MeLT: Message-Level Transformer with Masked Document
Representations as Pre-Training for Stance Detection

Matthew Matero, Nikita Soni,
Niranjan Balasubramanian, and H. Andrew Schwartz
Department of Computer Science, Stony Brook University

{mmatero, nisoni,

Abstract

Much of natural language processing is focused
on leveraging large capacity language models,
typically trained over single messages with a
task of predicting one or more tokens. However,
modeling human language at higher-levels of
context (i.e., sequences of messages) is under-
explored. In stance detection and other social
media tasks where the goal is to predict an at-
tribute of a message, we have contextual data
that is loosely semantically connected by au-
thorship. Here, we introduce Message-Level
Transformer (MeLT) — a hierarchical message-
encoder pre-trained over Twitter and applied
to the task of stance prediction. We focus
on stance prediction as a task benefiting from
knowing the context of the message (i.e., the
sequence of previous messages). The model
is trained using a variant of masked-language
modeling; where instead of predicting tokens, it
seeks to generate an entire masked (aggregated)
message vector via reconstruction loss. We find
that applying this pre-trained masked message-
level transformer to the downstream task of
stance detection achieves F1 performance of
67%.

1 Introduction

Generated by people, natural language data in-
herently spans multiple levels of analysis, from
individual tokens, to documents (or messages),
and to sequences of messages. While the multi-
level aspect is rarely looked at beyond words-to-
documents, some work has suggested benefits to
modeling language as a hierarchy, such as building
document representations from a collection of its
sentences or a user vector given a history of their
language (Song et al., 2020; Acheampong et al.,
2021; Grail et al., 2021; Matero et al., 2019; Gane-
san et al., 2021).

We consider stance detection, a message-level
task, where the social or personal context in which
the message appears (e.g., such as a person’s pro-
file) has been shown relevant to capturing the stance

niranjan,

has}@cs.stonybrook.edu

of the message (Lynn et al., 2019; Aldayel and
Magdy, 2019). However, such work explicitly inte-
grated user- or social-context into the stance model,
as a separate component. We ask if there is a more
direct integration of user context when processing
a target message. To this end, we process the target
message as a part of the sequence of messages from
the user. This way of using historical language
from a person enables us to both model within mes-
sage information (word-level) and to process the
message within the author context (message-level).

While there have been some models that take ad-
vantage of hierarchy through words and sequences
of messages (Lynn et al., 2020; Yu et al., 2020;
Zhao and Yang, 2020) there has been little work
in providing generic pre-training routines for large
capacity transfer learning style models beyond the
word-level. Instead, many of these hierarchical
models are either applied directly to a downstream
task or, if pre-trained, on an adjacent version of
the downstream task. Being able to pre-train gen-
eral message-level models could enable inclusion
of message-level contextual information that is
not easily obtainable with task-specific training
that is limited in data sizes as compared to larger
unlabeled corpora available for modeling at the
message-level.

In this study, we propose a hierarchical message-
level transformer (MeLT) trained over a novel pre-
training routine of Masked Document Modeling',
where the goal is to encode documents in latent
space using surrounding contextual documents. We
then fine-tune MeLT to a stance detection dataset
derived from Twitter as defined in the SemEval
2016 shared task (Mohammad et al., 2016). Our
contributions include: (1) introduction of a new
pre-training routine for hierarchical message-level
transformers?, (2) demonstration of efficacy of our

'Tn this work a document is a single tweet (referred to as a
message)
2Code: https://github.com/MatthewMatero/MeLT

https://github.com/MatthewMatero/MeLT

pre-training routine for stance detection, and (3)
exploratory analysis comparing model size with
respect to the number of additional message-level
layers and amount of user history leveraged in fine-
tuning.

2 Related Work

Our approach is inspired by the success word-to-
document level transfer learning has had since
popularized by the BERT language model (De-
vlin et al., 2018). Offering the idea of a “contex-
tual embedding" allows models to properly dis-
ambiguate words based on their surrounding con-
text. While other types of language models are also
used, usually autoregressive based such as GPT
and XLNet (Brown et al., 2020; Yang et al., 2019),
many models are variants of the BERT autoencoder
style (Liu et al., 2019; Lan et al., 2019).

Both Zhang et al. (2019) and Liu and Lapata
(2019) use hierarchical encoder models for summa-
rization tasks. While both models encode sentences
using some surrounding context, their pre-training
tasks are still that of text generation rather than
latent modeling. Yu et al. (2020) encode global
context in conversation threads on social media by
generating a history vector (concatenated represen-
tations of each sub-thread) during the fine-tuning
step and Zhao and Yang (2020) propose a capsule
network to aggregate fine-tuned word representa-
tions to perform automatic stance detection.

Stance detection is an ideal task to develop MeLT
because while it is labeled at the message-level, the
stance itself is presumed to be held by the author
with a history of messages. Previous successful ap-
proaches to stance detection have used topic mod-
eling, multi-task modeling via sentiment, multi-
dataset training (Lin et al., 2017; Li and Caragea,
2019; Schiller et al., 2021), or user-level informa-
tion (Lynn et al., 2019; Aldayel and Magdy, 2019).
Our work builds on this by using a pre-trained trans-
former trained to model message representations
in latent space across author histories to encode
global user knowledge into individual messages.

3 Hierarchical Message Modeling

Messages are made up of individual words that
come together to give each other context and mean-
ing. Comparably, a collection of messages can
come together to show topics of conversation. Di-
rectly encoding the interactions of messages and
their underlying words can prove beneficial when

modeling language at the document or person-level.
For example, processing post history of a social me-
dia user within context of their own language.

3.1 Masked-Document Reconstruction

We adapt the masked-language modeling (MLM)
approach popularized by use in the BERT model
to work for masked documents, rather than words.
Namely, we introduce the masked-document model-
ing task, as shown in equation 1, where a message
sequence is ordered by created time within a user’s
history, some messages are selected for masking,
and every message is represented as the average of
their word tokens.

M, = f(Mi_g, ...,maskedy, ..., My i) + € (1)

Here, Mt is the reconstruction of the
masked out message M at step ¢ through
function f using the contextual messages
My gyoeoy My, Myyq, ..., Myyy, with error
represented as €. Loss is calculated, as mean-
squared-error, against the ground-truth label of
the average representation of all words, W;, that
are present in the individual masked message
shown in equations 2 and 3. Thus, making the
task latent space reconstruction where our model
learns to encode messages by rebuilding their local
representation using global context.

Label = avg(Wy, W1, ..., W))

Loss = MSE(M, label) 3)

Our masking strategy follows the same rules as
introduced in BERT. Specifically, a message has a
15% chance of being selected for masking. Once
selected they are then replaced with a message
MASK token (80% chance), left unchanged (10%
chance), or replaced with a random message vector
(10% chance).

3.2 Message-level Transformer (MeLT)

Architecture Description We first select a pre-
trained word-level language model on which we
build MeLT. This allows us to leverage models that
have already shown success in many NLP tasks
rather than training from scratch.

After processing messages at the word-level, we
average all individual word tokens within a mes-
sage into a single message vector to build a se-
quence of message vectors and then select mes-
sages for masking. This process and architecture

Predicted
Masked Vector

Dense Layer

Message-level

Transformer
- . - User-Msg
O ® O Vector
¥ ¥ ¥ Sequence
Avg _Avg | Avg
Word . Word Word
Level Level Level
LM LM LM
ISR K] LI ¥y
NN P — — —| Msg-Word
OO0 @O0 @O Vector
Message” Message Message Sequence

ij+1 ij+2

Figure 1: Pre-training architecture of our MeLT model.
The bottom layer indicates a collection of a user’s indi-
vidual messages being processed by a word-level lan-
guage model. Words within individual messages are
aggregated as averages and then ordered into a sequence
of 768-dimensional message-vectors per user and mask-
ing is performed, represented by a red X. Reconstruction
loss is then calculated with the predicted masked vector.

is highlighted in figure 1, we refer to models us-
ing this setup as a “Message-level Transfomer"
(MeLT). Since the loss calculation as described in
Eq 3 relies on output from the word-level model it-
self, that portion of the model is kept frozen during
pre-training.

We build 2 versions of MeLT, one with 2 hierar-
chical layers (2L) and a 6-layer model (6L). After
the last transformer layer there is a single dense
linear layer which generates the final reconstructed
representation of any masked out messages.

These versions of MeLT are built on top of Distil-
BERT (base) (Sanh et al., 2019) for the following
reasons: (1) it is a smaller model (6 layers) allow-
ing more GPU space for message-level layers and
(2) while being roughly half the size of the origi-
nal BERT it still offers upwards of 95% the perfor-
mance. We also explore an alternate model built-on
top of DistilRoBERTa (base) to compare the utility
of MeLT applied to other word-level models.

Training Instances For training we set the fol-
lowing restrictions for individual users: (1) we set
a max history length of 40 for number of messages
per sequence and (2) for users with more than 40
messages they are chunked and processed as sepa-
rate sequences. Users with fewer than 40 total mes-

Model F1 | Prec | Recall | SemEval F1
MEC 54 67 78 67
(Zarrella, 2016) - - - 687
(Zhao, 2020) - - - 78t
DistilBert 60 60 63 63
DistilBert + Hist | 63 64 65 68
(Lynn, 2019) 66 - - -
MeLT 67 68 67 73

Table 1: Evaluation of various methods applied to
SemEval stance detection. We report both weighted
F1/Prec/Recall and Avg pos/neg F1 as defined in the
original shared task. MFC is a most frequent class base-
line, DistilBert and DistilBert + Hist represent an av-
erage message vector extracted from DistilBERT with
or without concatenation of an average vector repre-
senting user history, respectively. MeLT is our best
performing variant. Bold results are found significant
with p < .05 w.r.t DistilBert + Hist using a paired t-test.
(1) indicates a model trained on the original version of
the SemEval2016 dataset (4,100 total tweets) which we
did not have available due to accounts or messages be-
ing deleted on twitter since release.

sages have message-level PAD tokens appended
to their sequence. However, users that have multi-
ple sequences will not be assigned a PAD token, if
their last sequence falls short of 40 we include the
amount of missing messages from their previous
sequence.

Dataset For pre-training our model we select
users from publicly available tweets that were pre-
viously used for other user-level predictions, such
as demographic prediction or emotion forecast-
ing (Volkova et al., 2013; Matero and Schwartz,
2020). A subset of data is selected as our pre-
training dataset, approximately 10 million tweets
sampled from 6 thousand users, resulting in a
dataset 1.3 GB in size. We use a limited dataset
to highlight the utility of the pre-training routine
itself and not rely on “bigger is better" mindset.

4 Stance Detection with MeLT

We use the stance dataset available from the Se-
mEval 2016 shared task (Mohammad et al., 2016).
This data includes tweets that were annotated either
against, neutral, or favoring of a specific target men-
tioned within the tweet, across 5 distinct targets in
the dataset. However, this data only includes la-
beled tweets from users and not any history, so we
use the extended dataset from Lynn et al. (2019).
During fine-tuning we keep a max history length
of 40 and a temporal ordering within sequence. We

Model Abortion | Atheism | Climate | Clinton | Feminism | All(Avg)
Word-level Pre-train
DistilBert 60 66 70 58 46 60
DistilBert + Hist 64 62 70 64 54 63
Msg-level Pre-train
2. MeLT-rand 56 62 61 47 46 54
6L MeLT-rand 56 62 61 47 46 54
2L MeLT + frz word 58 64 66 54 51 59
2L MeLT + unfrz word 66 67 74 58 59 65
6L MeLT + frz word 62 66 68 60 53 62
6L MeLT + unfrz word 66 66 71 67 63 67

Table 2: Performance analysis on weighted F1 among all our models across each target within the SemEval dataset.
MeLT-rand is our architecture applied directly to the task(no pre-train routine) and frz/unfrz word indicates whether
the underlying word-level model was also updated while fine-tuning. Bold indicates best in column.

model
66 2L MelT
6L MelT

F1 Score

()]
N

61

60

10 20 30 40
History (Num Msg)

Figure 2: Average weighted-F1 performance across our
models when we fine-tune using different amounts of
user history. Both size MeLTs improve when more
history is available, with a plateau occurring on the 2-
layer model.

apply a 2-layer feed-forward neural net with a Sig-
moid activation on top of our MeLT and leave all
message transformer layers unfrozen. Experiments
with both frozen and unfrozen word-level layers are
also explored. The message vector representation
from the top transformer layer of MeLT is used as
input into the fine-tuning layers.

5 Results

We show a comparison of our best MeLT model
against other approaches in table 1. First, we in-
clude a heuristic baseline of most-frequent-class
prediction. Next, we compare against fine-tuning
our word-level model of choice directly to the
downstream task using 2 configurations. The first
is using only the message representation, while the
second is “+ history" where we concatenate it with

Model F1 | Prec | Rec
Word-level Pre-train
DistilRoBERTa 59 55 57

DistilRoBERTa + History | 61 | 68 66

Msg-level Pre-train
2L MeLT DistilRoBERTa | 62 | 69 66
6L MeLT DistilRoBERTa | 64 | 69 69

Table 3: Evaluation of using a different word-level
model for our experiments (DistilRoBERTa). All MeLT
variants are fine-tuned with the word-level model un-
frozen. While we do not see this version outperform the
DistilBERT variant, there are still clear benefits from
using MeLT over just the word-level distil-RoBERTa.
Bold results are found to be significant with p < .05
w.r.t DistilRoBERTa + History.

the average of 40 recent messages. This allows
the model to have a global context within user. We
also include the top participant from the shared task
Zarrella and Marsh (2016) which uses a different
F1 score as defined for the shared task, referred
to here as SemEval FI3. Lastly, we compare our
results to the approach of Lynn et al. (2019), from
whom we received the extended history dataset,
which uses the labeled tweet and a list of accounts
the author follows. However, they only report the
weighted-F1 score for their best performing model.

We find that fine-tuning DistilBERT directly to
the task of stance detection proves difficult, only
scoring a modest F1. However when we include
some context language from the user, an average
representation of their recent language concate-

3This F1 score instead reports an average of the F-score
for the positive and negative classes. Not directly accounting
for neutral predictions.

nated into the fine-tuning layer, there is a notice-
able boost in performance highlighting that stance
prediction is aided by knowing the context of the
message. We find that MeLT can utilize this con-
textual information best and out-performs other
approaches.

Next, we break down the performance of various
configurations of our models in table 2 across each
target. Here, we compare against a small variant
of MeLT (2Layers), randomly initialized MeLT's
(No pre—train)4, and also experiments with frozen
and unfrozen word-level models. Ultimately, we
find that fine-tuning both the word and message lev-
els simultaneously consistently proves beneficial,
likely due to the word model being able to adapt to
discourse on Twitter.

We also find that the 2-layer MeLT performs
competitively - in figure 2 we show that it per-
forms better or on-par with the large model until
40 messages of history is reached, due to the 2-
layer model saturating at history of 30. Suggesting
that the larger the model, the more history it can
efficiently track.

Lastly, we investigate using a different word-
level model for our experiments. We choose Dis-
tilRoBERTa, for similar reasons to our original
choice of DistilBERT, and apply the same tech-
niques as done with DistilBERT shown in table 3.
We find that overall each DistilRoBERTa model
achieves lower F1 score than the respective Distil-
BERT variant. However we find that MeLT still im-
proves over the base word-level model, suggesting
that MeLT often will improve the word-level model
itself but the word-level model of choice plays an
important role in downstream performance. Due to
this, it is likely to be beneficial to first evaluate a
variety of word-level models on your downstream
task and then build on top of the best one with
MeLT.

6 Conclusion

With a large number of tasks in NLP that rely
on social media as a domain, methods which can
model language as a multi-level phenomena, from
words to documents to people, can offer a higher-
level contextual representation of language. In this
work, we presented a new hierarchical pre-training
routine that, when fine-tuned to stance detection,
outperforms other models utilizing both message
and user-level information as well as improves re-

“Both MeLT-rands learn the MFC baseline

sults upon solely using the word-level model on
which we build MeLT. We also find that during
fine-tuning, it was always beneficial to unfreeze the
word layers even though they had to be frozen dur-
ing pre-training. MeLT can be attached to the top
of a word-level language model in order to directly
encode sequences of message vectors, thus allow-
ing the modeling of historical context and leading
towards a way of approaching language modeling
that integrates its personal context.

7 Acknowledgements

This work was supported in part by a grant from the
National Institutes of Health, RO1 AA028032-01
and in part by a grant from the National Science
Foundation, IIS-1815358.

References

Francisca Adoma Acheampong, Henry Nunoo-Mensah,
and Wenyu Chen. 2021. Transformer models for
text-based emotion detection: a review of bert-based
approaches. Artificial Intelligence Review, pages 1—
41.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.

Abeer Aldayel and Walid Magdy. 2019. Your stance
is exposed! analysing possible factors for stance
detection on social media. Proceedings of the ACM
on Human-Computer Interaction, 3(CSCW):1-20.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

et al. Falcon, WA. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Adithya V Ganesan, Matthew Matero, Aravind Reddy
Ravula, Huy Vu, and H Andrew Schwartz. 2021.
Empirical evaluation of pre-trained transformers for
human-level nlp: The role of sample size and dimen-
sionality. arXiv preprint arXiv:2105.03484.

Quentin Grail, Julien Perez, and Eric Gaussier. 2021.
Globalizing BERT-based transformer architectures

https://www.aclweb.org/anthology/2021.eacl-main.154

for long document summarization. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1792—-1810, Online. Association for
Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yingjie Li and Cornelia Caragea. 2019. Multi-task
stance detection with sentiment and stance lexicons.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6300-6306.

Junjie Lin, Wenji Mao, and Yuhao Zhang. 2017. An
enhanced topic modeling approach to multiple stance
identification. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Manage-

ment, pages 2167-2170.

Yang Liu and Mirella Lapata. 2019. Hierarchical trans-
formers for multi-document summarization. arXiv
preprint arXiv:1905.13164.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Veronica Lynn, Niranjan Balasubramanian, and H An-
drew Schwartz. 2020. Hierarchical modeling for user
personality prediction: The role of message-level
attention. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 5306-5316.

Veronica Lynn, Salvatore Giorgi, Niranjan Balasubrama-
nian, and H. Andrew Schwartz. 2019. Tweet classifi-
cation without the tweet: An empirical examination
of user versus document attributes. In Proceedings
of the Third Workshop on Natural Language Process-
ing and Computational Social Science, pages 18-28,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Matthew Matero, Akash Idnani, Youngseo Son, Sal-
vatore Giorgi, Huy Vu, Mohammad Zamani, Parth
Limbachiya, Sharath Chandra Guntuku, and H An-
drew Schwartz. 2019. Suicide risk assessment with
multi-level dual-context language and bert. In Pro-
ceedings of the Sixth Workshop on Computational
Linguistics and Clinical Psychology, pages 39-44.

Matthew Matero and H. Andrew Schwartz. 2020. Au-
toregressive affective language forecasting: A self-
supervised task. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,

pages 2913-2923, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016. Semeval-
2016 task 6: Detecting stance in tweets. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 31-41.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024-8035. Curran Associates, Inc.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Benjamin Schiller, Johannes Daxenberger, and Iryna
Gurevych. 2021. Stance detection benchmark: How
robust is your stance detection? KI-Kiinstliche Intel-
ligenz, pages 1-13.

Xingyi Song, Johnny Downs, Sumithra Velupillai,
Rachel Holden, Maxim Kikoler, Kalina Bontcheva,
Rina Dutta, and Angus Roberts. 2020. Using deep
neural networks with intra- and inter-sentence con-
text to classify suicidal behaviour. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 1303-1310, Marseille, France. European
Language Resources Association.

Svitlana Volkova, Theresa Wilson, and David Yarowsky.
2013. Exploring demographic language variations
to improve multilingual sentiment analysis in social
media. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1815-1827.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Jianfei Yu, Jing Jiang, Ling Min Serena Khoo,
Hai Leong Chieu, and Rui Xia. 2020. Coupled hier-
archical transformer for stance-aware rumor verifica-
tion in social media conversations. Association for
Computational Linguistics.

Guido Zarrella and Amy Marsh. 2016. Mitre at semeval-
2016 task 6: Transfer learning for stance detection.
arXiv preprint arXiv:1606.03784.

https://www.aclweb.org/anthology/2021.eacl-main.154
https://doi.org/10.18653/v1/W19-2103
https://doi.org/10.18653/v1/W19-2103
https://doi.org/10.18653/v1/W19-2103
https://doi.org/10.18653/v1/2020.coling-main.261
https://doi.org/10.18653/v1/2020.coling-main.261
https://doi.org/10.18653/v1/2020.coling-main.261
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/2020.lrec-1.163
https://www.aclweb.org/anthology/2020.lrec-1.163
https://www.aclweb.org/anthology/2020.lrec-1.163

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. Hib-
ert: Document level pre-training of hierarchical bidi-
rectional transformers for document summarization.
arXiv preprint arXiv:1905.06566.

Guangzhen Zhao and Peng Yang. 2020. Pretrained
embeddings for stance detection with hierarchical
capsule network on social media. ACM Transactions
on Information Systems (TOIS), 39(1):1-32.

A Appendix

A.1 Implementation and Hardware Details

Pre-training of all models was performed across 3
TitanXP GPUs(12GB mem each) while fine-tuning
was performed on a single TitanXP. All models
were implemented using PyTorch (Paszke et al.,
2019) with the PyTorch Lightning Add-on (Falcon,
2019).

During pre-training batch size was set to 100
users and fine-tuning was performed using 10. For
pre-training runtime was around 2.5 hours per
epoch and fine-tuning was a few minutes per epoch.
MeLT 2L adds 11,621,632 trainable parameters on
top of DistilBERT and MeLT 6L adds 33,677,568,
as counted by summing PyTorch tensor.numel()
per parameter with gradients turned on>. All ex-
periments (pre-training and fine-tuning) use the
AdamW Optimizer (Loshchilov and Hutter, 2017)
and use random seed set to 1337. Pre-training has
a warm-up period of 2,000 steps.

Pre-training is conducted over 5 epochs with
checkpoints saved for the epoch that scored the
lowest MSE on a holdout development set. The
version of the model at that checkpoint is then used
for fine-tuning to the stance dataset.

A.2 Hyperparams

All hyperparameters are selected via tuning using
the Optuna library (Akiba et al., 2019).

A.2.1 Pre-training
The final set of hyperparameters used for the 6L

MeLT model (pre-training) are as follows:
* Learning Rate: 4e-3
* Weight Decay: 0.1
* Dropout: 0.1
e FF dim: 2048
* Embed dim: 768
* Attn Heads: 8
* Epochs: 5 (checkpoint at epoch 2)
e batch size: 100 (users)
* msg seq len: 40 (per user)

* token seq len: 50 (per message)

Shttps://discuss.pytorch.org/t/how-do-i-check-the-
number-of-parameters-of-a-model/4325

If any parameter is not mentioned (e.g., Adam
Betas) then it uses PyTorch defaults. For pre-
training 10 trials were used for parameter tuning.
For pre-training only learning rate and weight de-
cay were explored. Learning rate was searched
between 5e-4 to 4e-1 and weight decay was set
between 1 and le-4.

A.2.2 Fine-Tuning

All hyperparameters were chosen based on min-
imizing loss over a holdout development set for
each target over 50 trials. Hyper-parameters that
are tuned include learning rate, weight decay, and
dropout. Dropout is applied directly to output from
MeLT. Learning rate was searched between 6e-6
and 3e-3, weight decay is between 1 and 1e-4, and
dropout is 0.0 to 0.05. Additionally, early stopping
was also applied as a means of regularization.

The 2-layer FENN on top of MeLT during fine-
tuning has layer 1 of dimension 768 and layer 2 of
dimension 384, with Sigmoid between.

A3 Data

A.3.1 pre-training

The pre-training dataset is comprised of 6,000 users
and 9,868,429 messages. For a development set
we select 3,000 users from our train set and set
aside an additional 20 of their messages, to measure
reconstruction loss within these sequences.

A.3.2 fine-tuning

The breakdown of number of examples (labeled
messages) across train/dev/test for each target in
the SemEval Stance data is shown in table 4. In
total we have 3,021 instances with a split of 1658
train, 418 dev, and 945 test across all targets. The
original 2016 shared task had 4,100 instances, how-
ever due to accounts or messages being deleted
over time, we were unable to replicate the com-
plete original dataset and instead used the smaller
version available from Lynn et al. (2019).

Target Train | Dev | Test
Abortion 380 | 96 | 207
Atheism 329 | 83 | 178
Climate Change | 257 | 65 | 145
Hilary Clinton 372 94 | 232
Feminism 320 80 | 183
Total 1658 | 418 | 945

Table 4: Number of examples per target in SemEval
data as broken down by split of the data.

https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325
https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325

