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Abstract

Coreference Resolution is an important NLP
task and most state-of-the-art methods rely
on word embeddings for word representation.
However, one issue that has been largely over-
looked in literature is that of comparing the
performance of different embeddings across
and within families in this task. Therefore,
we frame our study in the context of Event
and Entity Coreference Resolution (EvCR &
EnCR), and address two questions : 1) Is there
a trade-off between performance (predictive &
run-time) and embedding size? 2) How do the
embeddings’ performance compare within and
across families? Our experiments reveal sev-
eral interesting findings. First, we observe di-
minishing returns in performance with respect
to embedding size. E.g. a model using solely a
character embedding achieves 86% of the per-
formance of the largest model (Elmo, GloVe,
Character) while being 1.2% of its size. Sec-
ond, the larger model using multiple embed-
dings learns faster overall despite being slower
per epoch. However, it is still slower at test
time. Finally, Elmo performs best on both
EvCR and EnCR, while GloVe and FastText
perform best in EVCR and EnCR respectively.

1 Introduction

Coreference Resolution (CR) is an important NLP
task. It can be subdivided into Event and Entity
Coreference Resolution (EvCR and EnCR). These
tasks serves as the basis for several downstream
applications such as information extraction, text
summarization, machine translation and text min-
ing (Humphreys et al., 1997; Azzam et al., 1999;
Miculicich Werlen and Popescu-Belis, 2017; Su
et al., 2008).

State-of-the-art methods for CR(Barhom et al.,
2019; Lee et al., 2017; Joshi et al., 2019) rely on
various word embeddings for word representation.
These embeddings are organized into three fami-
lies: static, contextual and character embeddings
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(Almeida and Xexéo, 2019; Liu et al., 2020; dos
Santos and Zadrozny, 2014), each differing in size.
Contextual embeddings are larger (1024) compared
to the other families (usually 300 for static and 50
for character). They also tend to outperform the
other families in most tasks but lead to larger and
heavier models (Devlin et al., 2019; Peters et al.,
2018). We are thus confronted with a trade-off of
performance (predictive & run-time) vs. dimen-
sionality. Moreover, embeddings also differ within
families which also leads to differences in predic-
tive performance.

Several studies investigated how different em-
beddings influence the predictive performance in
different tasks (Berardi et al., 2015; Gromann and
Declerck, 2018; Joshi et al., 2019; Li et al., 2018).
However, the two aforementioned issues of the
performance vs. dimensionality trade-off and per-
formance variations within and across embedding
families have been overlooked to a large extent, es-
pecially in coreference resolution. Literature is still
unclear about which embeddings perform best in
which tasks, and whether larger, more expressive
embeddings should also be preferred or whether
some predictive performance can be compromised
for improved run time.

Thus, we seek to address two questions in the
context of CR: 1) Is there a trade-off between per-
formance (predictive & run-time) and embedding
size? 2) How do the embeddings’ performance
compare within and across families? The current
state-of-the-art in EVCR (Barhom et al., 2019) rely
on three families of embeddings for word represen-
tation, and thus provides a suitable frameworks for
addressing our research questions. Starting from
the original model of Barhom et al. (2019), we per-
formed various experiments and ablative studies
across and within each family of embeddings, re-
sulting in 16 different models. '. We compared

!The relatively large number of models and experiments is
one reason why we preferred to focus on a single task
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their predictive performance, size (number of pa-
rameters) , run-time and memory usage.

We discovered high level of diminishing re-
turns in term of predictive performance per em-
bedding. The smallest model (using solely a
character embedding (dos Santos and Zadrozny,
2014)) achieves 86% of the performance of the
largest model (GloVe (Pennington et al., 2014) ,
ELMo (Peters et al., 2018), Character embedding)
with 1.2% of its size. Hence, incorporating ad-
ditional embeddings leads to diminishing returns
in terms of predictive performance. In addition,
we found that size and run-time are weakly corre-
lated: larger (more complex) models can converge
faster (number of epochs and total training time)
than smaller ones . In terms of predictive perfor-
mance, we found GloVe and FastText perform best
in EvCR and EnCR respectively in their family
with ELMo being the best overall. Moreover, we
found that the smallest aforementioned model out-
performs Word2Vec (~+10 F1), yielding predictive
performance close to the previous state-of-the-art
(Kenyon-Dean et al., 2018) in EvCR (68.43 vs 69
F1). Our results can have important implications
for practitioners in implementing CR and other
NLP models in real-life applications.

2 Background and Related work
2.1 Word embeddings families

Literature generally distinguishes between three
families: static, contextual and character embed-
dings (Almeida and Xexéo, 2019; Liu et al., 2020;
dos Santos and Zadrozny, 2014).

Static embeddings, such as word2vec, FastText,
and GloVe, create a one-to-one mapping between
words and their vector representations. Word2vec
(Mikolov et al., 2013) learns through a language
modelling task by either learning to predict a
word given its context (CBOW) or predict the
context given a word (Skip-gram). FastText (Bo-
janowski et al., 2017) learns sub-words embeddings
which are then combined for each word. Finally,
GloVe (Pennington et al., 2014) relies on word co-
occurrence information. Both Glove and FastText
are trained on a Skip-gram task.

Contextual embeddings take into account the
context of a given word, i.e. their vector represen-
tations changes depending on surrounding words.
ELMo is a Bi-LSTM trained on a language mod-
elling task. GPT-2 is similar except that it is unidi-
rectional. Finally, BERT is based on a transformer

architecture and trained on a masked language mod-
elling task.

Lastly, character embeddings learn vectors
based on character sequences (dos Santos and
Zadrozny, 2014).

Since their development, word embeddings have
been very largely studied (Tan et al., 2015; Chen
et al., 2018; Wang et al., 2018; Clark et al., 2019;
Tenney et al., 2019) and a complete literature re-
view is out of the scope of our work. Hence, we
will focus on studies closest to ours. First, we
will review studies on embeddings’ performance
regardless of the task. Then, we move to our task
of interest which is coreference resolution.

2.2 Studies on Embeddings’ Performance

Gromann and Declerck (2018) found that FastText
(0.812 F1) outperformed Polyglot (0.675 F1) and
Word2Vec (0.750 F1) for ontology alignment. They
used two ontologies: Global Industry Classification
Standard and Industry Classification Benchmark.
They also demonstrated the ability of FastText to
better handle out-of-vocabulary words.

Berardi et al. (2015) found that Word2Vec (Accu-
racy (ACC) 43.63%) outperformed polyglot (ACC
4%) and GloVe (ACC 30.21%) on a word anal-
ogy test using Wikipedia and a collection of Italian
books (mostly novels) as datasets.

Joshi et al. (2019) found that BERT significantly
outperformed ELMo on EnCR (+11.5 F1) on the
GAP and OntoNotes datasets.

Li et al. (2018) found that GloVe outperformed
FastText and Word2Vec on a tweet classification
task, especially when trained on specific corpora,
viz.CrisisLexT6, CrisisLexT26, and 2CTweets.

2.3 Word embeddings in Coreference
Resolution.

Event Coreference Resolution and Entity Corefer-
ence Resolution (EvCR and EnCR respectively) are
concerned with clustering Event and Entity men-
tions that refer to the same reality (Barhom et al.,
2019; Lee et al., 2017). Figure 1 depicts two event
mentions with the same meaning.

SpaceX launched a South Korean Military satellite

South Korea's first military satellite was delivered by SpaceX

Figure 1: Two coreferent event mentions with colors
indicating associated coreferent entity mentions.

Events mentions refer to textual representations
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of real-life events. As can be seen from Figure 1,
events generally consist of a trigger word (most
often a verb), such as "launched", and a set of ar-
guments, such as "SpaceX" and "a South Korean
Military satellite". Four argument types are gener-
ally distinguished: Arg0, Argl, location, and time,
as defined in Barhom et al. (2019), where Arg0
(resp. Argl) is the closest entity on the left (resp.
right) of the trigger word. These arguments are
optional and often referred to as entities. The goal
of EvCR (and EnCR) is to identify which events
(and entities) are coreferent with each other and to
cluster them.

We now briefly review studies using word em-
beddings for EnCR and EvCR.

EnCR : Lee et al. (2017) used GloVe as word
representation allied with a Bi-LSTM and attention
mechanisms. Their model achieved state-of-the-art
(68.8 F1) on the the CoNLL-2012 corpus. As al-
ready mentioned, Joshi et al. (2019) reported higher
EnCR performance when using BERT compared
to ELMo: +3.9 F1 in OntoNotes and +11.5 F1 in
GAP.

EvCR : Choubey and Huang (2017) relied on
GloVe for EvCR using the ECB+ corpus (Cybulska
and Vossen, 2014). They used a joint modelling
approach to perform within and cross document
EvCR and achieved state-of-the-art performance.
The same corpus was employed by Barhom et al.
(2019), who proposed an EvCR/EnCR model based
on ELMo (Peters et al., 2018), GloVe (Pennington
et al., 2014) as well as a fine-tuned character em-
bedding. Similarly, it jointly performs EnCR and
EvCR. Their model yielded performance of 79.5
F1 in EvCR.

3 Methodology
3.1 Original model

Our approach is based on the state-of-the-art model
of Barhom et al. (2019), which we refer to as the
ORIGINAL 2 model. This model consists of two
neural networks, which jointly resolve entities and
events coreferences. Figure 2 shows the input of
both networks. The two event (resp. entity) men-
tions embeddings are in blue and the green box
represents an element-wise multiplication of the
mentions. Finally, binary features indicate whether
the two encoded mentions have coreferent argu-
ments. The constituents of each mention, i.e. trig-
ger, Arg0, Argl, Location and time, are represented

2MODELNAME denotes a model

by a static (GloVe) and a character embedding. The
trigger is also represented by a contextual embed-
ding (ELMo). Furthermore, the character embed-
ding is fine tuned during training while the contex-
tual and static embeddings are not.

Mention Pair Score

Binary

Mention 2 ‘
features

‘ Mention 1 ‘ ‘ ‘ Mention 1 * Mention 2

Trigger Arg0 Arg1 Location Time ‘

| (Character embeciing

Figure 2: Original input structure of Barhom et al.
(2019)’s model.

‘ [ Eimo | [GloVe | [Character embedding| eoe

The input dimensionality is
3*%(1024+5%(300+50)) + 200 = 8522, where
1024, 300 and 50 are the dimensions of ELMo,
GloVe and the character embeddings, and 200
corresponds to the size of the binary features.
This input is then fed into two subsequent ReLLU
layers with dimensions equal to half the input
dimension (4261 neurons each). Since the number
of parameters is proportional to the square of
the input dimension, we have a model size
exceeding 54 million parameters, computed as

(inp2ut2 + (ingut)Q + zn]Qout)

3.2 Derived models

The gist of our methodology involves substituting
and/or removing specific embeddings from Barhom
et al. (2019)’s original model (which uses 3 em-
beddings : static=GloVe, contextual=ELMo and
character), resulting in 16 different models shown
in Table 1. In the first group of models, one, two, or
three (of the three) embeddings are removed from
the original model. In the second group, the static
embedding is changed to Word2Vec (Skip-gram)
or FastText (other embeddings are either left un-
changed or removed). Similarly, in the third group
the contextual embedding is changed to BERT or
GPT-2 (other embeddings are either left unchanged
or removed). Note: in Table 1, gray rows denote
identical models.

We implemented our models using Pytorch.
Models were trained and tested following Barhom
et al. (2019)’s procedure. Pre-trained vectors and
models were used for the embeddings. Our code is
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available online 3.

Model \ Stat. \ Ctx. \ Char.
Group 1: Across family study
Original (2019) GloVe ELMo | v/
Contextual/Static | GloVe ELMo | X
Contextual/Char | X ELMo | v/
Static/Char GloVe X v
Static GloVe X X
Contextual X ELMo | X
Char X X v
No word embed | X X X
Group 2: Within family study: Static
GloVe GloVe ELMo | v/
Word2Vec Word2Vec | ELMo | v/
FastText FastText ELMo | v/
Only GloVe GloVe X X
Only FastText Word2Vec | X X
Only Word2Vec | FastText X X
Group 3: Within family study: Contextual
ELMo GloVe ELMo | v/
BERT GloVe BERT | v
GPT-2 GloVe GPT-2 | v
Only ELMo X ELMo | X
Only BERT X BERT | X
Only GPT-2 X GPT-2 | X

Table 1: List of trained and tested model and their com-
ponents. Ctx. = Contextual; Stat. = Static; Char. =
Character; X/v/indicate absence/presence of an input.

4 Experimentation setup

4.1 Dataset

The dataset we use for our study is ECB+ (Cy-
bulska and Vossen, 2014). Together with EECB
(Lee et al., 2012), it is one of the largest datasets
for within and cross document EvCR and EnCR
(Lee et al., 2012; Barhom et al., 2019). Both
EECB and ECB+ are extensions of ECB (Bejan and
Harabagiu, 2010) and consist of English Google
News documents clustered into topics and anno-
tated for coreference. For more details on the
ECB+ corpus statistics, please refer to Barhom
et al. (2019).

Other dataset for coreference resolution exist :
GAP, OntoNotes, CoNLL 2012, ACE, TAC KBP
and MUC. However, the definition of coreference
resolution in these corpora do not suits our study

3 github.com/JudicaelPoumay/event_entity_coref_ecb_plus

and model. For example, GAP is a corpus of am-
biguous pronoun-name pairs while ECB+ defines
mentions cluster for events and their entities (Joshi
et al., 2019). OntoNotes annotates coreferences but
does not indicate which mentions is an event and
which is an entity. MUC, ACE, and TAC KBP do
not provide cross document coreferences(Lu and
Ng, 2018). Finally, while CoNLL 2012 defines
an event coreference task, events represent only
a small portion of the all the coreferent mentions
and again it does not provide cross document coref-
erences (Pradhan et al., 2012). In-depth reviews
of the listed datasets are provided in (Stylianou
and Vlahavas, 2021; Lu and Ng, 2018; Sukthanker
et al., 2018).

4.2 Experiments

We performed three sets of experiments. The first
set concerns models of Group 1 (see Table 1). We
investigated the impact of removing one, two, or
three (of the three) embeddings from the original
model. Our aim was to determine the contribution
of the different embeddings (static, contextual and
character) on the predictive performance of the
ORIGINAL model. Thus, the models will have
varying sizes, translating into varying run-time and
memory requirements. Therefore, for this set of
experiments, we also report on model size (number
of parameters), run-time (seconds) and memory
usage (RAM).

The second (third) set concerns models of Group
2 (Group 3) (see Table 1) and aim at investigating
the contributions of static (contextual) embeddings.

For the latter two experiments, we do not con-
sider model size as all possible sizes would have
been investigated in group 1. For all experiments,
we will report the predictive performance achieved
by the various models with the CoNLL F1 and
MUC F1 metrics (Moosavi and Strube, 2016).

Following Barhom et al. (2019)’s original paper,
we can claim that a difference of 1 point between
any two models is significant with a p-value <
0.001. This confirms that our results are statisti-
cally sound and not due to randomness.

S Results
5.1 Results 1: All Embedding Families

As mentioned earlier, our aim was to investigate
the contributions of the static (Glove) , contextual
(ELMo) and character embedding to the original
model’s performance via an ablative study. The
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predictive performance scores (CoNLL/MUC F1)
of Group 1 models are in Figure 3, respectively
from left to right.

A first observation is that the baseline perfor-
mance differs between the two measures (CoNLL
& MUC F1). This is due to the mention identi-
fication effect (Moosavi and Strube, 2016) which
makes CoNLL F1 more optimistic than it should be
for low performing models. Interestingly, CoNLL
seems more pessimistic than MUC for high per-
forming models. Moreover, Barhom et al. (2019)’s
model is helped by using gold cluster for within-
document entity coreference. This explains the
non-zero MUC F1 performance of the baseline on
the entity coreference resolution task.

Another important observation is that, when us-
ing only two embedding, the STATIC/CHAR model
is the one experiencing the largest drop in perfor-
mance (CoNLL & Event MUC). At the same time,
when using only one embedding, the CONTEX-
TUAL model performs best. It even outperforms
the aforementioned model with two embeddings:
STATIC/CHAR. These results lead us to conclude
that the contextual embeddings is the most expres-
sive for this task. This is not surprising since con-
textual embeddings take context into account while
static and character do not.

More interestingly, we note that removing ei-
ther the static or contextual embedding results
in an average performance drop of ~2.5 and ~4
CoNLL points respectively (see model CONTEX-
TUAL/CHAR and STATIC/CHAR). However, when
both are removed simultaneously, the performance
drops by ~10 CoNLL points (see model CHAR).
That is, the sum of the losses incurred by removing
either one of these embeddings ( ~6.5) is smaller
than the loss ( ~10) incurred when both are si-
multaneously removed. Similarly, adding any one
embedding to the baseline NO WORD EMBEDDING
model significantly improves the latter’s perfor-
mance, in the range of ~[+27,5 to +34,7].However,
if any one embedding is removed from the ORIGI-
NAL model, then the latter’s performance drops by
a much smaller amount,~[-1,1 to -4]. That is, re-
moving an embedding from the ORIGINAL model
does not impact performance in a comparable way
as adding an embedding to the baseline model. But
performance does drop significantly when all em-
beddings are removed. In other words, we face
diminishing returns in terms of performance per
embeddings.

Impact of Dimensionality on Model Size

As mentioned earlier, the model size is related to
the square of the input, resulting in more than 54
million parameters in the ORIGINAL model. Thus,
an important question is that of whether the gains
in performance of such large models outweigh the
corresponding increase in size. Our observations in
this respect are in Figure 4, depicting the model’s
respective size and predictive performance. We
observed similar diminishing returns when consid-
ering performance relative to size, i.e. increasing
the model size by incorporating larger, more com-
plex embeddings results in modest performance
gains.

The CONTEXTUAL and CHAR models are partic-
ularly interesting. The former achieves 96% of the
performance of the ORIGINAL model with 14.7%
of its size. While the latter, i.e. CHAR, achieves
86% of the performance of the ORIGINAL model’s
performance, with only 1.2% of its size. Its per-
formance (68.43 F1) is even comparable to that
of the previous event coreference resolution state-
of-the-art in EVCR (69 F1) (Kenyon-Dean et al.,
2018).

Model Size & Run-Time

Our investigations on the influence of model size on
run-time and memory usage revealed paradoxical
results.* They are presented in Figure 5. For the
run-time and memory analysis, we focus only on
the largest and smallest models to have a better
idea of the magnitude of differences and to avoid
overcrowding the Figures.

As can be seen, the huge difference in model size
(54 Million vs. 0.67 Million), does not translate
into equally large the differences in run-time (train-
ing & testing) - the run-time reductions afforded by
the CHAR model are relatively modest. While the
actual reasons deserve further investigation, we can
posit that this could be attributed to hardware and
software optimization, enabling a high level of par-
allelization such that larger models run comparably
to smaller ones.

Paradoxically, however, the larger ORIGINAL
model trains in fewer epochs than the smaller
CHAR model (14 vs. 24 respectively). In conse-
quence, it is 21% faster to train overall (68924.8 sec.
vs 87587.28 sec. or about 19h9 vs 24h19). These
results confirm the observation of Li et al. (2020)

*Ran on a Ryzen 5 3600X CPU and a RTX 2070 Super
GPU along with 32GB of RAM
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Ablative study

B EventCoMLLF1 [ Entity CoMLL F1 EventMUC F1 |l Entity MUC F1
_L BT 784 78.33 76.44 7542 77.12
g 71.2 70.06 o . fae T a0
80 78.5 6710 ¢ 56:21 661 67.82
89 75,74 o = e < 74513 6.6 68.43 69.32
L, |3
60 3876
40 36-7722.73

20

Contextual/Static ContextuallChar  Static/Char Static Contextual Char

Original

No word embedding

Figure 3: Comparing the predictive performance of the original model (using 3 embeddings) with models where
we removed one, two or all three embeddings.

Ablative study : Model size

I Model size (# of parameters) W AVG performance CoMLL F1 AVG performance MUC F1

60000000 a0

:zzzzzzgj B 1 5

Original Contextual/Static Contextual/Char  Static/Char Static Contextual Char Mo word embedding

[ T ]
(=T =]

0

0

Figure 4: Comparing the size and predictive performance of the original model (using 3 embeddings) with models
where we removed one, two or all three embeddings. The size of each model is the number of neural connections.

that larger models tend to converge faster. One pos-
sible explanation could be that larger models have
to optimize a error surface of higher dimension-
ality, leading to more possible paths for gradient
descent, some of which might lead to convergence
more rapidly. Thus, although adding more embed-
ding in the model results in diminishing returns in
term of predictive performance, it can lead to faster
training. However, more experiments are needed
to investigate this issue.

Concerning memory usage, we found that, as
expected, the smaller CHAR model required sub-
stantially smaller amounts of memory, especially
during training as evidence by Figure 6. Note that,
the RAM usage of the ORIGINAL model is mostly
due to GloVe pre-trained vectors.

5.2 Results 2: Static Embeddings

We now focus on the second set of experiments,
focusing our attention to static embeddings. The
models concerned are from Group 2 of Table 1.
First, we varied the static embedding (GloVe,
Word2Vec, FastText), while keeping the same con-
textual embedding and character embedding as in
the ORIGINAL model. It can be seen in Figure 7
that, when used with other embeddings (contextual
and character), all static embeddings show compa-
rable performance. The average performance rang-

Run time : Ogi[geip}alxs Only char

B Perepoch training tim Total training time (sec.)
W Testtime (sec.)

5000 10000
14923

4000 87584 75000

3000 : 3649

ool 68925 50000

25000
0

1000
0

Criginal

Only Char

Figure 5: Run-time between the largest (54M weights)
and smallest (677k weights) models. The total training
time is associated with the right axis while the other
measures are associated with the left axis.

ing from 77.12 (GLOVE) to 75.59 (WORD2VEC).
This corroborates with our earlier findings of sec-
tion 5.1 whereby the model with only contex-
tual and character embeddings, i.e. CONTEX-
TUAL/CHAR, achieved comparable performance
to the ORIGINAL (static/contextual/char) model, in-
dicating that the specific static embedding chosen
contribute only marginally to the model’s perfor-
mance.

However, when used alone (see Figure 8), we
see a drastic difference in performance between
them; with the average performance ranging from
72.73 (GLOVE) to 51.56 (WORD2VEC).

Thus, it is only when studied alone that static
embeddings show their differences. Once we iso-
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Memory usage : Original vs Only char

B RAMTrain (GB) [ VRAM Train (GB) RAM Test (GB)
- B VRAM Test (GB)
10
8
6
; - 07 07
0 | B , .

Original Only Char

Figure 6: Memory usage between the largest (54M
weights) and smallest (677k weights) models.

Static embeddings : with other embeddings
W EventCoMLLF1 [ Entity CoNLL F1 Event MUC F1
B Entity MUC F1

79.69

GloVe Fasttext

Word2vec

Figure 7: Comparing the predictive performance of
static embeddings when used with other embeddings
(ELMo and Character)

late static embeddings, we see GloVe works best
for EvCR. However, for EnCR, the FASTTEXT
model show significantly higher MUC. The bet-
ter performance of GloVe and FastText with re-
spect to word2vec can be explained by their con-
struction. Compared to Word2Vec, GloVe takes
words co-occurrence information into account. If
coreferent event mentions are more likely to share
co-occurring words, it would explain parts of
the performance gain. FastText also outperforms
Word2Vec; here the difference is that FastText takes
sub-word information into account which can be
advantageous for coreferent entity mentions. E.g.
in Figure 1, "Korea" and "Korean" have similar
sub-word information.

What is most surprising is that Word2 Vec is sig-
nificantly outperformed by a simple character em-
bedding as we can see on Figure 9. Moreover,
in term of dimension Word2Vec has 300 and the
character embedding has 50. Thus, the resulting
model is not only more accurate but also ~24 times
smaller (Figure 9). This could indicate that the
internal structure of a word (char embedding) con-
tains more information about possible coreferences
than its usual entourage (Word2Vec).

Static embeddings : alone
B EventCoMLLF1 W Entity CoMLL F1 Event MUC F1

B Entity MQP_H
Fa+ I
&0 7]
547 68166 54.48
60 f6.12 6572 56576
40 55.?3

20

Only Glove Only Fasttext

Only Word2vec

Figure 8: Comparing the predictive performance of
static embeddings when used alone

Word2vec vs a character embedding

B EventCoNLL F1 [l Entity CoMLL F1 Event MUC F1
B EntityMUCF1 B Model size
80 69.32 6-567-500 20
] 54.48
&0 6EWZ 15
40 10
20 50
0 0
Only Char Only Word2vec

Figure 9: Comparing the predictive performance of
solely Word2Vec vs solely a character embedding

5.3 Results 3: Contextual Embeddings

We now focus on the third set of experiments about
contextual embeddings. The models concerned are
from Group 3 of Table 1.

Similarly to the previous section, we present the
performance of different contextual embeddings
when used in tandem with the static (GloVe) and
character embedding of the original model (Fig-
ure 10) or when used alone (Figure 11). We see
the same as in the previous section, i.e. the differ-
ence in performance between the contextual em-
beddings is clearer when they are used alone versus
when they are used with GloVe and a character em-
bedding. Thus, we will only focus on the Figure
11 which better represent the differences between
ELMo, BERT, and GPT-2.

A first observation is that BERT both outper-
forms and is outperformed by GPT-2 on both tasks.
Specifically, BERT performs better in EvCR while
GPT-2 performs better in EnCR.

A second observation is that ELMo clearly out-
performs GPT-2 and BERT on both tasks. This
result contradicts Joshi et al. (2019) who found that
BERT greatly outperforms ELMo on EnCR (+11.5
F1 on the GAP benchmark). Such disparity may be
indicative of differences in the model and dataset.
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Contextual embeddings : with other embeddings
B EventCoMLLF1 [ Entity CoMLL F1 Event MUC F1

B Entity MUC F1
100 757
75 7.0, 7057 78:47 7.8:60 —
50 89.99 68.63) 66.7

25

Elmo BERT

GPT-2

Figure 10: Comparing the predictive performance of
contextual embeddings when used with other embed-
dings (GloVe and Character embedding)

Contextual embeddings : alone
B Event CoMLLF1 | Entity CoMLL F1 Event MUC F1

B Eniity MUC F1
80 76.6 — 65:53
60 = 6782 '

40
20

Only Elmo

Only BERT Only GPT-2

Figure 11: Comparing the predictive performance of
contextual embeddings when used alone

Joshi et al. (2019) uses a span ranking approach
which asks, for each mention, which is the most
likely antecedent. This implicitly produces a tree
which clusters coreferent mentions. Such method
only takes local information between two mention
into account while the method used in Barhom
et al. (2019) uses global information between two
entity clusters and related event clusters. Moreover,
ECB+ or EventCorefBank+ is an EvCR dataset
first and foremost and only defines EnCR to sup-
port EvCR; you could argue that the EnCR tasks
is more about argument than entities. GAP on the
other hand is a corpus of ambiguous pronoun-name
pairs (Joshi et al., 2019).

Thus, while an EnCR task is defined by both
dataset, they are significantly different. We ar-
gue that both the task definition and the use of
global versus local information play a major role
in the disparity between the performance reported
by Joshi et al. (2019) and our study. Further con-
firming these findings would require evaluating
Barhom et al. (2019)’s model on GAP and Joshi
et al. (2019)’s on ECB+. However, these models
are not interchangeable because the datasets and
the task they define differs.

6 Conclusion

We used the state-of-the-art in EvCR (Barhom
et al., 2019) as a framework to investigate the
complexity-performance trade-off and compare the
predictive performance of word embeddings across
and within the three families.

We observed that the smallest model using solely
a character embedding yielded 86% of the perfor-
mance of the original (largest) model (using Elmo,
GloVe and a character embeddings) despite being
only 1.2% of its size. In fact, that smallest model
achieves similar performance (68.43 F1) to the pre-
vious state-of-the-art in EVCR (69 F1) (Kenyon-
Dean et al., 2018).

Paradoxically, we found that the largest model
converged faster during training (by 21% in overall
run-time) as it took only 14 epochs vs 24 for the
character model. Overall, we found size and run-
time to be weakly correlated.

In addition, our experiments revealed that aug-
menting the model with additional embeddings
does not substantially improve the performance,
leading to diminishing returns in term of predictive
performance per embedding.

Concerning predictive performance, one of our
most interesting result is that the model using solely
a character embedding significantly outperformed
(~+10 F1) a larger model using solely a static em-
bedding (Word2Vec) while being radically smaller
(4% of its size). Hence, while character embed-
dings have often been used as supplementary em-
beddings, they can actually compete with other
embeddings’ families in terms of predictive perfor-
mance per size.

Finally, our experiments lead us to conclude that
for the task of Event and Entity Coreference Reso-
lution, GloVe, FastText and Elmo yielded the best
predictive performance. GloVe and FastText per-
formed best in EVCR and EnCR respectively in
their family while Elmo performs best overall.

Future directions include working on other com-
prehensive study of embeddings in other tasks
and experimenting with CR models using different
embeddings for different tasks to improve perfor-
mance. E.g. GloVe and FastText in EvCR and
EnCR respectively.

7 Ethical considerations

We trained 16 models over a two months period,
estimated cost ranges from 350kWh to 400kWh.
The estimated carbon impact ranges from 105Kg
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to 120Kg of CO2 based on local data (300g
CO2/kWh). We believe no other ethical consid-
erations are raised by the content of this paper.
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