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Abstract
Multilingual neural machine translation

models typically handle one source language
at a time. However, prior work has shown that
translating from multiple source languages
improves translation quality. Different from
existing approaches on multi-source trans-
lation that are limited to the test scenario
where parallel source sentences from multiple
languages are available at inference time, we
propose to improve multilingual translation
in a more common scenario by exploiting
synthetic source sentences from auxiliary
languages. We train our model on synthetic
multi-source corpora and apply random
masking to enable flexible inference with
single-source or bi-source inputs. Extensive
experiments on Chinese/English—Japanese
and a large-scale multilingual translation
benchmark show that our model outperforms
the multilingual baseline significantly by up
to +4.0 BLEU with the largest improvements
on low-resource or distant language pairs.

1 Introduction

Neural machine translation (NMT) has achieved
the state-of-the-art performance across domains
and language pairs (Wu et al., 2016; Bojar et al.,
2018; Hassan et al., 2018; Barrault et al., 2019).
One of the advantages of NMT over statistical ma-
chine translation models is that it enables informa-
tion sharing among high-resource and low-resource
languages by training a multilingual model on the
parallel data from multiple language pairs, which
has been shown to improve translation quality, es-
pecially on low-resource language pairs (Firat et al.,
2016a; Ha et al., 2016; Aharoni et al., 2019).
Although multilingual NMT models typically
handle one language pair at a time during both
training and inference (Ha et al., 2016; Johnson
et al., 2017), prior work has shown that translating
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Figure 1: An example of translating a Chinese sen-
tence into English by using Japanese as the auxiliary
language. Adding a synthetic source from Japanese
helps to translate the red word “FF)F T (Abiko, a
city in Japan), which is often incorrectly translated into
“my grandson city” by standard Chinese-English MT
models, while other words can be translated more accu-
rately from the Chinese source.

from multiple parallel source sentences can further
improve translation quality (Och and Ney, 2001;
Zoph and Knight, 2016; Garmash and Monz, 2016;
Nishimura et al., 2018). They propose multi-source
translation models to exploit multiple source inputs
at inference time. However, these models are
limited to the application scenario where the source
sentence has already been manually translated
into multiple languages. We argue that, in the
more common scenario where only one source
sentence is provided, we could also improve the
translation quality of multilingual NMT models by
augmenting the source input with a synthetic sen-
tence generated by a translation model into another
language. As shown by the example in Figure 1,
the additional synthetic sentence can help translate
low-frequency and domain-specific words that are
difficult to translate directly from the source.

In this paper, we propose a novel bi-source
multilingual NMT model that leverages a synthetic
source sentence from an auxiliary language to
better translate a source sentence into the target
language. We train our bi-source NMT model on a
synthetic multi-source translation corpus generated
by translating the source side of the parallel data
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into other source languages using pre-trained NMT
models. We contribute a novel training algorithm
that 1) randomly selects the auxiliary language
at each training iteration, which improves the
multilinguality of the encoder representations,
and 2) randomly masks out the auxiliary sentence
during training, so that the model can perform
inference flexibly in two different modes, including
a) single-source inference where our model takes
a single source as input, and b) bi-source inference
where we first translate the original source to
another language using an NMT model and then
feed the two source sentences into our model to
predict the target translation. This allows end users
to balance between translation quality and latency
by choosing different inference modes.

We experiment on the ASPEC Chinese and
English to Japanese translation and a large-scale
English-to-many translation benchmark that
includes 10 language pairs from WMT. Results
show that our method is simple yet effective
— it improves English—Japanese translation
on out-of-domain test sets and outperforms
strong baselines by an average of +1.9 BLEU
on the English-to-many translation benchmark.
The largest improvements are on low-resource
languages, where it brings up to +4.0 BLEU
improvements. Further analysis confirms our
hypothesis that bi-source inference helps the model
disambiguate word senses during translation.

2 Bi-Source Multilingual NMT

Inspired by prior work on multi-source transla-
tion (Zoph and Knight, 2016; Nishimura et al.,
2018), we hypothesize that multilingual transla-
tion models can benefit from additional synthetic
source sentences that are automatically translated
from the original source.

2.1 Model

Formally, the model computes the probability
of target sentence y“ in language I; given the
original source sentences s from language [, and
a synthetic source sentence &' translated from a's
into an auxiliary language [, (I, # ls, I, # ;) by
an MT model:

p(y" |2, &) = p(y" | f(@', &' Ocnc); Ouaec) (1)

where Oy, and O4.. represent the encoder and
decoder parameters, respectively, and f(-; ©¢pe)
produces the encoder representations of the inputs.

Our encoder-decoder model is based on the
Transformer architecture (Vaswani et al., 2017).
As shown in Figure 2, we adopt techniques from
context-aware machine translation (Voita et al.,
2018) to integrate the additional source input into
the model:

Multi-Encoder Approach encodes the source
sentences using separate encoders (Voita
et al.,, 2018) to obtain the hidden representa-
tions f('; One) = H® and f(&'*; Ocpe) = H®
Then, the decoder can attend to H® and H“
separately and apply a gating mechanism to obtain
the fusion vector h;:

hi = Attn(H®, ")

hi = Attn(H®, h!")

g; = o(Wy[hi; hi] + by)

hi=g; ®hi+(1-g;) ©h{

2

where hﬁgt represents the hidden state of the i-th
target token, Wy and b, are model parameters,
and o represents the logistic sigmoid function.

Single-Encoder Approach encodes the source
sentences by concatenating them into a long se-
quence (Dabre et al., 2017; Tiedemann and Scher-
rer, 2017), which is then fed to an embedding layer!
and a stack of self-attention and position-wise feed-
forward layers to produce a sequence of hidden
representations f([x's;&'];O,,.) = H. Then,
we apply the encoder-decoder attention to the full
sequence of encoder representations H:

h; = Attn(H,h%") 3)

The single-encoder approach is simpler than the
multi-encoder one and can be easily adapted to
multiple auxiliary languages as inputs.

2.2 Training

Our  bi-source  multilingual model is
trained on a combination of datasets D =
Uesicaner D!, where S is the set
of source languages, 7 is the set of target
languages, A represents the set of auxiliary
languages, and D's*laxl — {(a:lS,zEla, y')}isa
bi-source translation dataset which can be formed
by data augmentation via MT. The objective is to

!The position embeddings of the source sentences are reset
to facilitate alignment between two sentences.
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Figure 2: An overview of the generation process of the auxiliary source sentence (a), the single-encoder (b) and
multi-encoder (c) approaches for integrating the auxiliary source sentence in the translation model. In the multi-
encoder approach, we share the parameters of the two encoders to learn representations in a shared space.

maximize the log-likelihood of the target sentences
given the original and auxiliary source sentences:

L= Y |pmslogp(y"|2")
(z!s &' ,ylt)eD 4)

=+ (1 - pmask) logp(ylt | a:ls,i:l“)}

At each training iteration, we randomly pick a
triplet of mutually distinct source, auxiliary, and tar-
get languages (ls, l4, l¢). Next, we randomly sam-
ple a batch of training examples { (z's, &', y')}
from Ds*lax!t and maximize the log probability
of the target sentence ¢ given source sentence x's
and auxiliary sentence &'*. To enable more flexi-
ble decoding and to improve model robustness, we
randomly mask out the auxiliary sentences with
probability pmask during training.?

Creating Pseudo Training Data We adopt data
augmentation techniques (Sennrich et al., 2016a;
Nishimura et al., 2018) to construct the bi-source
data using parallel data from multiple language
pairs. More specifically, we first train a multi-
lingual NMT model Ms_, 4 to translate between
source and auxiliary languages. Next, we extend
each parallel dataset {(z's,y")} to pseudo bi-
source datasets { (z's, #'*, y')} by translating z's
into auxiliary languages [, using Ms_, 4. Finally,
we combine all pseudo bi-source datasets into the
training data D to train our bi-source model.

2.3 Inference

Prior work on multi-source NMT (Zoph and
Knight, 2016; Nishimura et al., 2018) assumes ac-
cess to multi-source inputs at inference time, which
has limited their scope of application in the real

2We set pmask = 0.5 in all our experiments.

Domain Prov. #Sent

train Science ASPEC 0.66M

Zhe] dev  Science ASPEC 2090
% test Science ASPEC 2107
News Internal 1000

train Science ASPEC 2.63M

dev  Science ASPEC 1790

En-Ja test Science ASPEC 1812
Query  Internal 4999

News  WMT20 993

Zh-En train News WMTI8 18.7M
dev News WMTI18 2001

Table 1: Domain, Provenance (Prov.), and the number
of sentence pairs (#Sent) in the training, development,
and test data for Zh-Ja, En-Ja, and Zh-En.

world. Instead, we test our model in a more realis-
tic scenario where only a single source sentence for
each test instance is provided. We experiment with
two inference modes: 1) single-source inference
where we provide our model with only a single
source sentence during inference. 2) bi-source in-
ference where we first augment the source sentence
by translating it into an auxiliary language using
the NMT model M s_, 4 and then use our bi-source
model to generate the target translation given the
original and auxiliary source sentences.

3 Experiments

3.1 Data

We evaluate our approach on two translation tasks,
including Chinese/English—Japanese (Zh/En—Ja)
and a large-scale En—X task that translates from
English to 10 languages, including French (Fr),
Czech (Cs), German (De), Finnish (Fi), Lat-
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Train Size Test
Fr-En 10.00M newstestl3
Cs-En 10.00M newstest16
De-En 4.60M newstestl6
Fi-En 4.80M newstestl6
Lv-En 1.40M newsdevl7
Et-En 0.70M newsdev18
Ro-En 0.50M newsdevl6
Hi-En 0.26M newsdev14
Tr-En 0.18M newstestl6
Gu-En 0.08M newsdevl9

Table 2: Number of sentence pairs in the training data
and the test set for each language pair.

vian (Lv), Estonian (Et), Romanian (Ro),
Hindi (Hi), Turkish (Tr), and Gujarati (Gu).

Zh/En—Ja We set the source and auxiliary lan-
guage sets S = A = {Zh,En}, and the target
language set 7 = {Ja}. The training data con-
sists of 0.67M sentence pairs for Japanese-Chinese
and 3.0M sentence pairs for Japanese-English from
ASPEC corpus (Nakazawa et al., 2016). We use
the provided development set and test the models
on both in-domain test set from ASPEC and out-
of-domain test sets as shown in Table 1. To train
the Chinese—English translation model for data
augmentation, we use the training corpora (21.2M)
from WMT18 (Bojar et al., 2018), newstest2017 as
development set, and newstest2018 as test set.

En—X We set the source language set S =
{En}, the auxiliary and target language sets A =
T = {Fr,Cs,De, Fi,Lv, Et,Ro, Hi, Tr, Gu}. The
training data are from the WMT corpus (Bojar
etal., 2013, 2014, 2016, 2017, 2018; Barrault et al.,
2019).3 We use all the available parallel data except
for the WikiTitles released by WMT19. For French
and Czech, we randomly sample 10M sentence
pairs from the full data.

3.2 Preprocessing

Zh/En—Ja We tokenize the English sentences
using Moses (Koehn et al., 2007) and segment

*Data can be downloaded from http://www.
statmt.org/wmtl3/translation-task.html,
http://statmt.org/wmtl4/translation-task.
html, http://www.statmt.org/wmt16/
translation-task.html, http://www.statmt.
org/wmtl7/translation-task.html, http:
//www.statmt.org/wmt1l8/translation-task.
html, and http://www.statmt.org/wmtl19/
translation-task.html

Chinese and Japanese sentences using Jieba* and
MeCab’ respectively. We remove duplicated sen-
tence pairs from the training corpora, filter them
using langid®, and filter out sentence pairs whose
length ratio exceeds 2.0 using clean-corpus-n.perl’ .
We apply byte-pair encoding (Sennrich et al.,
2016b) to each language separately with 16K merg-
ing operations. Table 1 shows the number of sen-
tence pairs after preprocessing.

En—X We follow the preprocessing steps in
Wang et al. (2020): we remove duplicated sen-
tence pairs and the pairs with the same source and
target sequences from the training corpora and then
tokenize all data using SentencePiece (Kudo and
Richardson, 2018) with a shared vocabulary size
of 64K tokens. Table 2 shows the training data
size after preprocessing and the test set for each
language pair.

3.3 Training

We use the Transformer models (Vaswani et al.,
2017) implemented in fairseq.®

Zh/En—Ja We use the Transformer base
architecture with dpoder = 512, dhidden =
2048, Theads — 8, Nlayers = 6, and Pdropout = 0.1.
We apply label smoothing of 0.1. We adopt Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.0005, batch size of 48,000 tokens,
and 4,000 warm-up updates for maximum 500,000
steps or 50 epochs. We select the best checkpoint
based on validation perplexity. During inference,
we use beam search with a beam size of 8 and
length penalty of 1.0.

En—X We use the Transformer big model
with dmodel = 1024, dhidden = 4096, Nheads =
16, niayers = 6, and paropour = 0.1. We adopt the
same optimization strategy as Zh/En—Ja except
for a larger batch size of 524,288. We train all mod-
els for 8 epochs and average the model parameters
over the last 5 epochs (see the Appendix for more
details). During inference, we use beam search
with a beam size of 5 and length penalty of 1.0.

‘https://github.com/fxsjy/jieba
Shttp://taku910.github.io/mecab
®https://github.com/saffsd/langid.py
"https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
training/clean-corpus—n.perl
$https://github.com/pytorch/fairseq
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Zh—Ja En—Ja

Inference | Science News Avg | Science Query News Avg
Bilingual baseline - 46.6  18.7 32.6 43.1 12.1 9.2 215
Multilingual baseline - 47.6 20.6 34.1 42.7 13.3 9.8 21.9
Multilingual + pseudo - 47.5 20.1 33.8 423 13.8 9.2 218
Multilingual + pivot - 20.5 7.7 14.1 194 10.8 6.7 123
Ours (multi-enc) single 47.6  20.5 34.1 42.3 13.0 8.4 21.2
Ours (single-enc) single 48.0 20.1 34.1 42.6 145 101 224
Ours (multi-enc) bi-source 47.8 209 345 42.8 14.5 10.6 226
Ours (single-enc) bi-source 48.1 20.8 344 42.7 151 10.6 22.8

Table 3: BLEU scores on Zh/En—Ja translation task. We compare our models in the single-source and bi-source
inference modes. We boldface the highest scores and underline their ties based on paired bootstrap with p <
0.05 (Clark et al., 2011). Our model with bi-source inference significantly outperforms both the Multilingual
baseline and Multilingual + pseudo on En—Ja, and achieves on par performance on Zh—Ja.

3.4 Baselines and Evaluation

We compare our method against the following base-
lines: 1) Bilingual baseline: NMT model trained
on each language pair separately. 2) Multilingual
baseline: multilingual NMT model trained on Zh-
Ja and En-Ja data for Zh/En—Ja, and all English-
centric data for En—X. 3) Multilingual + pseudo:
multilingual NMT model trained on the concatena-
tion of the original parallel data { (z'*,y'*)} and
pseudo data { (&', y'*) }. 4) Multilingual + pivot:
multilingual NMT model with pivot decoding (by
first translating the source to the auxiliary language
and then translating from the auxiliary to the target
language). For all multilingual models, we add
the target language tag and temperature-based
sampling (Aharoni et al., 2019) with tempera-
ture 7 = 5. We evaluate translation quality using
sacreBLEU (Post, 2018).° For Japanese, we use
MeCab tokenizer before computing BLEU.

3.5 Zh/En— Ja Results

As shown in Table 3, Multilingual baseline out-
performs Bilingual baseline by 0.4—1.5 BLEU on
average, while Multilingual + pivot underperforms
Bilingual baseline, as it is prone to translation
errors in the pivot sentence. Multilingual + pseudo
fails to bring further improvements over Multi-
lingual baseline in either direction: it improves
BLEU by 0.5 on En—Ja query test set but degrades
performance on science and news test sets.

By contrast, our single-encoder bi-source model
using single-source inference significantly outper-
forms Multilingual baseline by 1.2 BLEU and Mul-

Version: BLEU+case.mixed+numrefs. 1 +smooth.exp+
tok.13a+version.1.4.3

tilingual + pseudo by 0.7 BLEU on En—Ja query
test set, with on par performance on other test
sets.!? The multi-encoder variant achieves com-
petitive performance to the single-encoder model
on Zh—Ja but obtains significantly lower BLEU on
En—Ja. Using bi-source inference with our single-
encoder model further improves BLEU by 0.3-0.4
over single-source inference. It significantly outper-
forms Multilingual baseline by 0.8—1.8 BLEU on
En—Ja query and news (out-of-domain) test sets,
while achieving on par performance on Zh—Ja and
En—Ja science (in-domain) test set. This is prob-
ably because English and Japanese are more dis-
tant, thus adding a high-quality synthetic Chinese
source sentence helps translate the domain-specific
English words and phrases that are infrequent in
the training data.

To better understand the improvements in BLEU,
we conduct the following analysis:

Our model improves accuracy on low-
frequency words. We compute the target word
F1 binned by frequency in the training data (Neu-
big et al., 2019) on the three out-of-domain test sets.
As shown in Figure 3, on En—Ja where our model
obtains the largest BLEU improvements, the largest
improvements over the baseline models are on low-
frequency words — in the news domain, the largest
improvements are on words with frequency be-
tween 10 and 50, while in the query domain, it im-
proves more on words with frequency between 50
and 100. It also improves F1 on rare words with
frequency below 10, but not as much as for words
with frequency above 10. In addition, bi-source

10All mentions of significance are based on the paired boot-
strap test (Clark et al., 2011) with p < 0.05.
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Figure 3: Target word F1 score binned by word fre-
quency in training data on En—Ja. Our model im-
proves the most over multilingual baselines on low-
frequency words.
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[SEP] 4
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Figure 4: Visualizing the encoder-decoder attention
weights (averaged over all attention heads) of the
single-encoder bi-source model for an example from
the Zh—Ja news test set. Our model learns the align-
ments between words in the source and auxiliary sen-
tences.

inference improves over single-source inference
more on low-frequency words on En—Ja news set.
On Zh—Ja news set, the largest gain is on medium-
frequency words (Figure in the Appendix).

Our model learns the alignments between
source and auxiliary tokens. We examine the
encoder-decoder attention weights of our single-
encoder bi-source model. Figure 4 shows a typical
example from the Zh—Ja news test set. At each
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Target Language

Figure 5: BLEU improvements of bi-source inference
using different auxiliary languages over single-source
inference on En—X translation task.

target position, the model simultaneously attends
to the source and auxiliary tokens that are semanti-
cally correlated. For example, when predicting the
word “7' 1 ¥ = Z I (project), the model attends
both the English word “project” and the Chinese
word “Tji H” (project).

3.6 En—X Results

3.6.1 Single-Source Inference

Table 4 shows that the Multilingual baseline out-
performs the Bilingual baseline by 2.0 BLEU on
average. Consistent with Zh/En—Ja results, Mul-
tilingual + pivot underperforms the Multilingual
baseline by 10.8 BLEU on average. Our bi-source
model with single-source inference further im-
proves over both Multilingual baseline and Mul-
tilingual + pseudo on all language pairs. For our
model, we only report the BLEU scores for the
single-encoder bi-source model, as it yields higher
BLEU than the multi-encoder model on Zh/En—Ja
translation task.

On the high-resource languages (Fr, Cs, De, Fi,
and Lv), simply adding pseudo training data de-
grades BLEU, while our model improves over the
Multilingual baseline by 0.7-1.3 BLEU. On the
low-resource languages (Et, Ro, Hi, Tr, and Gu),
Multilingual + pseudo outperforms the Multilin-
gual baseline by 0.7 BLEU on average, while our
bi-source model further improves over Multilingual
+ pseudo by 0.9-1.4 BLEU. On average, our model
outperforms both Multilingual baseline and Mul-
tilingual + pseudo by 1.4 BLEU. We will show
in Section 3.6.2 that our model trained on the bi-
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| Fr  Cs De Lv. Bt Ro Hi Tr Gu]l Avg
Bilingual baseline 31.8 258 338 20.6 223 139 252 112 125 7.8 20.5
Multilingual baseline | 31.1 253 339 214 247 19.1 283 11.3 17.1 12.6 | 22.5
Multilingual + pseudo | 30.8 24.7 33.0 20.7 243 194 283 130 179 134|225
Ours (single-source) 31.8 265 347 221 260 204 295 142 188 14.8 | 239
Ours (bi-source) 316 265 353 223 265 21.1 29.1 153 192 174 | 244

Table 4: BLEU scores of the baseline models and our model with single-source and bi-source inference on En—X
translation task. We boldface the top scores. For bi-source inference, we report the average BLEU over the choices

of the auxiliary language (excluding the target language).

‘ Fr Cs De Fi Lv Et Ro Hi Tr  Gu | Avg
QOur single-source w/omask | 31.8 265 347 221 260 204 295 142 18.8 14.8 | 239
mask 5% source 55 56 75 59 50 48 -58 -30 -57 -1.8] -5.1
mask 10% source -10.8 -11.5 -13.7 -11.3 -10.7 96 -102 -7.0 -95 -43]| -99
Our bi-source w/o mask 31,6 265 353 223 265 21.1 29.1 153 192 174 | 244
mask 5% source 5.1 46 74 54 43 47 54 27 49 23| -47
mask 10% source 99 92 -134 97 99 -89 96 -60 -86 -56]| -9.0

Table 5: BLEU scores of our model with single-source and bi-source inference on En—X translation task, and
BLEU degradation when 5% and 10% of the source words are masked randomly at inference time.

source objective (Eq.4) learns more aligned rep-
resentations across languages, which explains its
superiority over the multilingual baselines even
with single-source inference.

3.6.2 Bi-Source Inference

As shown in Table 4, adding an auxiliary source
sentence improves BLEU over single-source in-
ference on most target languages except French,
Czech, and Romanian.!! It achieves an average
improvement of +0.5 BLEU over single-source in-
ference and outperforms the multilingual baselines
by +1.9 BLEU on average and up to +4.0 BLEU
on low-resource languages like Gujarati.

Figure 5 shows the BLEU improvements from
adding different auxiliary languages over single-
source inference. The choice of the auxiliary lan-
guage has little impact on the BLEU improve-
ment. To explain this phenomena, we conduct the
following analysis to verify that the performance
boosts are due to the additional source informa-
tion provided by the auxiliary sentence. We com-
pare single-source and bi-source inference on syn-
thetic noisy test sets: we randomly mask 7% of
the source words in each test set (7 € {5,10}).
As show in Table 5, when using single-source in-
ference, BLEU drops by -5.1 and -9.9 after mask-

""We use the same model in single-source inference mode
to generate the auxiliary sentences.

ing 5% and 10% of the source words, respectively.
With the help of the auxiliary language, the drop in
BLEU becomes smaller: the drop is reduced by 0.4
and 0.9 when 5% and 10% of the source words are
masked, respectively. These results indicate that
our model can effectively leverage the comple-
mentary information provided by the auxiliary
sentence which remedies the missing source in-
formation. Furthermore, results suggest that the
cross-lingual representations in our model are well-
aligned which enables it to combine the informa-
tion from both the source and auxiliary sentences.
This also explains why the choice of the auxiliary
language has little impact on BLEU — as the repre-
sentations of the auxiliary sentences from different
languages are close in the hidden space, they could
complement the source context similarly.

Typological Analysis To better understand
which target language benefits the most from bi-
source inference, we compute the Spearman’s cor-
relation between the average BLEU improvement
on each target language and various types of fea-
tures including 1) the training data size for each
language pair, and 2) the linguistic distances be-
tween the source (English) and the target languages
measured by the geographic distance, genetic dis-
tance based on the world language family tree, syn-
tactic distance, and phonological distance from
URIEL Typological Database (Littell et al., 2017).
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‘ Model ‘ Coverage
Multilingual baseline 56.05
En—Cs | Ours (single-source) 56.27
Ours (bi-source) 56.96
Multilingual baseline 57.21
En—De | Ours (single-source) 60.44
Ours (bi-source) 60.61

Table 6: Average coverage scores of our model with
single-source and bi-source inference and the multilin-
gual baseline on MuCoW.

Results show that the geographic distance corre-
lates the best with the BLEU improvement with
a correlation score of 0.74, which suggests that
more distant language pairs benefit more from the
auxiliary source sentences. In addition, the BLEU
improvement correlates negatively with the training
data size with a correlation score of -0.57, which
suggests that lower-resource language pairs obtain
a larger gain from bi-source inference. The ge-
netic, syntactic, and phonological distances do not
correlate well with the BLEU improvement.'?

Word Sense Disambiguation To test if bi-
source inference helps disambiguate word senses,
we compare our En—X model with single-source
and bi-source inference with the Multilingual base-
line on the MuCoW test suite (Raganato et al.,
2019), a word sense disambiguation test suite. Ta-
ble 6 shows that our model with bi-source inference
achieves higher coverage scores over its counter-
part with single-source inference and Multilingual
baseline on both En—Cs and En—De. This con-
firms our hypothesis that adding an auxiliary lan-
guage input during inference helps disambiguate
word senses.

4 Related Work

Since the recent success of the end-to-end NMT
models (Sutskever et al., 2014; Bahdanau et al.,
2015), multilingual NMT has become a promis-
ing research direction. Dong et al. (2015) propose
to perform one-to-many translation using a dedi-
cated decoder for each target language. Firat et al.
(2016a) further extend it to support many-to-many
translation using language-specific encoders and
decoders with a shared attention module. Ha et al.
(2016) and Johnson et al. (2017) show that train-

12We assume that the correlation is weak if the absolute
correlation score is below 0.4.

ing a shared encoder-decoder model for many-to-
many translation allows translation between unseen
language pairs. More advanced techniques to fur-
ther improve the translation quality include opti-
mizing the parameter sharing strategies (Gu et al.,
2018; Sachan and Neubig, 2018) and multi-stage
fine-tuning to better improve low-resource transla-
tion (Dabre et al., 2019). Although we only focus
on improving the overall translation quality of a
shared multilingual NMT model in this paper, our
approach can also be combined with the aforemen-
tioned techniques to build better language-specific
NMT models via fine-tuning, which we will ex-
plore in future work.

Orthogonal to these techniques, multi-source
translation (Och and Ney, 2001; Zoph and Knight,
2016; Garmash and Monz, 2016) has been shown
to improve translation quality by exploiting the
source sentences manually translated into multiple
languages. Most studies assume access to multi-
source inputs during both training and inference.
Choi et al. (2018) and Nishimura et al. (2018) in-
troduce data augmentation methods to fill in the
missing source in the training data. Firat et al.
(2016b) explore translating the source into a pivot
language and feeding both the original source and
pivot sentences to a multilingual model to improve
zero-resource translation. However, the pivot sen-
tence is added only at inference time, thus the ap-
proach is better suited to the zero-resource setting.
More recently, Taitelbaum et al. (2019) shows that
translating the source word to auxiliary languages
improves word translation.

Our work is also related to multi-task learning
for machine translation. Tu et al. (2017) propose
multi-task learning with an auxiliary reconstruction
objective that reconstructs the source sentence
from decoder hidden states. Niu et al. (2019)
further show that adding a reconstruction objective
by back-translating the target sentences to the
source helps low-resource translation. Zhou
et al. (2019) propose multi-task training with a
denoising objective to improve the robustness
of NMT models. Wang et al. (2020) show that
multi-task learning with two additional denoising
tasks on the monolingual data can effectively
improve translation quality. Our training strategy
can also be viewed as multi-task learning as we
train our multilingual model on single-source and
bi-source inputs jointly.
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5 Conclusion

We introduced a novel bi-source multilingual trans-
lation model that exploits an additional source in-
put from an auxiliary language to improve trans-
lation quality. Our model can flexibly perform
single-source and bi-source inference, in which
it takes both the original source and a synthetic
source sentence from an auxiliary language as in-
puts. Experiments show that our method is simple
yet effective — it improves the translation quality of
multilingual models substantially, with the largest
improvements on low-resource or distant language
pairs. Further analysis indicates that adding an
auxiliary language input during inference helps the
model disambiguate source words. This work also
sheds new light on multilingual NMT training, as
our multi-source training strategy brings substantial
improvements over the multilingual baseline with-
out adding any auxiliary inputs at inference time.
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A Model and Training Details

Table 7 shows the total number of parameters for
each model. For the Zh/En—Ja task, training each
model takes 36 hours on 4 NVIDIA Tesla P40
GPUs for hours. For the En—X task, training each
model takes around 72 hours on 8 V100 GPUs.

Model Size (M)
Zh/En—Ja
Bilingual baseline 60.9
Multilingual baseline 69.1
Multilingual + pseudo 69.1
Ours (multi-enc) 69.1
Ours (single-enc) 69.1
En—X
Bilingual baseline 9.6/241.9
Multilingual baseline 241.9
Multilingual + pseudo 241.9
Ours (single-enc) 241.9

Table 7: Model sizes (M) for Zh/En—Ja and En—X
tasks. For the bilingual baseline on En—X, we report
the model sizes for the low-resource (Tr, Hi, and Gu)
and high-resource languages (Fr, Cs, De, Fi, Lv, Et,
Ro), separately.
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Figure 6: Target word F1 score binned by word fre-
quency in training data on Zh—Ja.
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