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Abstract

While large-scale pretrained language mod-
els have been shown to learn effective lin-
guistic representations for many NLP tasks,
there remain many real-world contextual as-
pects of language that current approaches do
not capture. For instance, consider a cloze-
test “I enjoyed the game this weekend”:
the correct answer depends heavily on where
the speaker is from, when the utterance oc-
curred, and the speaker’s broader social milieu
and preferences. Although language depends
heavily on the geographical, temporal, and
other social contexts of the speaker, these ele-
ments have not been incorporated into modern
transformer-based language models. We pro-
pose a simple but effective approach to incor-
porate speaker social context into the learned
representations of large-scale language mod-
els. Our method first learns dense represen-
tations of social contexts using graph repre-
sentation learning algorithms and then primes
language model pretraining with these social
context representations. We evaluate our ap-
proach on geographically-sensitive language-
modeling tasks and show a substantial im-
provement (more than 100% relative lift on
MRR) compared to baselines1.

1 Introduction

Language models are at the very heart of many
modern NLP systems and applications (Young
et al., 2018). Representations derived from large-
scale language models are used widely in many
downstream NLP models (Peters et al., 2018; De-
vlin et al., 2019). However, an implicit assumption
made in most modern NLP systems (including lan-
guage models) is that language is independent of
extra-linguistic context such as speaker/author iden-
tity and their social setting. While this simplifying
assumption has undoubtedly encouraged remark-

1Code is available at https://github.com/
twitter-research/lmsoc.

able progress in modeling language, there is over-
whelming evidence in socio-linguistics that lan-
guage understanding is influenced by the social con-
text in which language is grounded (Nguyen et al.,
2016; Hovy, 2018; Mishra et al., 2018; Garten et al.,
2019; Flek, 2020; Bender and Koller, 2020). In
fact, language use on social media where every
utterance is grounded in a specific social context
(like time, geography, social groups, communities)
reinforces this often ignored aspect of language.
When NLP applications ignore this social context,
they may perform sub-optimally underscoring the
need for a richer integration of social contexts into
NLP models (Pavalanathan et al., 2015; Lynn et al.,
2017; Zamani et al., 2018; Lynn et al., 2019; May
et al., 2019; Kurita et al., 2019; Welch et al., 2020a;
Hovy and Yang, 2021).

Prior attempts to better leverage the social con-
text surrounding language while learning language
representations have mostly focused on learning so-
cial context dependent word embeddings and have
been primarily used to characterize language vari-
ation across many dimensions (time, geography,
and demographics). These methods learn word em-
beddings for each specific social context and can
capture how word meanings vary across these di-
mensions (Bamman et al., 2014; Kulkarni et al.,
2015; Hamilton et al., 2016; Welch et al., 2020a,b).
However, word embedding based approaches in
general suffer from two fundamental limitations:
(a) word embeddings are not linguistically contex-
tualized as noted by Peters et al. (2018) (b) word
embedding learning is transductive – they can only
generate embeddings for words observed during
training and usually assume a finite word vocabu-
lary and a set of social contexts all of which need
to be seen during training. Recent approaches have
addressed the first limitation by learning word rep-
resentations that are contextualized by their token-
specific usage context (Peters et al., 2018; Devlin
et al., 2019; Liu et al., 2019; Yang et al., 2019b,a).

https://github.com/twitter-research/lmsoc
https://github.com/twitter-research/lmsoc
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Figure 1: Overview of LMSOC which has two com-
ponents: a social context encoder (SCE) and a BERT
based encoder for socially sensitive pre-training (SSP).

The second limitation has been addressed by Word-
Piece tokenization methods (Schuster and Naka-
jima, 2012; Devlin et al., 2019; Liu et al., 2019).
While these approaches have successfully captured
linguistic context, they still do not capture social
context in language representations.2 “How can
we learn linguistically contextualized and socially
contextualized language representations?” is the
question we seek to answer in this paper.

We propose LMSOC to (a) learn representations
of tokens that are both linguistically contextualized
and socially sensitive and (b) enable the language
model to inductively generate representations for
language grounded in social contexts it has never
observed during the language model pre-training
process. As an example, our model can enable NLP
systems to associate the right entity being referred
to based on the broader user/social context in which
an utterance like “Our Prime Minister visited the
UK last week.” is grounded.

2 Model

LMSOC has two components (a) SCE – a social
context encoder and (b) SSP – a standard BERT

encoder altered to condition on the output of (a)
(see Figure 1).

Social Context Encoder (SCE) This compo-
nent implements a function f that maps a social
context (like year, or location) to a d-dimensional

2Upon acceptance of this publication, we became aware
of independent parallel work Hofmann et al. (2021) which
attempts to learn word embeddings that are dynamic (depends
on time etc.) and contextualized. In particular, Hofmann et al.
(2021) change the architecture of BERT to replace the type-
based word embedding lookup layer with an additive word
embedding layer that adds temporal context dependent offset
embeddings (that are learn-able) to the type-based embed-
dings. The full model is then trained with task-specific loss
functions. In contrast, we introduce no new trainable param-
eters in our language model component, do not focus on the
word embeddings themselves but on primarily enabling large
scale language models to leverage social contexts of grounded
language.

embedding where similar social contexts are closer
in this vector space than less similar ones. The
specific method used to implement f depends on
the social context being modeled. Domain experts
can choose to implement f based on their expertise
because the pre-trainer component is agnostic to
how f is implemented. One way of implementing
f is to encode the social contexts as a similarity
network and use any graph representation learn-
ing algorithm to embed the nodes of this network
in Rd. Here, we use NODE2VEC (Grover et al.,
2016) as an expedient choice due to its simplicity
and ease of training. Using this approach we show
how to model commonly used social contexts like
time and geographic location which we note fall
under the CONTEXT category of the taxonomy of
social factors outlined in (Hovy and Yang, 2021) –
a category that they observe can be quite challeng-
ing for NLP models to incorporate because of their
overwhelmingly extra-linguistic nature. While in
this work, we focus on just time and location, our
method can also generalize to other social contexts
(see Appendix B).

Socially Sensitive Pretraining (SSP) The sec-
ond component is identical to a BERT encoder (De-
vlin et al., 2019) with a few modifications. First,
the social context representation obtained from the
social context encoder is also incorporated to influ-
ence the representations of language learned when
pre-training on the standard masked language mod-
eling task. Specifically, let the sequence of input
text tokens be T = 〈w1, w2, w3, · · ·wn〉 and the
associated social context be SC ∈ Rd. Note that
standard BERT in its initial layers maps T to a
sequence of word piece embeddings denoted by
Q = 〈Φ(q1), · · ·Φ(qn)〉,Φ(qi) ∈ Rd which are
then transformed by higher layers. To incorporate
the associated social context, we simply append SC
to Q to yield Qsoc = 〈Φ(q1), · · ·Φ(qn),SC〉which
is then input to higher layers of BERT3. Second,
we freeze SC during training. These modifications
enable further layers to attend to the social context
and thus condition token representations on the so-
cial context in addition to the linguistic context. It
is important to note the following: (a) Because the
language model learns from a social context em-
bedding, the language model can inductively yield
representations of language grounded in social con-

3We assume that the total length (including social context
embedding) does not exceed the maximum length BERT’s
architecture can handle.
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texts that it has never observed in training. (b) No
new trainable parameters are introduced in the lan-
guage model component. This simple pre-training
method thus learns representations of language that
are contextualized both linguistically and socially.

3 Evaluation

Baseline Methods. We evaluate the performance
of LMSOC against two baseline methods: (a) BERT

(Devlin et al., 2019) which does not explicitly in-
corporate social context and (b) LMCTRL (Keskar
et al., 2019) – a very simple approach to incorporate
social context into language models without alter-
ing the architecture of the language model itself.
The key idea is to assign each social context a fixed
code (a control code) 4 which is appended to the in-
put text. This approach has been shown to be useful
for generating text conditioned on genre/domains
(Keskar et al., 2019). We adapt their approach but
use BERT instead. While LMCTRL requires no
change to the model architecture and conditions on
the social context, this method cannot generalize to
social contexts not seen during training (which we
demonstrate empirically as well). Supporting new
social contexts requires the model to be retrained.

3.1 Evaluation on Synthetic Data
We demonstrate the efficacy of LMSOC on a cloze-
test language modeling task using a synthetic cor-
pus. This approach enables us to evaluate models
in a very controlled setting, characterize their be-
havior, and demonstrate our method’s face validity.

Setup. We consider a cloze-test language mod-
eling task where the correct answer depends on
the time (year) in which the sentence is grounded.
Noting that references to political positions in an
utterance depend on the time period in which the
utterance is grounded, we construct a synthetic
corpus from two template sentences - (a) The pres-
ident is [Name of President] and (b) The minis-
ter is [Name of minister] where each sentence is
grounded in time. Sentences grounded in year t
have the corresponding entity placeholder replaced
with the name of the president (or minister) active
in that specific year with active presidents/ministers
changing every 5 years. Our training data consists
of 1000 instances of each template sentence for
each time point between the years 1900 and 2000
in steps of 5 years.

4A control code is a distinctive name or number sequence.
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Figure 2: Performance of models on the synthetic
data set as measured in terms of mean reciprocal rank
(MRR, higher is better). See Section 3.1 for details.

We evaluate all models on their ability to predict
the correct token replacing the masked token on test
inputs of the template (“The [president/minister]
of our country is [MASK]”, year), where we vary
the year in which the sentence is grounded from
1900 to 2000. In particular, we report the mean
reciprocal rank (MRR) of the correct token over the
test set. Note that this evaluation setting enables
us to evaluate the performance of our model on
social contexts not seen in training since the set of
social contexts in evaluation is a super-set of those
seen in training. To do well on this task, models
need to leverage both the linguistic and the social
context. Only using one or the other will result in
sub-optimal performance5.

To embed years, we use NODE2VEC (Grover
et al., 2016) on a simple linear chain graph where
year y is connected to y − 1 and y + 1.

Results. We present results for three settings in
Figure 2: (a) Seen – evaluation on held out test sen-
tences but grounded in social contexts seen during
training (b) Unseen – evaluation on held out test
sentences but grounded in social contexts unseen
during training (c) Overall – combining both (a)
and (b). First, note that BERT performs poorly in
all settings as expected since it does not leverage
the social context grounding the sentence. Next,
observe that LMCTRL obtains perfect scores on
the seen setting and significantly improves over
the baseline overall. This is because LMCTRL is
able to condition on the social context. However it
performs poorly when encountering unseen social
contexts. This observation confirms that LMCTRL

is able to learn representations that are dependent
5Notice that we also control for length of training sen-

tences across social contexts in our controlled experiment
since length could be a potential confounder.
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Model Task
STATES NFL

MRR ↑ (95% CI) Mean Rank ↓ (95% CI) MRR ↑ (95 % CI) Mean Rank ↓ (95% CI)
BERT 0.28 (0.20, 0.36) 5.6 (4.17, 7.02) 0.03 (0.02, 0.04) 59.8 (47.1, 72.6)
LMCTRL 0.41 (0.30, 0.51) 9.8 (4.34, 15.29) 0.03 (0.02, 0.04) 86.8 (61.38, 112.2)
LMSOC 0.78 (0.68,0.89) 2.3 (0.72,3.89) 0.15 (0.12,0.19) 10.64 (6.66,14.62)

Table 1: Overall performance of models on the STATES and NFL tasks using real world language data (including
both seen and held-out social contexts) in terms of mean reciprocal rank (MRR, higher is better) and mean rank
(lower is better). Our model LMSOC outperforms all baselines significantly. See Section 3.2.1 for more evaluation
details.

Input Sentence Social Context Top 10 predicted tokens

I reside in the state of [MASK] San Diego california, ca, texas, mexico
I reside in the state of [MASK] Dallas texas, houston, mexico, california, tx
I reside in the state of [MASK] Tampa florida, georgia, fl, texas, jacksonville
The most popular nfl team in our state is [MASK] San Diego . the 49ers seattle patriots
The most popular nfl team in our state is [MASK] Austin . alabama the . . . michigan florida atlanta

texans houston

Table 2: Top predictions of LMSOC on sample instances grounded in unseen social contexts (expected tokens are
underlined).

on social context, but requires all social contexts
to be observed in training. Finally, our method
LMSOC significantly outperforms these baseline
models in all settings, especially when evaluated
on social contexts that are held out confirming the
face validity of our model and suggests that our ap-
proach is effective at yielding representations that
are both linguistically and socially contextualized.

3.2 Evaluation on Real World Data
Here, we consider evaluating our model on real

world language data. In the absence of standard
benchmarks where predictions need to be condi-
tioned on the broader social context, we consider
the proxy task of geographically informed language
modeling. Noting that correct answers to “My
hometown is [MASK]” or “We live in the state
of [MASK]” all depend on the geographical context
that the utterance is grounded in, we consider a
cloze language modeling evaluation comprising of
three tasks (a) STATES: Recovering the geograph-
ical state that the author is likely referring to in
an autobiographical sentence (b) NFL: Recover-
ing the popular NFL (National Football League)
teams that the author is most likely referring to in
an utterance and (c) CLOSECITY: We evaluate
the model’s ability to align its predictions with ge-
ographical proximity between places. Note that
the model has not been explicitly trained on these
tasks.

Data and Setup. To construct our training data,
we obtain a random sample of 10 million English

tweets grounded in 10 major US cities (each from a
different state) as determined by the users’ current
location6. The social context associated with each
tweet is this location.

3.2.1 STATES and NFL Tasks
We evaluate our models on their performance at
retrieving the correct entity for the two tasks using
MRR of the expected answer in the model pre-
dictions. In both tasks, the test utterance may be
grounded on a held out set of cities. For example,
if the model was trained on tweets from Buffalo
and San Francisco, then we may evaluate the model
on its ability to predict the state being most likely
referred to in the test sentence “I reside in the state
of [MASK]”. The correct answer is “New York” if
the input is grounded in Rochester and “California”
if grounded in San Jose. In particular, we ground
the input test sentence to one of the top 50 cities
in the US by population. On the STATES task we
use the test sentence “We/I reside in the state of
[MASK]” whereas for the NFL task we use “The
most popular NFL team in my state is [MASK].”7

Finally, to embed cities we first construct a near-
est neighbor graph (k = 5) of cities based on
pairwise geodesic distance computed using their
geodesic co-ordinates and then embed the cities
using NODE2VEC on the constructed graph (see
Appendix B for more details).

6The list of cities is available in the appendix.
7We obtained similar results for paraphrasings of these

sentences.
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3.2.2 CLOSECITY task
To further evaluate the ability of the model to
encode and leverage geographical proximity be-
tween places, we consider a task where we ask the
model to predict plausible cities for the masked
token in the following prompt: “I drive to the
city of [MASK] for work.”, where the utterance
is grounded in a particular location akin to the
STATES and NFL tasks. However, since there
is no established ground truth for this task, we
measure the geographical distance between the top
predicted city/town of the model, and the input
city (social context). Models that predict near-by
cities or towns are better than models that predict
far-away cities since one is more likely to drive to
near-by cities for work than very far-away ones8.
Note that to ensure non-triviality, we exclude the
input city as a valid candidate (or answer). Also, it
is important to note that (a) the model is free to pre-
dict any city/town and (b) highly scoring answers
do not necessarily correspond to largest cities in the
input location’s state or even cities in the same state.
For example, if the input social-context is “Buf-
falo, NY”, a model that predicts “Toronto, Canada”
(100 km apart) is better than one that predicts “New
York City, NY” (470 km apart). Aside from these
differences, the rest of the setup is similar to the
STATES and NFL tasks.
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Figure 3: Descriptive statistics of the distances of the
top cities from the input city predicted by various mod-
els on the CLOSECITY task (lower is better). See
Section 3.2.2 for details.

Results. Table 1 shows the results of our evalua-
tion for the STATES and NFL tasks. While mod-
els that leverage social context generally perform
better than BERT on both tasks (as measured by

8If a surface form may link to multiple real-world locations,
we give the models the benefit of doubt and assume they meant
the closer location.

MRR), we also observe that our model LMSOC sig-
nificantly outperforms LMCTRL because LMSOC

generalizes better to social contexts not seen during
training (see Table 2 for sample predictions).

Similar conclusions can be drawn from the re-
sults on the CLOSECITY task as well. Figure 3
shows the summary statistics of the distances of
the top city predicted by various models on the
CLOSECITY task. Note once again, that the me-
dian distance (from the input location) of the cities
predicted by the LMSOC (178 km) model is signif-
icantly lower than BERT (957 km) and LMCTRL

(905 km). Examining the predictions made by LM-
SOC also suggests that LMSOC is able to condition
its predictions so that they align with geographical
proximity better than other models considered. For
example, when the input context is “Pittsburgh” our
model prefers to predict “Columbus (Ohio State)”
which is about 261 km away over other major cities
in the state of Pennsylvania like Philadelphia (489
km) and Allentown (382 km) thus aligning with the
observation that Columbus is closer to Pittsburgh
than Philadelphia and Allentown. Similarly, when
the input context is “Buffalo (NY)”, the model
prefers to predict “Toronto (Canada)” (which is
closer) over other major cities in the state of New
York like Rochester or New York City. In sum-
mary, these results underscore the effectiveness of
LMSOC in incorporating social context.

4 Conclusion

We proposed a method to learn socially sensitive
contextualized representations from large-scale lan-
guage models. Our method embeds social con-
text in continuous space using graph representa-
tion algorithms and proposes a simple but effective
socially sensitive pre-training approach. Our ap-
proach thus enables language models to leverage
correlations between social contexts and thus gener-
alize better to social contexts not observed in train-
ing. More broadly, our method sets the stage for
future research on incorporating new types of social
contexts and enabling NLP systems like personal-
ized predictive typing systems and entity-linking
systems to better accommodate language variation.
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A Data Statement

In this section, as per recommendations outlined
in (Bender and Friedman, 2018), we describe addi-
tional details on the training data set of tweets used
for the tasks described in Section 3.2.

SUMMARY – To construct our training data, we
obtain a random sample of 10 million English
tweets grounded in 10 major US cities.

CURATION RATIONALE – In particular the
tweets that originated from the following 10 major
cities: Los Angeles, Houston, Jacksonville, Buf-
falo, Philadelphia, Chicago, Columbus, Atlanta,
Charlotte, Detroit. The unseen social contexts we
evaluate our models are: San Diego, San Jose, San
Francisco, Fresno, San Antonio, Dallas, Austin,
Fort Worth, Miami, Tampa, Orlando, St. Peters-
burg, Rochester, New York City, Yonkers, Syra-
cuse, Pittsburgh, Allentown, Erie, Reading, Aurora,
Naperville, Joliet, Rockford, Cleveland, Cincin-
nati, Toledo, Akron, Augusta, Columbus (Georgia),
Macon, Savannah, Raleigh, Greensboro, Durham,
Winston-Salem, Grand Rapids, Warren, Sterling
Heights, Ann Arbor.

We use this resource that lists NFL teams
by state here: https://state.1keydata.com/

nfl-teams-by-state.php as a reference for the
team names of NFL teams for various states.

The rationale for this setup was primarily driven
by our aim to evaluate our proposed approach ef-
fectively in the simplest possible setting and ease
of experiment design. In addition, the size of the
data acquired was also influenced by constraints on
compute available for training, and time available
for experimentation.

LANGUAGE VARIETY – The data was collected
using Twitter API around January, 2021. The
tweets were restricted to English only. More fine-
grained information is not available.

SPEAKER DEMOGRAPHIC – Demographic infor-
mation of the users is not available for this data.
One would expect the demographic information to
be similar to the demographics of Twitter users in
the USA around January 2021.

ANNOTATOR DEMOGRAPHIC – Not applicable.
Our raw dataset does not require any human anno-
tations.

TEXT CHARACTERISTICS – In general, tweets
tend to be short, informal text. The maximum
length of a tweet is at-most 280 characters. The
intended audience of a tweet is mostly other Twitter
users.

B Modeling Social Contexts Using
Node2vec

Here, we outline more details on our approach to
modeling social contexts. We reiterate that one
may use any approach to implement social context
encoder as long as it subscribes to the input, output
requirements outlined in Section 2. In our work,
we propose one such approach using graph repre-
sentation learning algorithms. Our approach uses
two steps:

1. Constructs a graph that encodes similarities
between social contexts. This requires exper-
tise and knowledge specific to the social con-
text being modeled.

2. Use a graph representation algorithm to learn
dense embeddings of the nodes in the graph
thus encoding similarities in social context.

As an expedient choice, in our work we use
NODE2VEC (Grover et al., 2016) as the graph rep-
resentation algorithm to embed nodes in the con-
structed graph because of its simplicity and ease of
training. However, one could use more advanced
methods like GRAPHSAGE (Hamilton et al., 2017)
which will also enable inductive learning of social
context embeddings. We now discuss applications
of this approach to embed time, and geographic
locations.

Embedding Time. To embed time as repre-
sented by chronological years, we first need to
encode our intuitive understanding of similarities
in time points (years). In particular, we need to
encode the intuitive notion that 1902 is more simi-
lar to 1901 and 1903 than 1995. Noting that time
advances forward in a linear fashion, a natural way
to model similarity among years is via a simple
path graph. We thus construct a simple path graph
(a linear chain) where year y is connected to y − 1
and y + 1 (the previous year, and the next year
when available). We then use NODE2VEC on this
simple path graph which will then yield a dense
representation of each year.

Embedding Geographic Location. We assume
each geographic location can be represented by its
geographic co-ordinates (latitude, longitude). Intu-
itively, we would like embeddings of locations that
are close to each other geographically to also be
close in embedding space. To encode this intuition,
and construct a graph that encodes this notion, we

https://state.1keydata.com/nfl-teams-by-state.php
https://state.1keydata.com/nfl-teams-by-state.php
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first find a suitable distance measure d that com-
putes the distance between any two geographic
locations given their co-ordinates. The natural dis-
tance measure here is the geodesic distance. Given
this distance measure, we can now construct a di-
rected graph where each location is connected to its
k-closest neighbors which can then be converted to
an undirected graph over which NODE2VEC can be
run.

Finally, the above approach can also be gener-
alized to embed more complicated types of social-
contexts (beyond time, and locations) as long as
one is able to design/engineer a distance mea-
sure D(< c1, c2 >) between any pair of contexts
< c1, c2 >.

C Experimental Settings and
Hyperparameters

Node2Vec Settings. We embed nodes into d =
768 dimensions the same size as that of BERT word
piece embeddings. The walk length and number of
walks is set to 5 and 1000 respectively.

Experimental settings for Evaluation Tasks.
For pre-training language models, we use the stan-
dard parameters for masked language modeling
pre-training defined by HUGGINGFACE transform-
ers (Wolf et al., 2020). For the evaluation task on
synthetic corpus we pre-train all models for 2000
steps (noting that loss converges at this point). For
the evaluation task on real world language data,
we pretrain all of our models for 3 epochs using a
batch size of 64. During training, we set the num-
ber of warm-up steps to 500. For both tasks, we use
the AdamW optimizer with the default initial learn-
ing rate of 0.001 and use a weight decay of 0.01.
The training time on the synthetic corpus and the
real world corpus is around 5 minutes and 16 hours
respectively on 1 V100 GPU with 16GB memory.
Finally a note on evaluation – in the instance when
reference answer is split into multiple tokens, we
accept the highest ranked answer which matches
any of these tokens.

D Code and Data Availability

Code is available at https://github.com/

twitter-research/lmsoc.

https://github.com/twitter-research/lmsoc
https://github.com/twitter-research/lmsoc

