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Abstract

Pre-training (PT) and back-translation (BT)
are two simple and powerful methods to uti-
lize monolingual data for improving the model
performance of neural machine translation
(NMT). This paper takes the first step to in-
vestigate the complementarity between PT and
BT. We introduce two probing tasks for PT and
BT respectively and find that PT mainly con-
tributes to the encoder module while BT brings
more benefits to the decoder. Experimental
results show that PT and BT are nicely com-
plementary to each other, establishing state-of-
the-art performances on the WMT16 English-
Romanian and English-Russian benchmarks.
Through extensive analyses on sentence orig-
inality and word frequency, we also demon-
strate that combining Tagged BT with PT is
more helpful to their complementarity, lead-
ing to better translation quality. Source code
is freely available at https://github.com/
SunbowLiu/PTvsBT.

1 Introduction

Neural machine translation (NMT; Bahdanau et al.,
2015; Gehring et al., 2017; Vaswani et al., 2017)
models are data-hungry and their performances are
highly dependent upon the quantity and quality
of labeled data, which are expensive and scarce
resources (Leong et al., 2021). This motivates the
research line of exploiting unlabeled monolingual
data for boosting the model performance of NMT.
Due to simplicity and effectiveness, pre-training
(PT; Devlin et al., 2019; Song et al., 2019) and back-
translation (BT; Sennrich et al., 2016b) are two
widely-used techniques for NMT, by leveraging a
large amount of monolingual data.

While empirically successful, the understand-
ings of PT and BT are still limited at best. Several
attempts have been made to better understand them
at the data level, e.g. exploring different kinds of

∗Work was done when Xuebo Liu and Liang Ding were
interning at Tencent AI Lab.

noises for the source data (Edunov et al., 2018;
Lewis et al., 2020). However, there are few under-
standings at the model level that how PT and BT af-
fect the internal module (e.g. encoder and decoder)
of NMT models. As recent studies start to combine
PT and BT for better model performance (Conneau
and Lample, 2019; Liu et al., 2020b; Ding et al.,
2021c), there is a pressing need to broaden the
understandings of them.

To this end, we introduce two probing tasks to
investigate the effects of PT and BT on the en-
coder and decoder modules, respectively. We find
that PT mainly contributes to the encoder mod-
ule while BT brings more benefits to the decoder
module. This provides a good explanation for the
performance improvement of simply combining PT
and BT. Motivated by this finding, we explore a
better combination method by leveraging Tagged
BT (Caswell et al., 2019). Experiments conducted
on the WMT16 English-Romanian and English-
Russian benchmarks show that PT can nicely co-
work with BT, leading to state-of-the-art model
performances. Extensive analyses show that the
tagging mechanism is helpful for enhancing the
complementarity between PT and BT by improv-
ing the translation of source-original sentences and
low-frequency words.

Our main contributions are as follows:

• We design two probing tasks to investigate the
impact of PT and BT on NMT models.

• We empirically demonstrate the complemen-
tarity between PT and BT.

• We show that Tagged BT further improves the
complementarity between PT and BT.

2 Preliminaries

2.1 Background
Pre-Training for NMT Self-supervised PT (De-
vlin et al., 2019; Song et al., 2019), which can ac-

https://github.com/SunbowLiu/PTvsBT
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quire knowledge from unlabeled monolingual data,
has shown its effectiveness in improving the model
performance of NMT, especially for those language
pairs with smaller parallel corpora (Conneau and
Lample, 2019).

The first research line treats pre-trained models
as external knowledge to guidance NMT to learn
better representations (Yang et al., 2020a; Zhu et al.,
2020) and predictions (Chen et al., 2020). These
methods are effective but costly since the NMT
architecture needed to be elaborately designed. An-
other research line is directly taking the weights
of pre-trained models to initialize NMT models,
which is easy to use and advancing the state-of-
the-art (Rothe et al., 2020; Lewis et al., 2020).
In this paper, we treat pre-trained mBART (Liu
et al., 2020b) as our testbed for parameter initial-
ization, whose benefits have been sufficiently vali-
dated (Tran et al., 2020; Tang et al., 2020; Liu et al.,
2021a) by multiple translation directions.

In general, previous studies focus on designing
novel architectures (Song et al., 2019) and artificial
noises for source sentences (Lin et al., 2020; Yang
et al., 2020b) but are still unclear why pre-training
can boost the model performance of NMT, which
is this paper aims to investigate.

Back-Translation for NMT BT is an alterna-
tive to leverage monolingual data for NMT (Sen-
nrich et al., 2016b). It first trains a reversed NMT
model for translating target-side monolingual data
into synthetic parallel data, and then complements
them with the original parallel data to train the
desired NMT model. To improve BT, previous
works put attention to the importance of diver-
sity and complexity in synthetic data, showing that
adding symbols (e.g., noises and tags) to the back-
translated source can help NMT distinguish the
data from various sources and learn better represen-
tations (Fadaee and Monz, 2018; Wang et al., 2019;
Edunov et al., 2018; Caswell et al., 2019; Marie
et al., 2020). The claims and understandings from
these works are chiefly at the data-level rather than
the model-level.

There also exists some works that combine
PT and BT to further boost the model perfor-
mance (Conneau et al., 2020; Song et al., 2019;
Liu et al., 2020b). However, the relation between
BT and PT has not been fully studied. In this paper,
we take the first step to understand BT and PT at
the model-level and improve the complementarity
between PT and BT.

2.2 Experimental Setup

Data We conducted experiments on the WMT16
English-Romanian (En-Ro) and English-Russia
(En-Ru) translation tasks, which are widely-used
benchmarks of data augmentation methods for
NMT. The training/validation/test sets of the En-Ro
include 612K/2K/2K sentence pairs, while those
of En-Ru include 2M/3K/3K pairs. Towards bet-
ter reproducibility, we directly used the BT data
provided by Sennrich et al. (2016a)1, consisting
of 2.3M synthetic data for the En-Ro and 2.0M
data for the En-Ru. All the data are tokenized and
split into sub-words (Sennrich et al., 2016c) by the
mBART tokenizer (Liu et al., 2020b).

Setting To make a fair comparison, all the model
architectures and parameters are the same as the
pre-trained mBART.cc25.2 The NMT model aug-
mented with PT directly uses the mBART weights
for parameter initialization, while the other models
randomly initialize their parameters. The training
follows Liu et al. (2020b) except that we tuned the
learning rate within [3e-5,1e-3] and the dropout
within [0.3,0.5] for the vanilla model and BT mod-
els. We used the single model with the best valida-
tion perplexity for testing. The length penalty is 1.0
and the beam size is 5. We used sacreBLEU (Post,
2018) to calculate BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) scores with the spe-
cific tokenization (Liu et al., 2020b) for Romanian
and the default tokenization for Russian.

3 Understanding PT and BT

In this section, we aim to better understand the
similarities and differences between PT and BT
on improving model performance. We design two
probing tasks to study the research question: Which
module of NMT do PT and BT respectively play a
greater role in enhancing translation quality?

3.1 Effects of PT on NMT

Given a pre-trained model, it is common to use its
part or all parameters to initialize the downstream
tasks. We design four NMT models, which differ
from the NMT components (Encoder vs. Decoder)
with parameter initialization manners (Random vs.
Pre-trained). As shown in Table 1, the variants

1http://data.statmt.org/rsennrich/
wmt16_backtranslations

2https://github.com/pytorch/fairseq/
tree/master/examples/mbart
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Enc. Dec. PT BT

BLEU ∆ BLEU ∆

N N 33.7 - 33.7 -
N Y 33.5 -0.2 37.8 +4.1
Y N 36.9 +3.2 35.8 +2.1
Y Y 37.7 +4.0 38.3 +4.6

Table 1: The probing tasks of PT and BT. NMT models
are trained and evaluated on the WMT16 En-Ro bench-
mark. “Y” denotes the corresponding parameters are
activated when augmented with PT or BT, while “N”
denotes the inactive operation. PT and BT respectively
contribute more to the NMT encoder and decoder.

are: 1) NN is a vanilla NMT model, of which pa-
rameters are randomly initialized; 2) NY means
that parameters of NMT encoder are randomly ini-
tialized while those of decoder are initialized with
pre-training; 3) YN is contrary to NY; and 4) YY
indicates that the whole NMT parameters are ini-
tialized with the pre-trained model. After that, the
NMT models are fine-tuned on the parallel data
with the same training strategy.

PT Mainly Contributes to Encoder As seen,
the YY initialization strategy significantly im-
proves the vanilla NMT model by +4.0 BLEU
scores, which reconfirms the effectiveness of PT
for translation tasks (Liu et al., 2020b). By com-
paring NY and YN, we find that the pre-trained
encoder can still help the NMT to achieve +3.2
BLEU improvements while the pre-trained decoder
can only perform on par with the vanilla model
(i.e. -0.2 BLEU). This demonstrates that PT mainly
contributes to the encoder part of NMT model, and
this claim is consistent with the conclusion with
other pre-trained models. For instance, Rothe et al.
(2020) show that the NMT encoder initialization is
superior to the decoder one when using pre-trained
weights of BERT. We hypothesize that the perfor-
mance boost with PT mainly comes from the better
ability of source-side understanding, which is sig-
nificant to NMT such as on disambiguating word
senses (Tang et al., 2019).

3.2 Effects of BT on NMT

A vanilla NMT model is trained on the original
bi-text and then fine-tuned on the mixture of the
original and synthetic (i.e. back-translated) data.
We also design four NMT models, which differ
from which parts of parameters are updated at the

fine-tuning stage. As shown in Table 1, the variants
are: 1) NN is a vanilla NMT model only trained on
the original data; 2) NY indicates that parameters
of the NMT encoder are fixed while those of de-
coder are updated during model fine-tuning; 3) YN
acts in an opposite way compared with NY; 4) YY
means that the whole NMT parameters are updated
at the fine-tuning stage.

BT Mainly Contributes to Decoder BT has
been sufficiently validated to improve the perfor-
mance of NMT models (Edunov et al., 2018, 2020).
By exploiting additional target sentences, the NMT
decoder can be enhanced to generate more fluent
sentences in the target language. In contrast, the
synthetic source sentences contain noises, which
may be less useful for improving the ability of un-
derstanding. The results verify our hypothesis: BT
mainly improves the decoder module of NMT. As
seen, fine-tuning the whole NMT model (i.e. YY)
with BT data can gain the best performance (+4.6
BLEU than the vanilla model), which shows the
effectiveness of BT method. Surprisingly, only fine-
tuning the decoder (i.e. NY) can perform close to
YY model (37.8 vs. 38.3 BLEU), which confirms
our claims. Compared with NY, the YN model ob-
tains relatively fewer improvements (+4.1 vs. +2.1
BLEU), showing that BT brings more benefits to
the decoder than the encoder.

4 Improving PT and BT

The answer of the research question in Section 3 is:
PT and BT respectively contribute more to the NMT
encoder and decoder, demonstrating that they are
orthogonal and complementary to each other. This
finding motivates us to better combine these two in-
dividual techniques together for further improving
NMT models.

4.1 Experiments
As detailed in Section 2.2, we conducted experi-
ments on two commonly-used benchmarks En-Ro
and En-Ru. Besides, we train the BT models from
scratch instead of fine-tuning in Section 3.2. As
YY models (in Table 1) always achieve best perfor-
mances when augmented PT or BT, we update all
parameters of NMT models in next experiments.

The results are shown in Table 2. We use the
vanilla model as our baselines, which are trained
on original datasets with random initialization. Be-
sides, we report results on existing PT models as
our strong baselines, including XLM-R, mRASP,
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Model En-Ro En-Ru

BLEU TER BLEU TER

Existing Baselines
XLM-R (Conneau et al., 2020) 35.6 - - -
mRASP (Lin et al., 2020) 37.6 - - -
mBART (Liu et al., 2020b) 37.7 - - -

Our Implemented Systems
Vanilla NMT 33.7 48.6 28.8 61.6
+ PT 37.7 45.0 31.6 58.5
+ BT 38.4 45.0 31.1 59.2
+ BT + PT 41.2 42.6 33.2 57.1
+ Tagged BT 38.6 44.9 31.2 59.3
+ Tagged BT + PT 41.6 42.1 33.6 56.5

Table 2: Translation quality on the En-Ro and En-Ru
benchmarks. “+” means incorporating PT and (Tagged)
BT into NMT models.

mBART. As seen, PT can significantly improve
the translation quality in all cases compared with
vanilla baselines (averagely +2.5 BLEU), which is
consistent with (or better than) existing PT mod-
els (37.7 vs. 35.6∼37.7 BLEU). Furthermore, two
BT methods3 (i.e. BT and Tagged BT) perform
closely, which improves the standard NMT mod-
els by +3.5/+3.7 BLEU points on average. Simply
combining them (+BT+PT) can further boost per-
formances for NMT models across different sizes
of datasets, showing the robustness and effective-
ness of this approach. Encouragingly, the combi-
nation of Tagged BT and PT performs better than
the simple one, leading to state-of-the-art perfor-
mances on the two benchmarks. Similar tenden-
cies are observed in terms of the TER scores. The
above results illustrate the better complementarity
between PT and Tagged BT on improving transla-
tion quality for NMT models.

4.2 Analysis

We conducted extensive analyses to better under-
stand the improvement of our approach. All results
are reported on the En-Ro benchmark.

Effects of Sentence Type Recent studies have
shown that the evaluation of BT is sensitive to the
sentences types, thus we report BLEU scores on
the subsets of source-original (Src-Ori) and target-
original (Tgt-Ori) datasets (Zhang and Toral, 2019;

3Tagged BT is to add a special token at the beginning of
each back-translated source sentence.

Model All Src Tgt

Vanilla 33.7 29.4 38.3
+ PT 37.7 33.8 42.0
+ BT 38.4 31.5 45.4
+ BT + PT 41.2 33.3 48.6
+ Tagged BT 38.6 31.9 45.6
+ Tagged BT + PT 41.6 34.8 48.7

Table 3: Translation quality of source-original and
target-original sentences on the En-Ro benchmark.
“Src” and “Tgt” respectively denote the sub-testsets of
source-original and target-original while “All” means
the whole testset.

Model All Low High

Vanilla 62.8 48.5 64.6
+ PT 65.8 58.2 66.7
+ BT 65.9 57.5 67.1
+ BT + PT 67.8 60.8 68.8
+ Tagged BT 66.1 57.5 67.3
+ Tagged BT + PT 68.3 61.8 69.1

Table 4: F-measure of word translation according
to frequency on the En-Ro benchmark. “Low” and
“High” respectively denote the buckets of low- and
high-frequency words while “All” means the whole
words in the test set. Simply combining PT and BT
improves the model performance, while adding tags to
BT data further improves

Liu et al., 2021a; Wang et al., 2021).4 Generally
speaking, the translation of Src-Ori is more impor-
tant than that of Tgt-Ori for practical NMT sys-
tems (Graham et al., 2020), thus its performance
should be taken seriously. As shown in Table 3, PT
performs better on Src-Ori than BT (33.8 vs. 31.9
BLEU) while BT achieves higher scores on Tgt-
Ori than PT (45.6 vs. 42.0 BLEU). Besides, simply
combining PT and BT can improve the translation
quality on both Src-Ori and Tgt-Ori sentences, but
the improvement of Src-Ori is lower than only us-
ing PT. By introducing tagged BT, the model can
achieve better performance than the simple one, es-
pecially on source-original sentences. Takeaway:
1) PT and BT complementary in terms of originality
of sentences; 2) Tagged BT can alleviate the bias of
translating Tgt-Ori sentences which is significant
to practical NMT systems.

4Src-Ori denotes the testing data originating in the source
language, while Tgt-Ori denotes the data translating from the
target language.
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Effects of Word Frequency Data augmentation
is an effective way to improve the translation qual-
ity of low-frequency words (Sennrich et al., 2016b).
Thus, we compare the performance of the mod-
els on translating different frequencies of words.
Specifically, we employed compare-mt (Neubig
et al., 2019) to calculate the f-measure of translat-
ing low- and high-frequency words (<50 vs. ≥50).
As shown in Table 4, PT improves more on trans-
lating low-frequency words (58.2 vs. 57.5 scores)
while BT performs better on high-frequency words
(67.3 vs. 66.7 scores). Furthermore, the combi-
nation of PT and tagged BT achieves the best per-
formance on both low- and high-frequency words,
leading to an overall improvement on the whole
words. Similar phenomenons can be observed
by combining self-training and BT (Ding et al.,
2021b). Takeaway: 1) PT and BT complementary
in terms of frequency of words; 2) Tagged BT are
more complementary to PT on lexical translation.

5 Conclusion and Future Works

This paper broadens the understandings of pre-
training (PT) and back-translation (BT). We pro-
pose two probing tasks to investigate the impact of
PT and BT on each NMT module and find that PT
is more beneficial to the encoder while BT mainly
improves the decoder. Experimental results on the
WMT16 English-Romanian and English-Russian
benchmarks show that PT is nicely complemen-
tary to BT. We also demonstrate that Tagged BT
(i.e., adding tags to BT data) can further improve
the complementarity of translating source-original
sentences and low-frequency words.

In the future, we would like to apply curriculum
learning (Liu et al., 2020a; Zhan et al., 2021; Ding
et al., 2021a) to better organize the learning of PT
and BT. It is also worthwhile to explore other kinds
of methods utilizing monolingual data (e.g., self-
training (Zhang and Zong, 2016; He et al., 2020;
Jiao et al., 2021)) and validate the findings on prac-
tical NMT systems (Huang et al., 2021) and more
generation tasks (Liu et al., 2021b).
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