our models. We used a cosine decay sched-
ule (Loshchilov and Hutter, 2016; Chen et al.,
2020) with the initial learning rate set as 1e-4,
the momentum as 0.9, and the temperature τ as
0.07 (He et al., 2020). Unless otherwise specified,
the trade-off hyper-parameter ρ is set to 0.5. The
embedding net eL(·) that we use is a one-layer
learnable embedding network, the GNN eH(·) is
the GCN model used in COMPGCN (Vashishth
et al., 2019), and the completion function fol-
lows the implementation in ConvE (Dettmers et al.,
2018).
Evaluation Metrics. We use the following two
measurements as our evaluation metrics: (1)
Mean Reciprocal Rank; (2) Hits@10, Hits@3 and
Hits@1 that indicate the proportion of correct an-
swers ranked in top 10, 3, 1, respectively.

4.2 Comparisons with state-of-the-arts

Table 1 shows the performance comparisons be-
tween our C3 models and SOTA models on
WN18RR and FB15k-237 datasets. The results of
all SOTA methods are taken directly from the previ-
ous papers (Vashishth et al., 2019; Balažević et al.,
2019b; Ahrabian et al., 2020). Clearly, in terms of
the most two crucial metrics MRR and H@10, our

method improves the baseline COMPGCN (that
shares the same backbone with our method but is
free of hierarchical embeddings and contrastive
training) from 0.479 to 0.492 in MRR and 0.546 to
0.572 in H@10, which validates the effectiveness
of our two proposed contributions. Overall, to the
best of our knowledge, C3 outperforms all exist-
ing methods on both datasets and achieves superior
performance against state-of-the-art approaches.

4.3 Analysis of Hierarchical Structure

Different Context-Instance Training Strategies.
We try all context-instance combinations to study
all kinds of context-instance relationships in Ta-
ble 2 1. We find that the method using both low-
level features eL and high-level features eH of
instances is better than the variant that using ei-
ther low-level or high-level features. In particular,
the (MRR, H@10) of our results is (0.492, 0.572),
while the counterparts with only high-level or low-
level features achieve (0.478, 0.565) and (0.458,
0.517), respectively under the same context cH . In-
terestingly, for the method of using only low-level
features eL, we find context representation cL per-
forms better than cH . When we use both features
of instances, cH outperforms cL, which implies
that deeper cH has more expressive capacity. The
results support the hypothesis that leveraging low-
level and high-level features is able to capture dif-
ferent levels of contextual information, thus more

1The experimental results on FB15k-237 dataset are simi-
lar, which are shown in Table 10.



3067

Q (Context) K (Instance) WN18RR

cL cH eL eH MRR H@10

X X .470 .538
X X .468 .538
X X X .484 .557

X X .458 .517
X X .478 .565
X X X .492 .572

Table 2: Results of different context-instance relation-
ships. Experiments settings: representation dimension
= 500, batch size = 128.

capable of knowledge representation learning.

Hierarchical Scoring Function. We have cho-
sen the hierarchical scoring function shown in Eq. 5
as discussed preciously. In fact, it is possible to
leverage both cH and cL under any combination as
shown in Table 3. We choose the combination (cH
for zL, cH for zH) in Eq. 5 due to the following
two reasons: 1. From the perspective of compu-
tational efficiency, the first two combinations will
double the FLOPs by computing two-level con-
texts. 2. As reported by Table 3, it achieves the
best result, which explains that the score between
the high-level context and the features of both lev-
els is sufficient to capture the multi-view patterns
in KG.

Quantitative Statistics on Different Levels Fea-
tures. We conduct experiments on the test set
to verify the importance of low-level and high-
level features, respectively. Table 4 shows that
the number of SH ≤ SL is much more than that of
SH > SL when predicting entities on FB15k-237,
while low-level features and high-level features of
instances have almost equal effects on the predic-
tion results on WN18RR. It may imply that the de-
gree of incomplete/noise varies greatly in different
datasets. The above two experimental results show
that we can make full use of topology structure by
GNN while effectively suppressing the dispersion
of noise over imperfect KG by ensembling different
levels of features.

4.4 Hierarchical Structure for Noise
Suppression

To validate the assumption that different levels
of features help in proportion to the degree of
incomplete/noisy information present on differ-
ent datasets, we introduce 10% and 20% noise
to the datasets according to the principle in the

WN18RR

Combinations MRR H@10 H@3 H@1

(cL for zL, cH for zH) .398 .504 .436 .335
(cH for zL, cL for zH) .461 .534 .477 .422
(cL for zL, cL for zH) .484 .557 .497 .446
(cH for zL, cH for zH) .492 .572 .508 .451

Table 3: Performance of different combinations on link
prediction task evaluated on WN18RR dataset.

# Predict Tail Entity # Predict Head Entity

Datasets SH > SL SH ≤ SL SH > SL SH ≤ SL

WN18RR 1,359 1,775 1,597 1,537
FB15k-237 3,927 16,539 5,034 15,432

Table 4: Quantitative statistics dominated by scores at
different levels on the test set. SL and SH are the scores
computed by using the high-level context vector cH to
calculate the similarity scores with low-level features’
eL and high-level features’ instances eH , respectively.
“#” denotes the number of entities.

CKRL (Xie et al., 2018). The results on WN18RR
are shown in Table 9 2. According to the results,
we can see that the last column result is better
than the other columns. Hence, we further con-
firm the method of using both low-level features
eL and high-level features eH of instances is better
than using only the low-level features or high-level
features. In particular, with the increase of noise,
the gap between our method and other methods
increases, which supports the robustness of our
method on preventing noise. For example, the im-
provement regarding MRR between our C3 and the
high-level baseline (COMPGCN) is increased from
0.018 to 0.043 when the noise is from 10% to 20%.

4.5 Contrasitive Training

Loss Function. We evaluate the effects of C3

using different loss functions: margin-based loss,
un-normalized logistic-based loss, and normalized
probability-based InfoNCE loss as what we have
done above. The experimental results are shown
in Figure 2. By observing the best MRR recorded
on the validation set during the training process,
we can find that 1) using margin-based loss con-
verges slowly and has poor performance; 2) using
logistic-based loss converges slowly at first, but
after a certain period of warming up, it exhibits a
faster convergence speed; 3) using InfoNCE, both

2The experimental results on FB15k-237 dataset are simi-
lar, which are shown in Table 9.



3068

COMPGCN C3(low-level) C3(high-level) C3(both-level)

Noise MRR H@10 MRR H@10 MRR H@10 MRR H@10

10% .396 .472 .390 .473 .391 .470 .414 .498
20% .309 .400 .319 .389 .323 .403 .352 .433

Table 5: The performance of our model using different levels of features and COMPGCN on the WN18RR dataset
with different scales of noise.

Figure 2: The effect of loss function. Experiments set-
tings: representation dimension = 500, batch size = 128.
It shows the best MRR on the validation set.

Datasets ρ=0.0 ρ=0.2 ρ=0.5 ρ=0.8 ρ=1.0

WN18RR .478 .490 .492 .472 .458
FB15k-237 .356 .358 .360 .355 .351

Table 6: The MRR in the experiment when the hyper-
parameter ρ in Eq. 5 takes different values.

the convergence rate and eventual performance far
exceed the other two counterparts, thereby demon-
strating the rationality of our choice.
Analysis of Key Hyper-parameters. Table 6
shows the results when the hyper-parameter ρ in
Eq. 5 takes different values. This hyper-parameter
controls the trade-off between both levels features.
We can see that the best value of ρ lies between 0.2
and 0.8 on both datasets. We empirically set ρ to
be 0.5, and find it works promisingly.

Figure 3 records the impact of different repre-
sentation dimensions. It is observed that, as the
dimension increases, the performance of C3 im-
proves gradually and steadily, while the growth rate
decreases gradually. On the contrary, the results of
other compared methods such as COMPGCN, al-
most keep unchanged when the dimension varies. It
is supported that, our C3 model benefits more from
a larger representation dimension than its KRL

COMPGCN COMPGCN

TuckER

RotatE

Representation Dimension

TuckER

RotatE

C3

C3

C3

 M
R

R

Figure 3: C3 trained with different dimensions on
WN18RR. The green rhombus represents the result of
SANS, and its dimension is 1000.

counterparts 3, which may imply that the benefit
of our method in better mining the representation
capacity within the input graphs.

Analysis of the Train Time. For better address-
ing imbalanced positive-negative pairs to increase
the interaction between positive-negative instances
and approximating the lower bound of mutual in-
formation in Eq. 12, we sample as many negative
instances as possible to better normalize the prob-
ability of the positive instance over all potential
candidates. Nevertheless, sampling all negative
instances, as the same procedure applied in both
COMPGCN and our method, occupies a very small
proportion in total computation. This is because the
representations of all entities have already be ob-
tained in memory when calculating InfoNCE, and
the main calculations lie in the SoftMax with re-
spect to all negative representations, which counts
little compared to the representation computations.
For example, the sampling time for COMPGCN
and our C3 are close, about 0.16s/iter and 0.21s/iter,
respectively.

5 Conclusion

In this paper, we present C3, a novel knowledge
representation learning framework, which is mainly

3The results of other methods re-produced on our own
according to their papers.
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composed of two functional parts: 1) Hierarchical
Architecture, which has also exhibited the effective-
ness in suppressing the spread of noise. 2) Normal-
ized Contrasitive Training, which can attend the
different importance of different negative samples,
giving rise to more effective learning. Compara-
ble experimental evaluations reveal that the two
proposed techniques are efficient and compatible
with each other. The analysis of hierarchical scor-
ing shows that low-level and high-level features
are both very necessary for robust KRL, and they
complement each other. The contrastive training
experiments show that InfoNCE loss is more suit-
able and efficient for the KG completion task, as
our C3 converges faster and performs better. To
the best of our knowledge, we are the first to apply
InfoNCE to attend to the different importance of
different negative samples in KRL. Our proposed
method is simple, yet effective and well-motivated
for resolving crucial issues in KRL.
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A Appendix

A.1 Relation to Previous KRL Models
As is shown in Table 13, several previous methods,
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), ConvE (Dettmers et al., 2018), TuckER (Bal-
ažević et al., 2019b) and COMPGCN (Vashishth
et al., 2019), can be viewed as a special case in C3

framework.

A.2 More details about Experiment
A.2.1 Datasets
In this section, we provide the details of the datasets
used in the experiments. We use the following two
datasets:
FB15k-237 (Toutanova and Chen, 2015) is a
pruned version of FB15k (Bordes et al., 2013)
dataset with inverse relations removed to prevent
direct inference.
WN18RR (Dettmers et al., 2018) is a subset from
WN18 (Bordes et al., 2013) dataset which is de-
rived from WordNet (Miller, 1995).

Details of train/validation/test splits is listed
in Table 7. The datasets can be down-
load on https://github.com/thunlp/OpenKE. or
https://github.com/malllabiisc/CompGCN.

Datasets #Ent #Rel #Train #Test #Valid

FB15k-237 14,541 237 272,115 20,466 17,535

WN18RR 40,943 11 86,835 3,134 3,034

Table 7: Statistics of FB15k-237 and WN18RR
datasets.

A.2.2 Evaluation Metrics
In this paper, we conduct our experiments on the
KG completion task. It concentrates on the quality
of knowledge representations (Socher et al., 2013),
which aims to complete a triple when head entity
or tail entity is missing.

We conduct two measures as our evaluation met-
rics: (1)Mean Reciprocal Rank, that is a relative
score that calculates the average of the inverse of
the ranks at which the first relevant entity was
retrieved for a set of queries. and (2)Hits@10,
Hits@3 and Hits@1 indicate the proportion of cor-
rect answers ranked in top 10, 3, 1 respectively.

For COMPGCN which is closely related to our
method, we have conducted the comparison in a
fair and comprehensive setting to justify the sig-
nificance of our proposed idea. For other methods

(such as SANS) we have tried to reproduce the
results for all metrics but fail to obtain the compa-
rable numbers as reported. Hence, a conservative
solution is to directly copy the numbers from their
papers.

A.2.3 Hyper-parameters
For selecting the best model, we perform a hy-
perparameter search using the validation data over
the values listed in Table 8 through selecting the
highest MRR. In our best setting, we use learnable
convolution networks ConvE as our completion
function g(·). The best learning rate lr = 0.09,
the batch size is 128, the representation dimen-
sion is 500, the dropout is 0.1 and the composi-
tion operators is multiplication for two-layers fgnn
for FB15k-237 (600epoch) and circular-correlation
in one-layer fgnn for WN18RR (800epoch). Our
C3 model build on PyTorch geometric frame-
work(Compatible with Python 3.x). Total number
of parameters of C3 model is 64.613M, and total
number of FLOPs is 9.154G.

Hyperparameters Values
Number of GNN Layers {1, 2}
Number of epoch {200, 400,600, 800}
Number of dim (d) {100, 200,

500, 1000}
Learning rate {0.001, 0.015, 0.03,

0.09, 0.1, 0.2}
Batch size {32, 64, 128, 256,

512, 1024}
Dropout {0.0, 0.1, 0.2}
temperature τ {0.01, 0.05, 0.07,

0.1, 0.2}

Table 8: Details of hyperparameters.

A.2.4 Additional results

https://github.com/thunlp/OpenKE
https://github.com/malllabiisc/CompGCN
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COMPGCN C3(low-level) C3(high-level) C3(both-level)

Noise Ratio MRR H@10 MRR H@10 MRR H@10 MRR H@10

10% .319 .489 .314 .490 .333 .521 .340 .526
20% .308 .474 .308 .480 .320 .503 .329 .511

Table 9: The performance of our model using different levels of features and COMPGCN on the FB15K-237
dataset with different scales of noise.

Q (Context) K (Instance) FB15k-237

cL cH eL eH MRR H@10

X X .348 .527
X X .329 .511
X X X .347 .530

X X .351 .536
X X .356 .543
X X X .360 .549

Table 10: Results of different context-instance relation-
ships. Experiments settings: representation dimension
= 500, batch size =128.

Completion Loss WN18RR

Function Function MRR H@10

Addition InfoNCE .268 .510
Multiplication InfoNCE .444 .517
Convolution InfoNCE .492 .572
Convolution Margin .231 .416
Convolution Logistic .468 .522

Table 11: Effects of completion function and loss func-
tion. Experiments settings: representation dimension =
500, batch size =128. Results in the first three rows
show that convolution completion function gives a sub-
stantial improvement than others. And the last three
rows of results show the performance of InfoNCE loss
function far exceeds others.

Completion Loss FB15K-237

Function Function MRR H@10

Addition InfoNCE .337 .524
Multiplication InfoNCE .346 .533
Convolution InfoNCE .360 .549
Convolution Margin .182 .318
Convolution Logistic .322 .499

Table 12: Effects of completion function and loss func-
tion. Experiments settings: representation dimension =
500, batch size =128. Results in the first three rows
show that convolution completion function gives a sub-
stantial improvement than others. And the last three
rows of results show the performance of InfoNCE loss
function far exceeds others.

Figure 4: C3 trained with different batch sizes on
WN18RR. Experiments settings: representation dimen-
sion = 500, epoch = 800.

Figure 5: C3 trained with different epochs on
WN18RR. Experiments settings: representation dimen-
sion = 500, batch size = 128.
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Method Instances Encoding Functions Completion Functions Scoring Functions Training Losses
TransE low-level Embedding Addition Distance Margin-based

DistMult low-level Embedding Multiplication Similarity Margin-based
ConvE low-level Embedding Convolution Similarity Logistic-based

TuckER low-level Embedding Decomposition Similarity Logistic-based
COMPGCN high-level Embedding + GNN ∗ Similarity Logistic-based

our C3 low&high-level Embedding + GNN ∗ Cosine Similarity InfoNCE

Table 13: Relation to previous KRL models. Other methods can be viewed as a case in our C3 framework. ∗ indicates any
completion function.

Figure 6: C3 trained with different batch size on
FB15k-237 dataset. Experiments settings: representa-
tion dimension = 500, epoch = 200.

Figure 7: C3 trained with different epochs on FB15k-
237 dataset. Experiments settings: representation di-
mension = 500, batch size = 128.

Algorithm 1 Implmenting C3

Input: The triple set T , the entity set V , the re-
lation set R. Initialize the parameters θ of the
Hierarchical Architecture. Batch size is m. The
number of instances is N . We still use the case
of inferring the tail entity as an example.
while θ has not converged do

Randomly sample {hi, ri}mi=1 ∼ p(h, r);
Get high-level features:
{zhiH ← evH(hi); z

ri
H ← erH(ri)}mi=1;

Get high-level context representation:
{cHi ← g(zhiH , z

ri
H}mi=1;

Sample one positive instance:
{t0i+ ∼ p+(·|hi, ri), (hi, ri, t

+
i ) ∈ T }mi=1;

Sample N − 1 negative instances:
{tki− ∼ p−(·|hi, ri), (hi, ri, t−i ) 6∈ T , k =
{1, 2, · · · , N − 1}}mi=1;
Get the instance set:
{Xi = {t0i+, t1i−, ..., t

N−1
i− }}mi=1;

Get different levels of features:
{zt

j
i
L ← evL(t

j
i ); z

tji
H ← evH(t

j
i ), t

j
i ∈ Xi}mi=1;

Calculate the low-level score:

{SL(z
tji
L , cHi)←

z
t
j
i
L
>cHi∥∥∥∥∥zt

j
i
L

∥∥∥∥∥‖cHi‖
, tji ∈ Xi}mi=1;

Calculate the high-level score:

{SH(z
tji
H , cHi)←

z
t
j
i
H
>cHi∥∥∥∥∥zt

j
i
H

∥∥∥∥∥‖cHi‖
, tji ∈ Xi}mi=1;

Calculate the total score:
{S(zt

j
i , ci) ← ρSL(z

tji
L , cHi) + (1 −

ρ)SH(z
tji
H , cHi), t

j
i ∈ Xi}mi=1;

Calculate full objective:

LN ← − 1
m

m∑
i=1

log exp(S(z
t0i+ ,ci,)/τ)∑

t
j
i
∈Xi

exp(S(zt
j
i ,ci)/τ)

;

Update θ ← ∇θLN
end while

Output: low-level feature zL, high-level feature
zH and context representation c.


