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Abstract
An open-domain knowledge graph (KG) has
entities as nodes and natural language relations
as edges, and is constructed by extracting (sub-
ject, relation, object) triples from text. The
task of open-domain link prediction is to in-
fer missing relations in the KG. Previous work
has used standard link prediction for the task.
Since triples are extracted from text, we can
ground them in the larger textual context in
which they were originally found. However,
standard link prediction methods only rely on
the KG structure and ignore the textual con-
text that each triple was extracted from. In
this paper, we introduce the new task of open-
domain contextual link prediction which has
access to both the textual context and the KG
structure to perform link prediction. We build
a dataset for the task and propose a model for
it. Our experiments show that context is cru-
cial in predicting missing relations. We also
demonstrate the utility of contextual link pre-
diction in discovering context-independent en-
tailments between relations, in the form of en-
tailment graphs (EG), in which the nodes are
the relations. The reverse holds too: context-
independent EGs assist in predicting relations
in context.

1 Introduction

A knowledge graph (KG) is constituted by a set
of (subject, relation, object) triples such as (Apple,
acquire, Beats). KGs have entities (subjects and
objects) as nodes and relations as labeled edges.
Manually-built KGs such as Freebase (Bollacker
et al., 2008), Wikidata (Vrandečić and Krötzsch,
2014), or DBPedia (Lehmann et al., 2015) have a
known set of hand-built relations. In contrast, the
relation-labels of open-domain KGs are obtained
from text rather than fixed. Open-domain KGs
can be constructed by applying parsers or open-
information extraction methods to text (Hosseini
et al., 2019; Broscheit et al., 2020).
∗Now at Google Research.
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Figure 1: a) Part of an example KG. The relation own
is missing, but can be predicted from the rest of the
KG and the triple contexts using contextual link predic-
tion. b) The contexts c1 and c2 from which we have
extracted the KG triples. The relation tokens are bold-
faced and entities are italic. The contextual link predic-
tion task predicts relations that hold between the entity-
pair in a grounded triple. For example, we predict that
the relation own should be added between Apple and
Beats. c) An example EG of type Organization, Orga-
nization. The contextual link prediction and EG learn-
ing tasks are complementary. For example, acquire→
own from the EG can independently be used to add the
missing own relation to the KG.

Open-domain link prediction is the task of
adding relation edges that are missing from the
graph because the corresponding triple was not
found in the text (Hosseini et al., 2019; Broscheit
et al., 2020). Figure 1a shows part of an example
open-domain KG, in which the triple (Apple, own,
Beats) is missing, but can be inferred using link
prediction over all entities in the complete KG.
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Previous work has applied standard link predic-
tion methods such as TransE (Bordes et al., 2013),
ConvE (Dettmers et al., 2018), or TuckER (Bal-
azevic et al., 2019) to open-domain triples. These
methods have been shown to be effective in learn-
ing the KG structure, but they are sub-optimal for
open-domain link prediction because they ignore
the textual context of the triples. Since the triples
are extracted from text, they can be automatically
grounded back to their contexts. Hence, in addi-
tion to the KG structure, the triple contexts can be
used as input to the link prediction task. Figure 1b
shows the context sentences that have given rise to
the partial KG in Figure 1a.1 There are multiple
clues in the contexts such as deal, $, cash, stock,
and Financial Times, that could be used in addition
to the triples in the rest of the KG, to predict that the
triple (Apple, owns, Beats) should be added. This
is because these clues could have been seen around
occurrences of other entity-pairs of the same type
(e.g., Facebook and Whatsapp) that are connected
by acquire, ’s purchase of, and own relations.

In this paper, we propose the new task of contex-
tual link prediction for such open-domain graphs:
Given a triple (e1, r, e2) grounded in context with
the relation r holding between the entities e1 and
e2, our goal is to predict all the other relations that
hold between the two entities. We present a model
that uses contextualized relation embeddings to
predict new relations. We start with BERT (Devlin
et al., 2019) pre-trained embeddings and fine-tune
them with a novel unsupervised contextual link
prediction objective function. After training the
contextual link prediction model, we can add miss-
ing relations to the KG (e.g., own in in Figure 1a)
by predicting the relations that hold between the
entities of triple mentions in context (e.g., the con-
text c1 in Figure 1b). Our experiments show that
the proposed model for the contextual link predic-
tion task significantly outperforms standard link
prediction in open-domain KG completion.

In addition, we investigate the interplay between
contextual link prediction and context-independent
entailments between relations, in the form of en-
tailment graphs (EG). An EG has typed relations
as nodes and entailment relation as directed edges
(Berant et al., 2010, 2011, 2015; Hosseini et al.,
2018; Hosseini, 2021). The type of each relation
is determined by the types of its two entities. EGs
1 We assume having access to an entity-linked corpus. The en-

tities consist of both proper nouns (e.g., Apple) and common
nouns (e.g., headphone).

are by definition context-independent, but they use
relation types as a proxy of the context. Figure
1c shows a fragment of an EG showing that for
example acquire entails own. Similar to open-
domain KGs, EGs are constructed based on ex-
tracted triples from text. The entailment between
two relations is predicted by computing a direc-
tional entailment score between them.

It has been recently shown that the two tasks
of open-domain link prediction and EG learning
are complementary (Hosseini et al., 2019). EGs
suffer from sparsity since many correct entailment
relations are not directly supported by the extracted
triples from the text. The EGs can be improved by
augmenting the extractions with novel triples from
standard link prediction models. Conversely, ex-
plicit entailments from EGs are shown to be useful
in predicting missing links in the KG.

We show a similar relationship between contex-
tual link prediction and the EG learning tasks. As in
the previous work, we augment the set of extracted
triples with novel predictions, but we use contex-
tual link prediction instead of standard link predic-
tion. We define a new entailment score which we
use to build new state-of-the-art EGs when tested
on a challenging relation entailment dataset. Our
results show that contextual link prediction pro-
duces higher quality triples for augmentation than
standard link prediction. Conversely, we also show
that EGs in turn contain complementary informa-
tion that can be combined with contextual link pre-
diction to further improve the open-domain KG
completion results.2 Our main contributions are
the following.

• We propose a new contextual link prediction task
and present a model for it.

• We show that our proposed model outperforms
standard link prediction models in open-domain
KG completion.

• We propose a new relation entailment score that
uses the extracted triples as well as predicted
ones from contextual link prediction. We build
state-of-the-art EGs.

• We show that EGs in turn improve contextual
link prediction.

• We release a dataset containing the extracted
triples grounded in context, for future research.

2 Our code and data are available at https://github.
com/mjhosseini/open_contextual_link_
pred.

https://github.com/mjhosseini/open_contextual_link_pred
https://github.com/mjhosseini/open_contextual_link_pred
https://github.com/mjhosseini/open_contextual_link_pred
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2 Related Work

Relational Entailment Graphs. Earlier attempts
take a local approach and predict entailment re-
lations independently from each other (Lin and
Pantel, 2001; Szpektor and Dagan, 2008). Berant
et al. (2011, 2015) and Hosseini et al. (2018) pro-
pose a global approach where the dependencies
between the entailment relations are taken into ac-
count. They first build a local typed EG for any
plausible type pair. They then build global EGs
that satisfy soft or hard constraints such as the tran-
sitivity of entailment. The constraints consider the
structures both across typed EGs and inside each
graph. In this work, we improve the local entail-
ment scores, which in turn improves the global EGs.
Hosseini et al. (2019) perform standard link predic-
tion to add more coverage to the EGs by adding
missing relations before building the graphs. We
instead perform contextual link prediction prior to
building the graphs.

McKenna et al. (2021) extend EGs to include en-
tailments of different valencies, e.g., a binary rela-
tion entailing a unary one. We only consider binary
relations, but the method can be extended to multi-
ple valencies in the future. Guillou et al. (2020) use
temporal information for entailment graph learn-
ing by constraining the context of each relation to
entity-pairs observed in a temporal window around
it. Our method could be adapted similarly. Schmitt
and Schütze (2021) have proposed a supervised
model that fine-tunes pre-trained LMs directly on a
training portion of entailment datasets. They report
better results than EGs, but our focus is different.
Unlike their method, our approach is unsupervised
and is not capable of learning potential artifacts
from datasets (Levy et al., 2015). In addition, we
explicitly build EGs by doing machine-reading over
large text corpora, and hence can explain the basis
for the beliefs captured in them.

Pre-trained LMs for Link Prediction. KG-
BERT (Yao et al., 2019) uses contextual represen-
tations for KG completion. However, they form
synthetic token sequences by concatenating entity
descriptions and relation tokens, whereas we use
the natural text associated with the triples.

Extracting Factual Knowledge from Pre-
Trained Language Models. These works form
a prompt where an entity is missing (e.g., Apple
acquire [MASK] ), and ask the language models
to predict the masked entity (Petroni et al., 2019,
2020; Jiang et al., 2020; Bouraoui et al., 2020; Ha-

viv et al., 2021). These models do not probe for
relations because a) They face technical challenges
in processing multi-token relations; and b) Rela-
tions can be expressed in many different ways. The
matching-the-blank (MTB) model (Soares et al.,
2019) learns relation embeddings by encouraging
relations that share the same entity-pairs to have
similar embeddings. This is similar to our training,
but has two main differences: First, our contextual
link prediction model outputs a directional score
between relations in context (e.g., acquire in Figure
1) and hypothesis relations (e.g., own), while MTB
learns a symmetric similarity score. Second, we
can predict a score for any hypothesis relation as
long as the relation is previously observed some-
where in the corpus with any other entities (§3.2).

3 Contextual Link Prediction

In this section, we first discuss the notation and
define the contextual link prediction task. We then
present our model and training for the task.

3.1 Notation and Task Definition

Let E denote the set of all entities (e.g., Barack
Obama; message), T denote the set of all en-
tity types (e.g., Person; Thing) and R denote
the set of all typed relations extracted from a
text corpus. We consider binary relations where
each relation has two entities, and hence two
types, e.g., born in(Person,Location). We define
R(t1, t2) as the set of relations with types t1, t2,
or t2, t1. For example, R(Person, Location) in-
cludes born in(Person,Location), birthplace of (Lo-
cation,Person), etc. Similarly, we defineR(e1, e2)
as the set of relations r ∈ R such that (e1, r, e2) is
a valid (extracted) triple. For example,R(Barack
Obama, Hawaii) includes born in3, visit, etc.

Link prediction and entailment can hold between
relations with the same entity order or the reverse
order. When the two entity types are identical, we
keep two copies of the relations one for each entity
order. For example, acquire(Org1,Org2) predicts
be part of (Org2,Org1). We specify the entity order
of a relation by a binary flag o(r). For relations
with unequal types, we do not need the flag as the
order is obvious and set o(r) = 0. For relations
with identical types, we set o(r) = 0 if the entities
are in the original order and o(r) = 1, otherwise.

A triple mention is a triple grounded in its tex-
tual context. We define a triple mention as a tu-
3 For brevity, we drop the types when they are obvious.
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ple m = (e1, r, e2, c, s), where r ∈ R is a rela-
tion and e1, e2 ∈ E are entities. The sub-word
token sequence c = [c0, . . . , cn] is the textual con-
text of the triple including the surface form of the
relation and entity-pair.4 The pair s = (s1, s2)
indicates the indices of the first and last relation
tokens. An example triple mention in Figure 1b
is (Apple,acquire,Beats,c2,[9, 11]). We denote by
D=
[
(ei,1, ri, ei,2, ci, si)

]
i∈{1,...,N} the set of all

triple mentions.
We define the contextual link prediction task

as follows: Given a triple mention m =
(e1, r, e2, c, s) as a premise, the goal is to predict
for any hypothesis relation q ∈ R(t1, t2) whether it
holds between the entity-pair (e1, e2) or not, where
t1 and t2 are the types of the two entities.

3.2 Model

Our model computes the probability Pr(q|m) that
a hypothesis relation q holds between the entity-
pair (e1, e2) conditioned on the triple mention
m = (e1, r, e2, c, s). We propose a model, named
Contextualized and Non-Contextualized Embed-
dings (CNCE), which is based on two different
embedding spaces for relations (Figure 2):

First, the premise relation r in the triple mention
m has a contextualized embedding encoding the
meaning of the relation in its textual context. The
contextualized embedding is encoded by the vec-
tor ~m ∈ Rd, where d is the number of embedding
dimensions. Let [~h0, . . . ,~hn] be the contextualized
embeddings of the context c, where ~hi ∈ Rd. In
our experiments, we use the contextualized embed-
dings of the relation’s token(s) as the embedding
vector of the triple mention. For multi-token re-
lations, we use the average embedding vectors of
the start and end tokens, i.e., ~m = (~hs1 +

~hs2)/2.
We multiply the contextualized embedding with a
matrixA0 ∈ Rd×d, if the entities are in the original
order (i.e., o(r) = 0), and A1 ∈ Rd×d, if they are
in the reverse order (i.e., o(r) = 1) (§3.1).

Second, each hypothesis relation q ∈ R such
as own (Organization1,Organization2) has a non-
contextualized embedding encoding its general
context-independent meaning. While the contextu-
alized embeddings of relations can vary depending
on their textual contexts, each relation has exactly
a single non-contextualized embedding. The non-
contextualized embedding is taken from an em-
bedding weight matrix that is learned from scratch

4 c0=[CLS] and cn=[SEP] are special start and end tokens.

X

Model

Apple acquired Beats for $3 
billion in a cash and stock deal.

Sigmoid

out-of-context relation 
embeddings

0.9
0.1
0.8

own
be part of
's purchase of 

BERT Embeddings Layer

Entity Order Linear Layer

Figure 2: An example of contextual link predic-
tion. The relation token is boldfaced and entities are
italic. The output probabilities correspond to the input
context-independent relations.

from the KG (§3.3). We use the non-contextualized
embedding ~q ∈ Rd to encode the hypothesis rela-
tion. We predict high link prediction score if the dot
product between ~mAo(r) and ~q has a high value. In
particular, we define the contextual link prediction
score as:

Pr
(
q|m = (e1, r, e2, c, s)

)
= σ(~mAo(r) · ~q)

=
1

1 + exp(−~mAo(r) · ~q)
. (1)

Eq 1 estimates the probability that the relation q
holds between the entity-pair. It can be applied to
any relation q ∈ R(t1, t2)5 and predict that multi-
ple relations are compatible with the context. Table
1 shows an example from the text corpus and the
predictions by our actual trained model.

We encode the hypothesis relations with learned
non-contextualized embeddings rather than contex-
tualized embeddings for two reasons: a) The model
can be applied to relations q ∈ R(t1, t2)\R(e1, e2)
where the triple (e1, q, e2) is unobserved. This is
useful to find novel triples that are correct, but are
not found in the text. If we were modeling the
hypothesis relation q with contextualized embed-
dings, the relation should have also been observed
with the same entity-pair (e1, e2) somewhere else
in the corpus, hence (e1, q, e2) would not be a novel
triple.6 b) While the score uses the dot product be-
tween embedding vectors, it is still asymmetric as
5 We do not compute contextual link prediction score for rela-

tions with different entity types as they are irrelevant to the
triple mention.

6 One possibility would be a purely textual baseline that pre-
dicts a score for sentence-pairs like “Apple acquires Beats
for ... [SEP] Apple owns Beats.”, where [SEP] is a special
token separating an actual sentence observed in the corpus
and a synthesized one containing the triple. But that involves
computing contextualized embeddings for every context and
relation pair, instead of performing the computation for ev-
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Underwood arrived sporting the 381 carat diamond
necklace, with her blonde hair worn loose around her
shoulders.
RELATION CNCE SCORE EXTRACTED

sport 1.0 1
wear 0.994 1
pose with 0.715 0
possess 0.600 0
experiment with 0.385 0
’s 0.214 1

Table 1: A triple mention and its top predictions by our
actual trained method. The extracted triple is (Carrie
Underwood, sport, necklace). Labels are 1 if the triple
has been extracted from another context in the text cor-
pus, and 0, otherwise. The relation token is boldfaced
and entities are italic. Some high-scoring relations with
the label 0 are likely to be correct and are useful for
augmenting the set of extractions (§4). Many wrong
relations get lower scores (not shown here).

it uses embeddings from different spaces for the
relations r and q. This is a desired property since
contextual link prediction is directional, not sym-
metric: In Figure 1, we should predict own given
acquire, but not acquire given own.

3.3 Training

Given observed triple mentions m =
(e1, r, e2, c, s) ∈ D, we train a model to assign: a)
high scores to relations q that hold between the
entity-pairs, i.e., q ∈ R(e1, e2) or equivalently
(e1, q, e2) is a valid (extracted) triple. b) low
scores to relations q′ that do not hold between the
entity-pairs, i.e., q′ ∈ R(t1, t2) \ R(e1, e2), or
equivalently (e1, q

′, e2) is an invalid (not extracted)
triple. This can be seen as a multi-label classifica-
tion task. Each triple mention is an example with
a total number of |R(t1, t2)| binary labels, i.e.,
the number of relations with types t1 and t2. The
labels are relations that we wish to predict whether
they hold between the entity-pair (positive) or
not (negative). For example in Table 1, there is a
binary label for any of the relations sport, wear,
pose with, etc, given the triple mention. Among
the |R(t1, t2)| labels (relations), |R(e1, e2)| are
positive and |R(t1, t2)| − |R(e1, e2)| are negative.

We initialize the contextualized embeddings
with BERT pre-trained embeddings (Devlin et al.,
2019). We initialize the non-contextualized em-
beddings (i.e., ~q), and the matrices A0 and A1

ery context as in our method. Therefore, it does not scale
to the data size for open-domain contextual link prediction
(§5.2). In addition, this baseline does not take advantage of
the natural textual contexts of the hypothesis relations.

randomly. We fine-tune the contextualized em-
beddings and learn the other model parameters by
minimizing the following binary cross entropy loss:

L = −
∑

m=(e1,r,e2,c,s)∈D

[ ∑
q∈R(e1,e2)

log Pr
(
q|m

)
+

∑
q′∈R(t1,t2)\R(e1,e2)

log(1− Pr
(
q′|m)

)]
. (2)

4 Scoring Entailment between Relations

In this section, we describe our new entailment
score. We augment the set of input triples with
novel triples from the contextual link prediction
model. We compute entailment scores 0 ≤ wrq ≤
1 between relations r and q. We propose an en-
tailment score, named CNCE Markov chain (MC),
similar to the ConvE MC score of Hosseini et al.
(2019), but based on the contextual link prediction
score, as follows.

We form a bipartite graph with relations on one
side and triple mentions on the other side (Figure
3).7 We define the entailment score as the proba-
bility that a random walk (with length 2) from one
relation ends in another. In particular, we define
a Markov chain with relation states 〈r〉 as well as
triple mention states 〈m〉 as its nodes. Each re-
lation r has directed edges to its triple mentions
m ∈ D(r), where D(r) is defined as the set of
all triple mentions of r. On the other hand, each
mention m = (e1, r, e2, c, s) has directed edges
to a set of relations R(m) = R(e1, e2) ∪ U(m),
whereR(e1, e2) is the set of observed relations for
the entity-pair and U(m) ⊆ R(t1, t2) \ R(e1, e2)
contains a set of relations with high contextual link
prediction scores. For a relation u ∈ U(m), the
triple (e1, u, e2) is unobserved in the text corpus,
but is likely to be correct (e.g., pose with in Table
1). We augment the Markov chain with such con-
nections from mentions m to relations u. Figure
3 shows an example Markov chain, where dotted
links correspond to novel triples proposed by con-
textual link prediction. We define the transition
probabilities from relations to mentions uniformly,
and from mentions to relations as normalized con-
textual link prediction scores:

Pr(〈m=(e1, r, e2, c, s)〉|〈r〉) =
1

|D(r)|

Pr(〈q〉|〈m〉) =
Pr
(
q|m

)∑
r∈R(m) Pr(r|m

) ,
7 Previous work forms a bipartite graph with relations on one

side and entity-pairs on the other side.



2795

Cleveland Indians

Michael Bourn

contract

(A)

ac
qu

ire
co

nte
xt:

 c1

reach agreement on

context: c2

re
ac

h 
ag

re
em

en
t w

ith

co
nt

ex
t: 

c2

signed to

context: c3in
ter

es
ted

 in

c1: Big-spending Cleveland Indians continued their 
bold off-season by acquiring free agent outfielder 
Michael Bourn.
c2: The Indians reached agreement with Bourn on 
a four-year, $48 million contract on Monday night.
c3: The Indians signed free agent center fielder 
Michael Bourn to a four-year, $48 million contract.

reach agreement with

(B) acquire

interested in
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Figure 3: An example Markov chain. It has the
relations acquire, ’s purchase of, and own (r1, r2,
and r3) on the left, and the triple mentions m1 =
(e1, r1, e2, c1, s1) and m2 = (e1, r2, e2, c2, s2) on the
right, where e1 and e2 are Apple and Beats, c1 and c2
are textual contexts as in Figure 1, and s1 and s2 are
the indices of relation tokens. The edge weights show
transition probabilities. The dotted lines correspond to
novel triples found by contextual link prediction that
help adding the edge acquire entails own to the EG.

where Pr
(
q|m

)
is defined in Eq 1. We define the

CNCE MC entailment score as:

wrq = Pr(〈q〉|〈r〉)

=
∑

m∈D(r)

Pr(〈q〉|〈m〉) Pr(〈m〉|〈r〉). (3)

In order to form the Markov chain (Figure 3), we
first connect each triple mention m to its observed
relationsR(e1, e2). If the number of observed re-
lations |R(e1, e2)| is less than K=1008, we aug-
ment the Markov chain by connecting the mentions
to K−|R(e1, e2)| highest scoring relations (i.e.,
U(m)) corresponding to unobserved triples.

We then use entailment scores as the local entail-
ment scores and apply the global soft constraints
of (Hosseini et al., 2018) to learn global entailment
scores. We build EGs, whether local or global,
by applying a threshold on the entailment scores,.
For a threshold δ > 0, we build EGs where nodes
are relations r ∈ R, and edges include (r, q) with
wrq ≥ δ.9 In our experiments, we slide the thresh-
old in the range [0, 1] to build and evaluate EGs
with varying degrees of confidence.

5 Experimental Setup

We discuss the details of the corpus and training.

5.1 Text-Corpus with Triple Mentions
We perform our experiments on the NewsSpike
corpus that contains 550K news articles from var-
ious news sources (Zhang and Weld, 2013). We
8 K is tuned on an entailment dev set (Appendix A).
9 We learn a separate graph for each type-pair.

use the event-relation extraction pipeline of Hos-
seini et al. (2018) to extract triple mentions. They
process the corpus with GraphParser (Reddy et al.,
2014), a Combinatory Categorial Grammar (CCG;
Steedman, 2000) semantic parser. GraphParser
uses EasyCCG (Lewis and Steedman, 2014) to ex-
tract CCG dependencies for a sentence, constructs
a dependency graph, and traverses the graph from
each event node10 to an entity leaf node11. The
predicate string is formed by concatenating the
words in the traversed path. The triples are normal-
ized by lemmatizing the words. We analyze the
accuracy of the parser in Appendix B.

The parser outputs triples in addition to the in-
dices of relation tokens. We re-parse the corpus
and record each triple coupled with its context and
the indices of its relation tokens. We assign types
to the entities following (Hosseini et al., 2018).
They link each entity to Freebase using the AIDA-
light (Nguyen et al., 2014) entity linker; select the
most notable entity type from Freebase; and auto-
matically map it to FIGER types (Ling and Weld,
2012). FIGER types have at most two levels of
hierarchies, e.g., person/author. We use the 49
first-level FIGER types, e.g., person.

This process yields |D| = 8.5M triple mentions
for |K| = 3.9M unique triples. The number of
relations is |R| = 304K with a total number of 346
entity type pairs.

5.2 Training Details

We implemented our model using the Hugging
Face transformers library (Wolf et al., 2019). We
initialized the contextualized embeddings with
BERT-base.12 We used Adam (Kingma and Ba,
2015) with linear decay of learning rates to min-
imize the loss function defined in Eq 2. We ran-
domly split the triple mentions into training (95%),
development (2.5%) and test (2.5%) sets. We per-
form the split so that each entity-pair (e1, e2) and
its reverse are present in only one of the sets. This
constraint is important in evaluating contextual link
prediction since if we simply split randomly, iden-
tical triples (e1, r, e2) might exist in training, de-
velopment, and test sets in different contexts.

10Verb or preposition identified by the POS tags VB*, IN, TO,
POS.

11Noun, proper noun, or pronoun.
12We also tried RoBERTa-base (Liu et al., 2019), but the results

were similar. We could not use BERT-large or RoBERTa-
large because of memory constraints. We performed experi-
ments on NVIDIA P102 GPUs with 11GB of memory.
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We use a mini-batch size of b = 64 triple men-
tions. We construct mini-batches in a way that each
of them consists of triple mentions with the same
entity type pairs. Recall that (§3.3) each triple men-
tion m = (e1, r, e2, c, s) is considered as an ex-
ample with |R(t1, t2)| labels (relations) for multi-
label classification. Among those, |R(e1, e2)| are
positive, i.e., the relations that hold between the
entity-pair, and |R(t1, t2)| − |R(e1, e2)|) are neg-
ative. This causes a class imbalance problem, es-
pecially for type-pairs with many relations (up to
around 50K), since the number of positive relations
are typically ≤ 100, which leaves almost all of the
relations as negative.

To resolve this problem, we train on all positive
relations (first term of Eq 2 unchanged), but choose
a small subset of relations as candidate negatives
(second term of Eq 2 applied to fewer relations): a)
For each triple mention m, we use the positive rela-
tions from other triple mentions in the mini-batch
as negative relations, if those are not already among
the positive relations of m. For example, while pro-
cessing the triple mention in Table 1, if another
triple mention in the mini-batch has the positive
relations makes and propose, they will be used as
negative relations for the triple mention. b) We also
choose a random subset of all the relations with the
same entity types as negative candidates for the
whole mini-batch. This random subset has the size
of (up to) the positive relations of the whole mini-
batch. The training data consists of 8.1M triple
mentions. It has a total of 435M positive labels and
a total of 7128M negative labels. This corresponds
to around 54 positive labels (880 negative labels)
per triple mention on average.

We tuned hyperparameters by maximizing the
mean average precision (MAP) of contextual link
prediction in the development set. To compute
the MAP, we rank the predictions of each dev/test
triple mention from highest to lowest. We compute
average precision by computing the precision value
of one relation at a time. For the example in Table 1,
the average precision is: (1/1+2/2+3/6+. . .)/n,
where n is the number of relations that hold for
(Carrie Underwood, necklace). We then compute
the mean of average precisions.

For each contextualized embedding ~m, we have
many (typically ≥100) non-contextualized embed-
dings. Therefore, each contextualized embedding
will be usually updated ≥100 times the number
of updates for non-contextualized embeddings. In

ConvE .230
TuckER .263
CNCE .333

ABLATION STUDIES
CNCE w/o Entity Order Flag .319
CNCE w/o BERT Layers Update .321

Table 2: MAP of relation prediction given triple men-
tions evaluated on the NewsSpike test set.

practice, this causes the contextualized embeddings
to be significantly affected by the randomly initial-
ized non-contextualized embeddings. In order to
resolve this issue, we tuned initial learning rates
separately: 10−6 for contextualized embeddings,
and 10−4 for non-contextualized embeddings and
the matrices A0 and A1. We found that 40 tokens
are sufficient for the context, where the context can
cross multiple sentences. We optimized the model
for 10 epochs. We discuss the hyper-parameter
range and tuning details in Appendix A.

6 Results and Discussion

We first evaluate our proposed method for the open-
domain contextual link prediction task (§6.1). We
then investigate the complementarity of contextual
link prediction and EGs (§6.2 and §6.3).

6.1 Evaluating Contextual Link Prediction

We evaluate our proposed method, CNCE, against
standard link prediction baselines. We compute
the MAP of predicting hypothesis relations q that
hold between the entity-pairs in a triple mention
m = (e1, r, e2, c, s). We assume all models pre-
dict the trivial relation r correctly.13 Standard link
prediction is usually evaluated by predicting the
entity e2 given the first entity and the relation, i.e.,
(e1, r, ?). In our experiments, we predict the cor-
rect relations holding between the entity-pair, i.e.,
(e1, ?, e2). We compare the following models.

CNCE is our novel model that calculates
Pr(q|m) (Eq 1) as the contextual link prediction
score. We used two standard non-contextual link
prediction methods, ConvE (Dettmers et al., 2018)
and TuckER (Balazevic et al., 2019), which are
among the state-of-the-art link prediction methods.

Table 2 shows the results. CNCE outperforms
the standard link prediction models that do not use
the textual context of the triples, confirming that
our proposed model can effectively use the context
while performing KG completion.

13Without this assumption, the results of all models drop.



2797

We perform ablation of CNCE. We test the
model without the entity order flag, i.e., o(r) = 0
for all relations. In addition, we freeze the BERT
layers, which means just using BERT as a feature
extractor. In both cases, the MAP decreases.

6.2 Contextual Link Prediction Assists EGs

We compare the EGs obtained by our proposed en-
tailment score (§4) with previous state-of-the-art
EGs on the Levy/Holt’s entailment dataset (Levy
and Dagan, 2016; Holt, 2018). For the experiments
of this section, we compute the entailment scores
using all the NewsSpike triple mentions, not only
the training, since we evaluate on an external en-
tailment dataset. The dataset contains 18, 407 ex-
amples (3,916 positive and 14,491 negative) split
into development (30%) and test (70%) sets. Each
example has a premise triple which either entails
a hypothesis triple (positive label), or does not en-
tail it (negative label). For instance, Cadmium, is
released into, the air entails Cadmium, is found in,
the air. We use the entailment score between the
typed relations of each example such as released
into (Chemical_element, Thing) and is found in
(Chemical_element, Thing). We predict positive
if the score is greater than or equal to a threshold,
and negative, otherwise. We plot precision-recall
curves by changing the threshold between [0, 1].
Similar to Hosseini et al. (2018, 2019), we report
the area under the precision-recall curves for preci-
sions >0.5.

We evaluate the EGs obtained by the follow-
ing entailment scores. CNCE MC is our novel
entailment score (Eq 3) that uses CNCE to com-
pute transition probabilities in the Markov chain.
ConvE/TuckER MC is the model of Hosseini
et al. (2019), where entailment scores are com-
puted based on a Markov chain between relations
on one side and entity-pairs on the other side (as
opposed to our Markov chain with triple mentions
on the second side). The transition probabilities
are computed by a standard link prediction method
such as ConvE or TuckER.14 Balanced Inclusion
(BInc) is a Sparse Bag-of-Word model (Szpektor
and Dagan, 2008) used by Hosseini et al. (2018).

For the link prediction methods we report results
in two settings. No Aug means that we only use
the triples extracted from the text-corpus and do
not augment them with novel triples from standard

14The previous work has only reported results with ConvE, but
we also repeated their experiments with TuckER.

LOCAL GLOBAL
NO AUG AUG NO AUG AUG

BInc .076 - .165 -
ConvE MC .079 .085 .174 .187
TuckER MC .071 .082 .162 .184
CNCE MC .084 .096 .176 .195

Table 3: Area under the precision-recall curves of
EGs on the Levy/Holt’s dataset (precision >0.5). We
compare our CNCE MC model with BInc (Szpek-
tor and Dagan, 2008; Hosseini et al., 2018), and
ConvE/TuckER MC (Hosseini et al., 2019).

or contextual link prediction. In this setting, the
link prediction is only used to compute transition
probabilities in the Markov chains. Aug means that
we add the novel triples (the dotted links in Figure
3) before computing the entailment scores.

Table 3 shows the results of EGs in local and
global settings. The plots are shown in Appendix
C. Our proposed score outperforms the previous
scores across all settings. We can also see that aug-
menting the triples improves the results for all the
link prediction based entailment scores. The aug-
mentation alleviates the sparsity of EGs by adding
more connections between the relations (e.g., ac-
quire → own in Figure 3). The comparison be-
tween CNCE MC and ConvE/TuckER MC, i.e.,
the previous state-of-the-art EGs, confirms that con-
textual link prediction is more effective than stan-
dard link prediction in finding new high-quality
triples to augment the extracted triples. We also
observe similar results on the strictly directional
portion of the dataset (Appendix D).

6.3 EGs Assist Contextual Link Prediction

We test whether we can use context-independent
EGs to improve the contextual link prediction task.
We evaluate the following additional models.

EG is based on CNCE MC scores, without any
augmented triples. Aug EG is based on the CNCE
MC scores, computed with augmented triples.15

Given a triple mention m = (e1, r, e2, c, s), we
use the entailment score wrq to decide whether
the triple (e1, q, e2) should be added to the KG.
Note that while textual contexts have been used
to compute the entailment scores wrq (Eq 3), the
EG baselines are context-independent: They only
look at the entailment score between the relations
r and q, but do not use the textual contexts c of the
triples. In addition, we consider the combination of

15We could use any entailment scores, but we tried the best
performing ones on the Levy/Holt’s dev set.
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CNCE .333
EG .317
Aug EG .328
CNCE + EG .355
CNCE + Aug EG .357

Table 4: MAP of relation prediction given triple men-
tions evaluated on the NewsSpike test set.

CNCE and the EGs: CNCE + (Aug) EG, is the
linear summation β Pr(q|m) + (1− β)wrq, where
β ∈ [0, 1] is a hyper-parameter.16

Table 4 shows the results. Our contextual CNCE
(.333) model outperforms the context-independent
EGs. Between the EG baselines, the augmented
one (.328) gets better results than the basic one
(.317) showing that the augmentation technique
is effective, similar to our findings in Section 6.2.
Combining CNCE and EGs yields further improve-
ments (.355 and .357) showing that EGs contain
complementary information that further strengthen
contextual link prediction.

We perform qualitative analysis of the best com-
bined model (CNCE + Aug EG) to check the com-
plementarity of the two approaches. Table 5 (top)
shows an example from NewsSpike where EGs
perform better than CNCE. For example, the em-
beddings of some infrequent relations such as falls
on have not been learned well and they get a high
contextual score by CNCE, but the EGs do not con-
tain these wrong predictions. On the other hand,
Table 5 (bottom) shows an example where CNCE
improves the results of the EGs. The extracted
triple is Microsoft, is committed to, success. The
EGs predict high scores for wrong relations such
as Microsoft, builds, success. This is because the
typing system has assigned the general type Thing
to the entity success as well as many other enti-
ties such as relationship.17. The entailment signal
comes from extractions such as NATO, is commit-
ted to, relationship and NATO, builds, relationship.
Therefore, the EGs conflate different senses of the
relation build. However, CNCE disambiguates the
context. In addition, the scores of some correct
relations (e.g., achieves) are increased by CNCE.

7 Conclusions

We have introduced the contextual link prediction
problem and proposed a model (CNCE) for it.
We trained CNCE on a corpus of triple mentions.
16We tuned β = 0.05 using the NewsSpike dev set.
17The type Thing is assigned to entities that are not linked to

any entity in Freebase or their Freebase types do not have a
mapping to FIGER types.

EGS IMPROVE CNCE
Triple Apple, is working on, watch
Predictions Watch, falls on, Apple (0) 21→23

Apple, ’s, watch (1) 5→2

Apple, has, watch (1) 12→7

Apple, launches, watch (1) 20→15

Apple, tests, watch (1) 98→41

CNCE IMPROVES EGS

Triple Microsoft, is committed to, success
Predictions Microsoft, builds, success (0) 3→5

Microsoft, switches to, success (0) 18→81

Microsoft, ’s, success (1) 4→2

Microsoft, achieves, success (1) 108→6

Microsoft, hopes for, success (1) 116→37

Table 5: Extracted triples and example predictions for
relations of types (Organization,Thing). The true la-
bel for each prediction is written in brackets, where (1)
means the triple is part of the unseen development set
KG, and (0) means otherwise. The ranking of each
predicted relation among all relations is written both
for the individual model (left-hand side of the arrow)
and the combined model (right-hand side of the arrow).
Top) Context: Apple is working on a high-tech watch.
EGs improve CNCE. Bottom) Context: Microsoft is
committed to the long term success of the entire PC
ecosystem. CNCE improves EGs.

We have shown that our model outperforms stan-
dard link prediction models in completing an open-
domain KG. We used the model to assign scores to
both observed and novel triples. We defined entail-
ment scores between relations by using both sets
of triples. Our empirical evaluation shows that the
resulting entailment graph is stronger than one built
on observed triples alone. We have also shown that
the learned EGs further improve the contextual link
prediction task.
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A Hyperparameter Details

We tuned the hyperparameters using grid search or
manually as specified below. We tuned the hyper-
parameters for training (§5.2) as well as evaluating
contextual link prediction (§6.1) using the MAP
of the NewsSpike development portion. We tuned
the hyperparameters of the inference (§4) on the
Levy/Holt’s development dataset.

The hyper-parameters for training are tuned as:

• Initial learning rate for contextual-
ized embeddings: 10−6 selected from
{10−4, 10−5, . . . , 10−8}

• Initial learning rate for non-contextualized
embeddings: 10−4 selected from
{10−2, 10−3, . . . , 10−6}

• Mini-batch size: 64 which was the highest
possible size. Also tried 32.

• Number of training epochs: We used 10.
The results stayed similar after 3 epochs.
Training takes around 5 days to complete.

• Number of context tokens: 40 tokens (up to
20 tokens at each side of the relations). Small
windows (e.g., 4 tokens) yielded worse results
and more tokens were not feasible. The re-
sults were not very sensitive to the number of
tokens.

The hyper-parameters for evaluating contextual
link prediction are tuned as:

• β: We tuned β=0.05, for com-
bining CNCE and EGs, from
{0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7}.

The hyper-parameters for inference when build-
ing the EGs are tuned as:

• K (number of connections for relation as
specified in Section 4): We used K = 100.
K = 40 had worse results and K = 300
yielded similar results, but larger graphs.

• Mini-batch size: The new relations for
adding to the Markov chain (i.e., data augmen-
tation) are selected from a candidate set con-
taining relations in the current mini-batch at
the inference time. We used a mini-batch size
of 512 triple mentions at the inference time
that gives us a relatively high number of can-
didate relations. 512 was the highest possible

size to give reasonable entailment graph build-
ing time (around 10 days). Smaller mini-batch
sizes (256 and 128) yielded slightly worse re-
sults.

• α: In the augmented CNCE MC model,
we multiplied the contextual link prediction
scores of the new connected relations by a
factor α ∈ [0, 1] before computing the chain
probabilities and the entailment scores. This
guides the entailment scores to rely more on
the original connections and is useful to im-
prove the precision of the graphs. We tuned
α = 0.5 based on the development set of the
Levy/Holt’s entailment dataset. We tuned α =
0.5 selected from α = {0.3, 0.5, 0.7, 1.0}

B Analyzing the semantic parser output

In this section, we report the result of our analysis
of the semantic parser that we used to extract the
triple mentions (§5.1). We analyzed 100 randomly
extracted triples. The exact tuple match precision
is 73.8% and the token-based precision is 87.5%,
which is relatively high compared to existing ope-
nIE systems (Bhardwaj et al., 2019; Lechelle et al.,
2019). Compared to OpenIE, CCG extractions gen-
erate better triples for sentences with long-range
dependencies as well as those involving coordina-
tion.

C Entailment Graph Precision-Recall
Curves

Figure 4 shows the precision-recall curves of eval-
uating the EGs on the Levy/Holt’s dataset in (A)
local and (B) global settings. We have not shown
the ConvE MC model and TuckER (Aug) MC mod-
els for more clarity.

D Evaluating Directionality of
Entailment Graphs

We evaluate all models on the directional portion of
the Levy/Holt’s dataset. This portion is a subset of
the main dataset and contains 2414 examples (630
in dev and 1784 in test). For any triple pair in this
portion, the reverse of the pair is also present. The
entailment is correct in one direction and incorrect
in the other. For example, Printing press was in-
vented by Gutenberg entails Gutenberg developed
the printing press; however, the entailment is not
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Figure 4: Comparison of the EGs based on the new entailment scores CNCE Aug MC and CNCE MC with
previous state-of-the-art EGs on the Levy/Holt’s dataset in (A) local and (B) global settings.
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Figure 5: Comparison of models on the directional por-
tion of the Levy/Holt’s dataset (global setting).

correct in the opposite direction.18 This makes
the task much harder than the one of the original
dataset. Even a perfect paraphrasing model (two-
way entailment) gets the precision of exactly 0.50.
Therefore, the model needs to specifically score the
entailment in one direction above the other direc-
tion. For the original dataset, a symmetric score
such as Lin score (Lin, 1998), that is only aware
of relatedness between relations but cannot distin-
guish the directions, can still solve many examples
correctly and yield high precision values (Hosseini
et al., 2018).

We report the area under the curves in the global
setting in Table 3 for recall≤ 0.33 that are covered
by all models. Figure 5 shows the precision-recall
curves for global models. We have not shown the
ConvE MC model and TuckER (Aug) MC models

18During the data annotation, one of the arguments is masked
with its type so that world knowledge does not bias the data
(Levy and Dagan, 2016).

BInc .155
ConvE MC .159
Aug ConvE MC .163
TuckER MC .156
Aug TuckER MC .161
CNCE MC .159
Aug CNCE MC .165

Table 6: Area under the precision-recall curve on the
directional portion of the Levy/Holt’s dataset (recall
≤0.33) (global setting).

for more clarity. In order to have a fair comparison
between Aug ConvE MC, Aug TuckER MC, and
Aug CNCE MC models, we also computed the
area under the curve for recall ≤ 0.48 that is cov-
ered by the three models with augmented triples:
the area under the curves are .250, .246 and .251,
respectively. The results show that defining the
entailment scores on a Markov chain as the prob-
ability that a path (of length 2) from one relation
ends in another relation is a relatively effective
way to predict directional entailments. Augment-
ing the Markov chains with additional links further
improves the results. Note that while Aug ConvE
MC and Aug CNCE MC models get better over-
all results, the precisions for all models are still
relatively low (≤ 0.60). In addition, the precision
is not high even for low recalls meaning that the
models cannot separate the directionality of the
entailments well even if the entailment scores are
very high. This calls for more research on finding
the direction of the relational entailments.


