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Abstract

Unifying acoustic and linguistic representa-
tion learning has become increasingly cru-
cial to transfer the knowledge learned on the
abundance of high-resource language data for
low-resource speech recognition. Existing ap-
proaches simply cascade pre-trained acoustic
and language models to learn the transfer from
speech to text. However, how to solve the rep-
resentation discrepancy of speech and text is
unexplored, which hinders the utilization of
acoustic and linguistic information. Moreover,
previous works simply replace the embed-
ding layer of the pre-trained language model
with the acoustic features, which may cause
the catastrophic forgetting problem. In this
work, we introduce Wav-BERT, a cooperative
acoustic and linguistic representation learning
method to fuse and utilize the contextual in-
formation of speech and text. Specifically, we
unify a pre-trained acoustic model (wav2vec
2.0) and a language model (BERT) into an
end-to-end trainable framework. A Represen-
tation Aggregation Module is designed to ag-
gregate acoustic and linguistic representation,
and an Embedding Attention Module is intro-
duced to incorporate acoustic information into
BERT, which can effectively facilitate the co-
operation of two pre-trained models and thus
boost the representation learning. Extensive
experiments show that our Wav-BERT signif-
icantly outperforms the existing approaches
and achieves state-of-the-art performance on
low-resource speech recognition.

1 Introduction

Recently, Automatic Speech Recognition (ASR)
has achieved remarkable success, which can be
attributed to two complementary aspects: 1) de-
signing more effective and larger deep neural net-
works for ASR, and 2) training on a large amount
of data (Chan et al., 2016; Watanabe et al., 2017b;
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Amodei et al., 2016). However, in practice, un-
like the commonly used languages (e.g. English
and Chinese) with sufficient training data, many
other languages (e.g. Swahili, Tamil) have only
low-resource data due to the scarcity of audios and
the huge labor resources consumed in transcription.
In this way, the aforementioned data-driven mecha-
nism is impractical for low-resource languages and
thus suffers from unsatisfactory performance.

To resolve this learning difficulty in the low-
resource domain, many efforts have been devoted
to leveraging unlabeled data. One mainstream
research paradigm is unsupervised pre-training,
or representation learning, which has achieved
great success in natural language processing (De-
vlin et al., 2018; Peters et al., 2018) and received
increasing attention in speech recognition (Oord
et al., 2018; Schneider et al., 2019a). As a repre-
sentation in this line, wav2vec (Schneider et al.,
2019a) and wav2vec 2.0 (Baevski et al., 2020) ap-
ply unsupervised contrastive pre-training and show
promising results. To utilize linguistic informa-
tion, some works (Chiu and Chen, 2021; Shin et al.,
2019) also aim to build language models to rescore
the N -best hypotheses generated by acoustic mod-
els. The most recent approach (Yi et al., 2021) even
cascaded the pre-trained wav2vec 2.0 and BERT
into a single model for low-resource ASR.

However, there leave two critical challenges
on how to integrate the acoustic model and lan-
guage model to utilize the contextual information
of speech and text. 1) Representation discrepancy:
the acoustic model focuses more on local depen-
dencies of the speech sequence, while the language
model aims at capturing long-term semantic in-
formation of texts. It is desired to explore an ef-
fective model to fuse and leverage the two kinds
of representation. 2) Embedding inconsistency:
The language model applies a token embedding
layer during pre-training but previous methods (Yi
et al., 2021) simply replace the embedding layer
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with the features generated by the acoustic model,
which may result in the catastrophic forgetting
problem (Goodfellow et al., 2013).

To tackle the above challenges, in this work, we
make the first attempt to successfully integrate the
well-trained acoustic model and language model
for low-resource speech recognition. Towards this
end, we introduce a new framework that incor-
porates the two kinds of pre-trained models for
cooperative acoustic and linguistic representation
learning by exploiting complementary contextual
information of both speech and text.

First, to solve representation discrepancy, un-
like the previous works (Yi et al., 2021; Yu and
Chen, 2021) that simply connect the acoustic model
and the language model by treating them as an en-
coder and a decoder, we consider them as two en-
coders that provide two different representations.
Specifically, we propose a Representation Aggrega-
tion Module, a plug-in component to better exploit
and fuse the acoustic and linguistic information.
We design and evaluate several representation ag-
gregation mechanisms, including Gated Acoustic-
Guided Attention, Gated Linguistic-Guided Atten-
tion, and Gated Cross-Modal Attention. The ex-
perimental results show the proposed Gated Cross-
Modal Attention is the most effective method for
representation aggregation.

Second, to fill the gap of embedding inconsis-
tency, we introduce an Embedding Attention Mod-
ule to incorporate the acoustic features into BERT
by a gated attention process, which not only pre-
serves the capability of BERT but also takes advan-
tage of acoustic information. Moreover, as BERT
requires audio transcripts as input to create word
embedding, it may be easy to overfit when using
ground truth transcripts. On the other hand, it is
also hard to converge when using transcripts pre-
dicted by the acoustic model. To facilitate the coop-
eration of the two encoders, we propose a sampling
strategy with decay to randomly select the ground
truth and generated transcripts for smooth training.

We adopt pre-trained wav2vec 2.0 (Baevski et al.,
2020) and BERT (Devlin et al., 2018) as the en-
coders to provide acoustic and linguistic represen-
tations respectively for their flexible pre-training
then fine-tuning paradigm as well as excellent lo-
cal contextual modeling ability. Accordingly, we
denominate our method as Wav-BERT.

We evaluate our method on several datasets with
diverse languages from the public IARPA BABEL

dataset (Gales et al., 2014) and AISHELL-1 cor-
pus (Bu et al., 2017). The experimental results
demonstrate that our Wav-BERT significantly out-
performs the existing approaches on low-resource
ASR. Furthermore, our exhaustive ablation stud-
ies demonstrate the effectiveness of the proposed
mechanisms for cooperative acoustic and linguistic
representations learning. We hope this work will
be useful for the community on the way to explore
different pre-trained models for low-resource ASR.

2 Related Work

2.1 Low resource speech recognition

To tackle the low-resource ASR task, transfer
learning ASR (Kunze et al., 2017) and multilin-
gual transfer learning ASR (Dalmia et al., 2018;
Watanabe et al., 2017a; Toshniwal et al., 2018)
are explored via using different source languages
to improve the performance of low-resource lan-
guages. Meta-learning approaches (Finn et al.,
2017; Nichol et al., 2018) are also adopted for low-
resource ASR (Hsu et al., 2020; Xiao et al., 2021)
to obtain fast adaptation ability to new tasks with
only a few data through meta-learning a model ini-
tialization from training tasks. In addition, recent
works utilize unsupervised pre-training (Schneider
et al., 2019b; Chung and Glass, 2020) and semi-
supervised learning (Kahn et al., 2020; Li et al.,
2019) to exploit a large amount of unlabeled data
to learn general representations for low-resource
adaptation. Among them, Wav2vec 2.0 (Baevski
et al., 2020) achieved excellent results through
self-supervised learning, which learns powerful
and contextual acoustic representations of a large
speech audio corpus by solving contrastive tasks
that require identifying the true quantized latent
speech representations for masked time steps. Then
it shows strong feasibility of ultra-low resource
speech recognition with even only 10 minutes of
labeled data.

2.2 Speech recognition with BERT

To use the linguistic information from BERT (De-
vlin et al., 2018) for improving ASR performance,
some works (Chiu and Chen, 2021; Shin et al.,
2019; Wang and Cho, 2019) use BERT to re-
rank the N-best hypotheses generated by the ASR
model. Besides, knowledge distillation (Futami
et al., 2020) is explored to use BERT as a teacher
model to guide ASR model training. Moreover,
some recent works (Yi et al., 2021; Yu and Chen,
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Figure 1: Comparison of the architectures of different approaches to fuse BERT into the ASR model. (a) Rescoring
methods use BERT to rescore N -best hypotheses generated by wav2vec 2.0 ASR (Shin et al., 2019). (b) Cascade
methods directly cascade the BERT decoder on the top of the wav2vec 2.0 encoder through Length Alignment
module (Yi et al., 2021). (c) Adapter-BERT inserts adapter modules in each BERT layer (Guo et al., 2020). (d) Our
Wav-BERT introduces a Representation Aggregation Module for aggregate acoustic and linguistic representation
and an Embedding Attention Module to incorporate acoustic information into text embedding.

2021; Winata et al., 2020) further combine BERT
with the ASR model into a unified model and train
the model in an end-to-end way. But Yi et al.
and Yu et al. both simply connect BERT and the
ASR model in series without considering the con-
textual information of speech and text (Yi et al.,
2021; Yu and Chen, 2021). Winata et al. (Winata
et al., 2020) modified mBERT model into an auto-
regressive decoder and insert a cross-attention layer
in each mBERT layer, but the deep bidirectional
information of pre-trained BERT cannot be fully
utilized in the auto-regressive mode.

3 Preliminaries

Here we briefly introduce the architectures of
acoustic and linguistic encoders in our framework.
Wav2vec 2.0. We adopt wav2vec 2.0 (Baevski
et al., 2020) as our acoustic encoder because of
its effectiveness and efficiency. It has two stages:
(i) contrastive pre-training to learn representations
of speech and (ii) fine-tuning to adapt the learned
representations on labeled data with connectionist
temporal classification(CTC) loss (Graves et al.,
2006b) for downstream speech recognition tasks.
In this work, we aim to utilize the public pre-trained
model and mainly focus on the fine-tuning stage.
The architecture of wav2vec 2.0 contains a feature
encoder, a context network with a transformer and
a quantization module. During fine-tuning, the
quantization module is removed and a randomly
initialized linear projection layer is attached on top
of the context network.
BERT. BERT (Devlin et al., 2018) is employed as
our linguistic encoder since it is one of the most
popular text pre-training approaches and has shown
remarkable performance in many downstream nat-
ural language processing tasks. It also consists of

two steps: (i) self-supervised pre-training to learn
deep bidirectional linguistic representations from
a large text corpus and (ii) fine-tuning to adapt
to downstream tasks using labeled data. BERT
consists of an embedding table, a multi-layer bidi-
rectional Transformer encoder, and an additional
output layer for fine-tuning.

4 Wav-BERT

4.1 Motivation

To transfer the knowledge learned on the abun-
dance of high-resource language data for low-
resource speech recognition, many efforts have
been devoted to unifying acoustic and linguistic
representation learning. We first categorize previ-
ous methods and then introduce our solution.

As shown in Figure 1 (a), one simplest way to
fuse BERT into an acoustic model in speech recog-
nition is rescoring (Chiu and Chen, 2021; Shin
et al., 2019). It uses BERT as a language model
to calculate the pseudo-log-likelihood scores of
text sentences for reranking the N -best hypotheses
generated by the acoustic model. However, this
process is time-consuming as it needs to iteratively
mask each word in the sentence for inference and
then sum up the scores of all masked words. It also
requires tuning many hyper-parameters by repeti-
tive experiments, e.g. beam size, balanced weights
of the language and acoustic models.

Recently, some works (Yi et al., 2021; Yu and
Chen, 2021) directly cascade the decoder BERT
on the top of the acoustic encoder, as illustrated
by Figure 1 (b). However, such a simple cascade
often cannot well fuse the contextual information
of speech and text.

Inspired by AB-Net (Guo et al., 2020), we design
Adapter-BERT that inserts cross-attention adapters
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Figure 2: Our Wav-BERT framework, which is composed of two main parts: 1) Representation Aggregation
Module that combines a Gated Acoustic-Guided Attention (Left) and a Gated Linguistic-Guided Attention (Right)
to construct a Gated Cross-Modal Attention. 2) Embedding Attention Module that includes a Gated Attention and
a "Sampling with Decay" mechanism.

in each BERT layer with the Mask-Predict algo-
rithm (Ghazvininejad et al., 2019) to fully utilize
the bidirectional information of the input sequence,
as shown in Figure 1 (c). Nevertheless, the adapters
in each layer of BERT will affect the pre-trained
parameters of BERT, causing catastrophic forget-
ting. Moreover, the Mask-Predict decoding suffers
from low inference speed.

To solve the representation discrepancy and em-
bedding inconsistency between speech and text,
in this work, we introduce Wav-BERT, a cooper-
ative acoustic and linguistic learning framework
that fuses and leverages the contextual information
of speech and text from the representation level
to the embedding level, as shown in Figure 1 (d).
We first present an independent Representation Ag-
gregation Fusion Module for acoustic and linguis-
tic representation aggregation, without inserting it
in any pre-trained model to avoid destroying the
parameters of pre-trained models. Then, an Em-
bedding Attention Module is introduced to better
combine acoustic and linguistic embedding instead
of simply replacement.

4.2 Our Wav-BERT

The architecture of our Wav-BERT is illustrated in
Figure 2. Specifically, wav2vec 2.0 encoder takes
raw waveform X as input and outputs acoustic
representation HA, which is then fed into a lin-

ear projection layer with CTC loss (Graves et al.,
2006b) (Lctc1) and the Representation Aggrega-
tion Module respectively. For the input of BERT
encoder, we employ “Sampling with Decay" mech-
anism to sample from the masked ground truth Y r

or wav2vec 2.0 CTC output YCTC1 with probability
p and 1− p, so as to narrow the gap between train-
ing and inference. Next, word embedding E and
acoustic embedding HA are fed into the Gate At-
tention to model the conditional information from
the wav2vec 2.0 encoder side. Through the subse-
quent BERT transformer layers, we get the linguis-
tic representation HL. Finally, the Representation
Aggregation Module takes linguistic representa-
tion HL as well as acoustic representation HA as
input, generating the CTC output YCTC2 and cross-
entropy (CE) output YCE , supervised by the CTC
(Lctc2) and CE (Lce) criterion respectively. Simul-
taneously, the conditional masked language model
(CMLM) objective (Lcmlm) (Guo et al., 2020) is
also attached on BERT encoder followed by a feed-
forward layer to supervise the BERT output Y m.
Overall, the objective of our framework is defined
as:

where µ1, µ2, µ3 and µ4 are the corresponding
loss weights.

4.2.1 Representation Aggregation Module
To solve representation discrepancy, we first design
several representation aggregation mechanisms,
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such as Gated Acoustic-Guided Attention, Gated
Linguistic-Guided Attention. In our Representa-
tion Aggregation Module, we combine a Gated
Acoustic-Guided Attention (Left) and a Gated
Linguistic-Guided Attention (Right) to construct a
Gated Cross-Modal Attention for better exploiting
and aggregating the acoustic and linguistic repre-
sentations.

Specifically, Gated Cross-Modal Attention Mod-
ule takes acoustic representation HA generated by
wav2vec 2.0 as well as linguistic representation
HL generated by BERT as input and feeds them as
the query, key, and value vector respectively to a
multi-head attention, which can be formulated as:

CA = ATT(QHA
,KHL

, VHL
), (1)

CL = ATT(QHL
,KHA

, VHA
), (2)

where QHA
means passing HA as query vector,

KHL
as well as VHL

means passing HL as key and
value vector respectively. CA is the acoustic guided
context feature generated by attention which tend to
focus on the values in the linguistic representation
HL related to acoustic representation HA. Vice
versa, CL is the linguistic guided context feature to
focus on the values in the HA related to HL.

Next, the context feature CA and acoustic repre-
sentationHA are fed into a gated weighting layer to
automatically capture the most important informa-
tion between context and acoustic representation,
and generating acoustic-guided linguistic represen-
tation HAGL, which can be formulated as:

ΦA = sigmoid(W1[CA;HA] +B1), (3)

HAGL = HA + ΦACA, (4)

where W1 as well as B1 are model parameters and
ΦA is the gated weight.

Similarly, the context feature CL and linguis-
tic representation HL are fed into another gated
weighting layer to weigh the expected importance
ΦL and generate linguistic-guided acoustic repre-
sentation HLGA, which can be formulated as:

ΦL = sigmoid(W2[CL;HL] +B2), (5)

HLGA = HL + ΦLCL, (6)

where W2 as well as B2 are model parameters and
ΦL is the gated weight.

We then feed HAGL and HLGA to a feed-
forward layer followed by residual connection re-
spectively and get aggregation representationHA

as well asHL. Finally, two linear projection layers

are attached on the top of Representation Aggrega-
tion Module to get the YCTC2 and YCE . As the se-
quence length of YCTC2 is determined by acoustic
representation HA, we use CTC criterion to align
the acoustic frames of YCTC2 to the ground truth
tokens. On the other hand, the sequence length of
YCE is determined by linguistic representation HL,
so we use CE criterion to align the text sequence
of YCE to the ground truth transcript.

The different aggregation mechanisms includ-
ing Gated Acoustic Guided Attention, Gated
Linguistic-Guided Attention and Gated Cross-
Modal Attention are evaluated and compared in
Table 3.

4.2.2 Embedding Attention Module
Recent works (Yi et al., 2021; Yu and Chen, 2021)
directly connect the BERT on the top of the acous-
tic encoder and simply replace the embedding layer
with the acoustic features generated by the acoustic
encoder, causing the catastrophic forgetting prob-
lem.

To fill the gap of embedding inconsistency, we
propose the Embedding Attention Module and in-
sert it behind the embedding layer of BERT to
incorporate the acoustic information into the word
embedding instead of simply replacing them. We
first introduce a Gated Attention operation in this
module. As shown in Figure 2, word embedding
E generated by embedding layer is fed to a self-
attention layer followed by a feed-forward layer
to capture higher level linguistic embedding EL.
Then, a multi-head self-attention followed by a
gated weighting layer takes EL as the query vector
and acoustic embeddingHA generated by wav2vec
2.0 as the key vector as well as value vector to fuse
the linguistic embedding and acoustic embedding.
Thus, as a conditional masked language model,
BERT can learn to predict the masked word under
the conditional acoustic information and provided
enhanced linguistic representation.

Furthermore, for the input of the embedding
layer of BERT, it is easy to overfit when using
ground truth transcripts while it is hard to converge
when using transcripts predicted by wav2vec2.0 en-
coder. To solve this issue, we propose a "Sampling
with Decay" mechanism by feeding BERT either
the masked ground truth transcript Y r or the pre-
dicted CTC result YCTC1 with a certain probability
during training. The probability p of selecting from
Y r decreases linearly as the number of training
steps increases.
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Table 1: Results of low resource ASR on IARPA BA-
BEL in terms of CER (%).

Method Pre-trained Vi Sw Ta Avg
Mono-BLSTMP (Cho et al., 2018)

-
54.3 33.1 55.3 47.6

Multi-BLSTMP (Cho et al., 2018) 41.0 - 48.5 44.8
Multi-BLSTMP+ VGG (Cho et al., 2018) 37.4 - 45.5 41.5

wav2vec 2.0 (Baevski et al., 2020)
wav2vec 2.0

(Base)

21.8 15.5 29.3 22.2
wav2vec 2.0 w/ 4-gram (Baevski et al., 2020) 21.1 14.9 29.9 22.0
XLSR-Monolingual (Conneau et al., 2020) 25.2 26.8 36.0 29.3
XLSR-10 (Conneau et al., 2020) 21.7 16.6 30.5 22.9
BERT rescoring (Shin et al., 2019)

w/ mBERT
21.3 15.3 29.1 21.9

Adapter-BERT (Guo et al., 2020) 22.5 17.6 29.8 23.3
w2v-cif-bert (Yi et al., 2021) 24.1 21.5 41.9 29.2
our Wav-BERT 19.5 14.8 28.8 21.0
XLSR-10 (Conneau et al., 2020) wav2vec 2.0

(Large)
19.9 14.9 28.6 21.1

XLSR-53 (Conneau et al., 2020) 21.8 21.3 27.4 23.5
our Wav-BERT w/ XLSR-53 w/ mBERT 19.3 13.8 28.0 20.4

Through the Embedding Attention Module with
"Sampling with Decay" mechanism, we further in-
tegrate the acoustic and linguistic information from
the embedding level to facilitate better fusion be-
tween wav2vec 2.0 encoder and BERT encoder. Ta-
ble 4 verifies the effectiveness of each component
of our proposed Embedding Attention Module.

4.2.3 Inference
For inference, we first feed the result YCTC1 into
BERT encoder; then select the one with higher
confidence from the two outputs YCTC2 and YCE

as our final output.

5 Experiments

In this section, we first illustrate the implementa-
tion details of our Wav-BERT. Then we introduce
two low-resource speech recognition datasets con-
taining several languages as well as the comparison
results among our approach and baseline methods.
Furthermore, we conduct ablation studies to vali-
date the effectiveness of each main component of
our Wav-BERT and present some case studies for
perceptual comparison.
Implementation Details. For our proposed Rep-
resentation Aggregation Module and Embedding
Attention Module, the heads and embedding dimen-
sions of all multi-head attention are set to 8 and
768 respectively. Meanwhile, the inner-layer di-
mension of the position-wise feed-forward is set to
2048. Regarding optimization details, we train our
model as well as baselines based on wav2vec 2.0
Base for 200K steps with one GeForce RTX 3090
GPU, setting max tokens and update frequency
to 640000 and 4 correspondingly. As for experi-
ments using XLSR-53 (Conneau et al., 2020), three
GeForce RTX 3090 GPUs are used with max to-
kens as 480000 and update frequency as 4. We
use the three-stage learning rate policy with the

initial learning rate as 5e-5, and set each stage ratio
to 0.05, 0.45 and 0.5. Besides, we set the weight
µ1, µ2, µ3 and µ4 for each loss to 0.5 for training.
Other optimizer settings are the same as wav2vec
2.0 (Baevski et al., 2020). In terms of the "Sam-
pling with Decay" policy, languages in IARPA BA-
BEL start from 100K steps to 200K steps, while in
AISHELL-1 it starts from 40k steps to 100k steps,
all with p decreasing from 90% to 10%.
Datasets. IARPA BABEL (Gales et al., 2014) is an
open-source multilingual corpus of conversational
telephone speech. For low resource evaluation, we
randomly select 3 kinds of languages with few data:
Swahili (Sw), Tamil (Ta) and Vietnamese (Vi). We
adopt the same setup as (Conneau et al., 2020) and
use the dev folder of the BABEL dataset as our test
set since "eval" data are not released. We re-sample
audios of all languages to 16kHz. AISHELL-1 (Bu
et al., 2017) is an open-source and high-quality
Mandarin speech corpus, and is widely used in
the speech community, which contains 178 hours
of Mandarin speech data. Although the data is in
Chinese, a common used language, the quantity
is small. Thus, it can also verify our Wav-BERT
for low-resource data. Moreover, there are many
latest state-of-the-art methods on this dataset to be
compared.

For a fair comparison, we use the official
wav2vec 2.0 (Base/Large) model, XLSR-53, and
mBERT models as the initial encoders. All model
checkpoint download links are described in the ap-
pendix.

5.1 Results on IARPA BABEL

Table 1 reports the results on IARPA BABEL in
terms of character error rate (CER), where our Wav-
BERT achieves state-of-the-art performance on all
low-resource languages. We find some interest-
ing points comparing the results. First, the per-
formance of the methods without pre-training is
quite bad, which indicates that the conventional
end-to-end models are impractical for low-resource
languages due to the limited data. Second, the
pre-training models like wav2vec 2.0 and XLSR
largely improve the recognition accuracy thanks
to the powerful acoustic representation learned
from the huge amount of high-resource language
data. Third, in addition to the pre-trained acoustic
model, other methods also utilize a pre-trained lan-
guage model like mBERT while the results change
slightly or even become worse. One of the reasons
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Table 2: Results of ASR on AISHELL-1 in terms of
CER(%).

Method Pre-trained AISHELL-1
dev test

Kaldi chain (Yu and Chen, 2021)

-

- 7.5
Kaldi nnet3 (Yu and Chen, 2021) - 8.6
LAS (Shan et al., 2019) - 10.6
ESPnet (Transformer) (Karita et al., 2019) 6.0 6.7
SA-T (Tian et al., 2019) 8.3 9.3
SAN-M (Gao et al., 2020) 5.7 6.5
CAT (An et al., 2019) - 6.3
LFML (Chen et al., 2019) 6.2 6.7
LASO (Bai et al., 2021) 5.9 6.9
NAR-Transformer (Song et al., 2020) 5.6 6.3
Wenet (Zhang et al., 2020) - 4.7
LASO with BERT (Bai et al., 2021) BERT 5.3 6.1
NAR-BERT-ASR (Yu and Chen, 2021) 4.9 5.5
wav2vec 2.0 (Baevski et al., 2020)

wav2vec 2.0
7.9 8.4

wav2vec 2.0 (cn) (Baevski et al., 2020) 5.2 5.8
wav2vec 2.0 (cn) w/ 4-gram (Baevski et al., 2020) 4.5 4.9
BERT rescoring (Shin et al., 2019) 4.2 4.5
Adapter-BERT (Guo et al., 2020) wav2vec 2.0 6.9 7.3
w2v-cif-bert (Yi et al., 2021) w/ BERT 5.6 6.3
our Wav-BERT w/ wav2vec 2.0 3.8 4.0
our Wav-BERT w/ wav2vec 2.0 (cn) 3.6 3.8

Table 3: Results of different components in Representa-
tion Aggregation Module for ASR on IARPA BABEL
and AISHELL-1 named CN in terms of CER(%).

Method Vi Sw CN-dev CN-test Avg
Gated Cross-Modal Attention 19.5 14.8 3.8 4.0 10.5
w/o Gated Weighting 19.6 14.9 3.9 4.2 10.7
Gated Acoustic-Guided Attention 20.4 15.0 4.4 4.7 11.1
Gated Linguistic-Guided Attention 25.6 18.3 5.7 6.4 14.0

is that the methods that construct adapters in BERT
(ADapter-BERT) or simply combine BERT with
wav2vec 2.0 (w2v-cif-bert) inevitably suffer from
the embedding inconsistency problem and fail to
make the best use of pre-trained linguistic represen-
tation. As for our Wav-BERT, it effectively facili-
tates the cooperation of the pre-trained acoustic and
language models by the proposed fusion modules
from representation level to embedding level. As a
result, it can consistently improve the ASR results
for different low-resource languages. Moreover,
when the pre-trained model (e.g. wav2vec 2.0) be-
comes larger, the performance of our Wav-BERT
will be also improved while it requires more GPU
resources to tune the whole model.

Table 4: Results of different components in Embed-
ding Attention Module for ASR on IARPA BABEL and
AISHELL-1 named CN in terms of CER(%).

Method Vi Sw CN-dev CN-test Avg
Embedding Replacement 21.1 15.4 6.0 6.4 12.2
our Embedding Attention 19.5 14.8 3.8 4.0 10.5
w/o Sampling with Decay 22.0 15.7 5.7 6.2 12.4
w/o Gated Attention 20.7 15.3 4.1 4.3 11.1

5.2 Results on AISHELL-1

Table 2 reports the comparison results on
AISHELL-1. In addition to the baselines men-
tioned above, we also report more latest works
for comparison. The data quantity of this dataset
is larger than that of IARPA BABEL, so all the
methods perform much better. It also accounts for
that the performance distance between the meth-
ods with pre-trained models and those without pre-
trained models becomes small. During the methods
without pre-trained models, wenet (Zhang et al.,
2020) achieves the best results due to its advanced
CTC-Conformer (Graves et al., 2006a; Gulati et al.,
2020) architecture, better attention rescoring decod-
ing strategy and larger training epoch number. With
the pre-trained language model of BERT, NAR-
BERT-ASR (Yu and Chen, 2021) stacked a decoder
initialized by a pre-trained BERT model on the
top of the transformer encoder and achieves com-
petitive results on AISHELL-1. Regarding meth-
ods using the pre-trained acoustic model, the offi-
cial wav2vec 2.0 Base model that pre-trained on
960 hours of Librispeech corpus achieves great re-
sults as the model learned good representations of
speech. Furthermore, we also collect and use 1960
hours of public Mandarin speech data to pre-train
a wav2vec 2.0 (cn) model, which obtains better
performance on AISHELL-1 evaluation. In conclu-
sion, our Wav-BERT not only improves the perfor-
mance of both wav2vec 2.0 and wav2vec 2.0 (cn)
models, but also outperforms other state-of-the-art
methods unifying wav2vec 2.0 and BERT. It further
demonstrates the generalization of Wav-BERT on
different low-resource ASR datasets with different
data sizes.

5.3 Comparison of model fusion methods

As illustrate in Section 4.1, there are many differ-
ent model fusion methods to fuse the pre-trained
wav2vec 2.0 and BERT. We compare our Wav-
BERT with these methods and report the results
in Table 1 and Table 2. First, by using BERT to
rescore N -best hypotheses generated by wav2vec
2.0 with CTC beam search, rescoring (Shin et al.,
2019) (Figure 1 (a)) is slightly better than wav2vec
2.0, but its inference process is time-consuming.
Second, w2v-cif-bert (Yi et al., 2021) uses CIF to
connect wav2vec 2.0 and BERT in a cascade way
and replace word embedding with acoustic embed-
ding as input for BERT. It is better than wav2vec
2.0 in AISHELL-1 but worse in BABEL for the
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Table 5: Predicted examples on AISHELL-1 test set generated by Wav2vec 2.0, BERT rescoring, w2v-cif-bert and
our Wav-BERT. The differences words are marked with pronunciation. The wrong words are marked in red. The
translations of the sentences are also provided.

Method Predicted example with translation
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More than half of Wenzhou’s old aunt pretended to be her daughter and successfully cheated many young people into marriage..
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Wenzhou aunt year and half a hundred pretending to be daughters have successfully cheated into marriage, and there are many young people.

our Wav-BERT
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Wenzhou aunt is more than half a hundred years old, pretending to be her daughter, and has successfully cheated many young people into marriage.

reason that the mBERT is not as well trained as
the bert-base-chinese model, resulting in a more
severe catastrophic forgetting problem after replac-
ing its input. Third, Adapter-BERT that inserts
adapter modules into each BERT layer and tunes it
on the training data, has an inconspicuous improve-
ment or even performance degradation since the
insertion of adapters affects the pre-trained repre-
sentation of BERT. Finally, our Wav-BERT signif-
icantly surpasses other methods, which indicates
that our model can effectively exploit the acoustic
and linguistic information through the multi-level
hierarchical fusion. Besides, our cooperative learn-
ing methods can also help the pre-trained encoders
to avoid catastrophic forgetting of pre-training in-
formation so that the whole model can converge
faster and better.

5.4 Ablation Studies

5.4.1 Representation Aggregation Module

To investigate the effectiveness of our Rep-
resentation Aggregation Module, we present
results for Gated Linguistic-Guided Attention,
Gated Acoustic-Guided Attention, removing gated
weighting in Table 3. We can find that the effect
of gated weighting, while small, is still existent,
which can automatically measure the importance of
the acoustic and linguistic representation while ag-
gregating those two kinds of representation. Com-
pared with Gated Cross-Modal Attention, Gated
Acoustic-Guided Attention and Gated Linguistic-
Guided Attention increases the average CER by
0.6% and 3.5% respectively, which indicates that
the attention in each direction plays an important
role in our Representation Aggregation Module
while Gated Acoustic-Guided Attention makes a
greater contribution since speech recognition task
is more dependent on acoustic information.

5.4.2 Embedding Attention Module

The results in Table 4 further verify the effective-
ness of our Embedding Attention Module. First, we
report the result of Embedding Replacement that
simply replaces the original word embedding with
the acoustic embedding as the input of BERT like
previous works (Yu and Chen, 2021). As expected,
the performance is poor especially on AISHELL-1,
which indicates that such simple replacement meth-
ods will be affected by the embedding inconsis-
tency problem. In contrast, we solve this challenge
by the proposed Embedding Attention Module in-
cluding the sampling mechanism and Gated Atten-
tion, so that the performance is largely improved.
Second, when turning off "Sampling with Decay"
or Gated Attention, the average CER increased by
1.9% and 0.6% respectively. It demonstrates that
the "Sampling with Decay" mechanism effectively
alleviates the embedding inconsistency of BERT
between inference and training. Mover, the Gated
Attention effectively provides additional acoustic
information to the input of BERT, facilitating it to
capture more reliable linguistic representation.

5.5 Case Studies

We further present some case studies in Table 5, to
illustrate the importance of acoustic and linguistic
information for speech recognition. We provided
some transcript examples obtained from the base-
line methods and our Wav-BERT with the same
input from AISHELL-1 test set. The pronuncia-
tions of the keywords and the English translation
of the whole sentence are also provided. As can be
observed, all the baseline methods predict one or
two wrong words with similar pronunciation as the
wrong words, which leads to an unreasonable sen-
tence. On the contrary, thanks to the cooperative
learning of acoustic and linguistic information, our
Wav-BERT can successfully recognize the whole
sentence without any word error.
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6 Conclusion

In this work, based on the powerful wav2vec 2.0
and BERT models, we introduce cooperative acous-
tic and linguistic representation learning for low-
resource speech recognition. To solve the represen-
tation discrepancy and embedding inconsistency
challenges, we design a Representation Aggrega-
tion Module and an Embedding Attention Module
to facilitate the cooperation of the two pre-trained
models and thus boost the representation learning.
Extensive experimental results demonstrate that
our proposed Wav-BERT can significantly improve
low-resource ASR performances in different lan-
guages. In future work, we will investigate more ef-
fective modules to infuse more types of knowledge,
and apply our framework to more pre-trained mod-
els to promote the development of low-resource
speech tasks.
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A Datasets

Both IARPA BABEL dataset (Gales et al., 2014)
and AISHELL-1 (Bu et al., 2017) are open-source
and high-quality speech datasets, and are widely
used in the speech community. Among them,
AISHELL-1 can be downloaded for free here1, For
each speaker in it, around 360 utterances(about
26 minutes of speech) are released. Table 6 pro-
vides a summary of all subsets in the corpus. As
for IARPA BABEL, it can be purchased through
LDC2(eg. Vietnamese Language Pack3). Table 7
summarizes the amount of data in hours for the
language used in our experiments on the "Full Lan-
guage Pack" (FLP) condition. Researchers can
easily reproduce or compare our results with the
same languages.

Table 6: AISHELL-1 dataset statistics.

Subset Duration(hrs) Male Female
Training 150 161 179
Development 10 12 28
Test 5 13 7

Table 7: IARPA BABEL dataset statistics.

Language Train(hrs) Eval(hrs)
Vietnamese 87.72 11.00
Swahili 44.39 10.65
Tamil 69.35 11.68

B Ours Wav-BERT Model

Our model checkpoint described in Sec 5 can be
downloaded here. With limited storage space, thus
we only upload the model using wav2vec 2.0 Base.

1https://www.openslr.org/33/
2https://www.ldc.upenn.edu/
3https://catalog.ldc.upenn.edu/

LDC2017S01

https://drive.google.com/drive/folders/1lISXln7nzeOiuWPuyHOo_jBgtWKH77jS?usp=sharing
https://www.openslr.org/33/
https://www.ldc.upenn.edu/
https://catalog.ldc.upenn.edu/LDC2017S01
https://catalog.ldc.upenn.edu/LDC2017S01
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C Pre-trained Models

We use different pre-trained acoutic and language
models in our experiment described in Sec 5.
All of them are open-source except the wav2vec
2.0 (Baevski et al., 2020) pre-trained in Chinese
by ourselves. For pre-trained language models, the
bert-base-chinese model can be download here 4,
and the multilingual mBERT can be download
here 5. For pre-trained acoustic models, the of-
ficial wav2vec 2.0 pre-trained on English can be
download here 6, and the XLSR-53 (Conneau et al.,
2020) model can be downloaded here 7. Besides,
though the wav2vec 2.0(cn) pre-trained on 1,960
hours of Chinese data cannot open-source, both the
used training code and datasets are open-source,
which means researchers still can reproduce our
results. In details, we base on the Fairseq frame-
work 8 (Ott et al., 2019) to pre-train our model
8 GeForce RTX 3090 GPUs with max tokens
and update frequency setting to 1400000 and 8
respectively, consuming about one week to train
400K steps. Besides, the used datasets are DiDiS-
peech (Guo et al., 2021), PVTC 9, ST-CMDS 10,
aidatatang 11, AISHELL-1, AISHELL-3 (Shi et al.,
2020), MAGICDATA 12, MagicDataSpeech 13,
Primewords 14 and Thchs 15.

D Baselines

We describe some baseline methods below, which
are reproduced by ourselves or experimented with
the open-source code.

1. Wav2vec 2.0 w/ 4-gram: For each language,
results from the trained wav2vec 2.0 model
with beam search, are rescored by the 4-
gram language model. Specifically, the 4-

4https://s3.amazonaws.com/models.
huggingface.co/bert/bert-base-chinese.
tar.gz

5https://s3.amazonaws.com/
models.huggingface.co/bert/
bert-base-multilingual-uncased.tar.gz

6https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

7https://dl.fbaipublicfiles.com/
fairseq/wav2vec/xlsr_53_56k.pt

8https://github.com/pytorch/fairseq
9https://www.pvtc2020.org/index.html

10http://www.openslr.org/38/
11http://www.openslr.org/62/
12http://www.openslr.org/68/
13https://www.biendata.xyz/competition/

magicdata/
14http://www.openslr.org/47/
15 http://www.openslr.org/18/

gram model is trained by transcripts in the
training set of each language, using the
KenLM (Heafield, 2011) framework. And
the beam size for beam search is set to 50.

2. BERT rescoring (Chiu and Chen, 2021; Shin
et al., 2019): For each language, results from
the trained wav2vec 2.0 model with beam
search, are rescored by the fine-tuned lan-
guage model(mBERT or bert-base-chinese
model). Specifically, the linguistic decoder
is fine-tuned by transcripts in the training
set of each language using masked language
model(MLM) objective (Devlin et al., 2018)
of BERT. In rescoring stage, we mask each
word in the sentence once at a time, then sum
all the log-likelihoods of the masked words
from each masked input instance. Finally
rescoring the sentence with both the likeli-
hoods from acoustic and language model. Be-
sides, considering it is time-consuming, the
beam size for beam search is set to 5.

3. Adapter-BERT: This method is inspired by
AB-Net (Guo et al., 2020), cross-attention
adapters are inserted to each BERT layer to
unify the wav2vec 2.0 and BERT model. Out-
put from the feed-forward layer at the last
of BERT is supervised by the cross-entropy
criterion. In inference, the Mask-Predict algo-
rithm (Ghazvininejad et al., 2019) is adopted.

4. Embedding Replacement: Inspired by previ-
ous work (Yu and Chen, 2021), we use similar
architecture as it but replace the acoustic en-
coder with wav2vec 2.0 and keep our Repre-
sentation Aggregation Module. We use posi-
tion embeddings as query vector and acoustic
representation from wav2vec 2.0 as key and
value vector to attention block followed by 3
self-attention block, which is the same as (Yu
and Chen, 2021), generating aligned acoustic
representation Hpos. Then Hpos is used as the
input of BERT, replacing the word embedding.
Finally, Representation Aggregation Module
takes both the Hpos and linguistic represen-
tation from BERT as input, just the same as
our Wav-BERT. It is worth mention that the
length of the position embedding is set to 60,
considering it cost too much GPU memory for
a larger value.

https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
https://github.com/pytorch/fairseq
https://www.pvtc2020.org/index.html
http://www.openslr.org/38/
http://www.openslr.org/62/
http://www.openslr.org/68/
https://www.biendata.xyz/competition/magicdata/
https://www.biendata.xyz/competition/magicdata/
http://www.openslr.org/47/
http://www.openslr.org/18/
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E More Implementation Details

Most of the significant experiment details are de-
scribed in Sec 5. Aiming to let researcher repro-
duce our result more easily, we describe more de-
tails below. About the data augmentation, mask
probability and mask channel probability are set
to 0.65 and 0.5 respectively the same as setting in
wav2vec 2.0 (Baevski et al., 2020) for 100 hour
training data. Besides, we use adam optimizer, set-
ting adam betas and adam eps to (0.9,0.98) and
1e-08 individually. In data preprocessing, we use
feature normalize for wav2vec 2.0 Base model but
not for the XLSR-53 model, keeping consistent
with the pre-training setting. Also, we filter some
samples whose length of speech shorter than 0.5
seconds as well as number of subwords less than
1 or bigger than 512 in training set. Regarding the
training time, training our Wav-BERT model with
wav2vec 2.0 Base model spends less than 2 days,
and 5 days with the XLSR-53 model. Finally, the
number of parameters in our model with wav2vec
2.0 Base is about 380M, and 600M with XLSR-53,
which is slightly different with different languages.


