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Abstract

Numerical reasoning skills are essential for
complex question answering (CQA) over text. It
requires opertaions including counting, compar-
ison, addition and subtraction. A successful ap-
proach to CQA on text, Neural Module Networks
(NMNs), follows the programmer-interpreter
paradigm and leverages specialised modules to
perform compositional reasoning. However, the
NMNs framework does not consider the relation-
ship between numbers and entities in both ques-
tions and paragraphs. We propose effective tech-
niques to improve NMNs’ numerical reasoning
capabilities by making the interpreter question-
aware and capturing the relationship between
entities and numbers. On the same subset of the
DROP dataset for CQA on text, experimental re-
sults show that our additions outperform the orig-
inal NMNs by 3.0 points for the overall F1 score.

1 Introduction

Complex Question Answering (CQA) is a challenging
task, requiring a model to perform compositional
and numerical reasoning. Originally proposed for the
visual question answering (VQA) task, Neural Mod-
ule Networks (NMNs) (Andreas et al., 2016) have
recently been adopted to tackle the CQA problem over
text (Gupta et al., 2020). The NMNs is an end-to-end
differentiable model in the programmer-interpreter
paradigm (Guo et al., 2020; Hua et al., 2020a,b).
Briefly, the programmer learns to map each question
into a program, i.e. a sequence of neural modules,
and the inferpreter then “executes” the program,
operationalized by modules, on the paragraph to yield
the answer for different types of complex questions.
NMNSs achieves the best performance on a subset of
the challenging DROP dataset (Dua et al., 2019) and
is interpertable by nature.

However, NMNs’ performance advantage is not
consistent, as it underperforms in some types of
questions that require numerical reasoning. For
instance, for date-compare questions, MTMSN (Hu
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et al., 2019) achieves an F1 score of 85.2!, whereas
NMNs’ performance is 82.6. Similarly, for count
questions, the F1 score is 61.6 for MTMSN and 55.7
for NMNs. This performance gap stems from two
deficiencies of NMNs, which we describe below with
the help of two examples in Figure 1.

Firstly, NMNs’ interpreter is oblivious to the
question when executing number-related modules.
For executing number-related modules, the interpreter
only receives the paragraph as input, but not the
question. Such a lack of direct interactions with the
question impairs model performance: the entities in
the question, which may also occur in the paragraph,
can help locate significant and relevant numbers to
produce the final answer. In the first example in
Figure 1, if the interpreter is aware of the correct
event mentioned in the question (i.e. “the Constituent
Assembly being elected”), it can easily find the same
event in the paragraph and further locate its date (“12
November”) precisely. Without this knowledge, the
original NMNs found the wrong event (i.e. “dissolved
the Constituent Assembly”), thus the wrong date
(“January 1918”), leading to an incorrect answer.

Secondly, NMNs disregards the relative position-
ing of entities and their related numbers in the
paragraph. Although NMNs can learn separate distri-
butions over numbers extracted from a paragraph, it
does not have an effective mechanism to identify the
number that connects to a given entity. Such an ability
to recognise the association among numbers and
entities is vital for learning numerical reasoning skills:
the operation between numbers is meaningful only
when they refer to the same entity or the same type
of entities. The second example in Figure 1 illustrates
the positioning of entities and their related numbers.
With only a constraint on a window around an entity,
the NMNs’ interpreter tends to identify the nearest
number as the related one to a given entity (‘“August
1996 to December 1997 for entity “PUK and KDP
later co-operated”), resulting in wrong predictions.

'All F1 and EM numbers in this paper are percentages.
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Question Paragraph NMNs Our Answer
Answer
Which event}eﬁ)ened ...On , a Constituent Assembly was elected. In these elections, 26 hierarchy | Constituent
first, the Constituent mandatomoscd by the Bolshevik Central Committee and 58 were in the Assembly
Assembly being elected, | proposed by the Socialist Revolutionaries. Of these mandatory candidates, only one army was elected
or the\eli‘mi.ngion of Bolshevik and seven Socialist Revolutionary delegates were women. ... The Bolsheviks (Incorrect) | (Correct)
hierarchy in thearmy? dissolved the Constituent Assembly in 1218, when it came into conflict with the
= TSoviets, On 16 December 1917 [l govermment ventured to eliminate hierarchy in the

army, removing all titles, ranks, and uniform decorations. ...
What happened first: In September 1998, Barzani and Talabani signed the U.S.-mediated Washington Agreement | PUK and | the U.S.-
the U.S.-mediated establishing a formal peace treaty. In the agreement, ..., including the PUK and KDP. The | KDP later | mediated
Washington Agreement | KDP estimated that 58,000 of its supporters had been expelled from PUK-controlled co- Washington
or PUK and KDP later | regions from October 1996 to October 1997. The PUK sayg.49;000 of its Supporters were operated Agreement
co-operated? expelled from KDP-controlled regions from . The PUK and | (Incorrect) | (Correct)

KDP later co-operated with American forces ..

Figure 1: Two examples in the DROP (Dua et al., 2019) dataset that demonstrate the deficienties of NMNs. Tokens
pertinent to our discussion are highlighted in red, and their relevant numbers are highlighted in orange. Solid blue lines
are predictions of our model, while dotted blue lines show the predictions of NMNs.

We propose three simple and effective mechanisms
to improve NMNs’ numerical reasoning capabilities.
Firstly, we improve the interpreter to make it question-
aware. By explicitly conditioning the execution on the
question, the interpreter can exploit the information
contained in the question. Secondly, we propose an
intuitive constraint to better relate numbers and their
corresponding entities in the paragraph. Finally, we
strengthen the auxiliary loss to increase attention
values of entities in closer vicinity within a sentence.
Experimental results show that our modifications
significantly improve NMNs’ numerical reasoning
performance by up to 3.0 absolute F1 points. With
minor modification, these mechanisms are simple
enough to be applied to other modular approaches.

2 Related Work

Complex Question Answering focuses on questions
that require capabilities beyond multi-hop reasoning.
These capabilities include numerical, logical and
discrete reasoning. A number of neural models
were recently proposed to address the CQA task,
such as BiDAF (Seo et al., 2017), QANet (Yu et al.,
2018), NMNs (Gupta et al., 2020) and NumNet (Ran
et al., 2019), which achieved high performance on
benchmark datasets such as DROP (Dua et al., 2019).
Numerical Reasoning is an essential capability
for the CQA task, which is a challenging problem
since the numbers and computation procedures are
separately extracted and generated from raw text. Dua
et al. (2019) modified the output layer of QANet (Yu
et al., 2018) and proposed a number-aware model
NAQANet that can deal with numerical questions
for which the answer cannot be directly extracted
from the paragraph. In addition to NAQANet,

NumNet (Ran et al., 2019) leveraged Graph Neural
Network (GNN) to design a number-aware deep
learning model. Also leveraging GNN, Chen et al.
(2020a) distinguished number types more precisely by
adding the connection with entities and obtained better
performance. Chen et al. (2020b) searched possible
programs exhaustively based on answer numbers
and employed these programs as weak supervision to
train the whole model. Using dependency parsing of
questions, Saha et al. (2021) focused on the numerical
part and obtained excellent results on different kinds
of numerical reasoning questions.

Neural Module Networks (NMNs) (Gupta et al.,
2020) adopts the programmer-interpreter paradigm
and is a fully end-to-end differentiable model, in
which the programmer (responsible for composing
programs) and the interpreter (responsible for soft
execution) are jointly learned. Specialised modules,
such as find and find-num, are predefined to perform
different types of reasoning over text and numbers.
Compared with those techniques that employ
GNNs (Ran et al., 2019; Yu et al., 2018), NMNs is
highly interpretable while achieving competitive per-
formance. More details can be found in Appendix A.

3 Proposed Model

In this section, we will discuss the deficiencies of
NMNs described in Section 1 and propose three
techniques to overcome these problems. Considering
the importance of questions while executing programs,
we incorporate a question-to-paragraph alignment
matrix to form a question-aware interpreter in Section
3.1. In Section 3.2, the correspondence between
numbers and their related entities is enhanced with
a simple and effective constraint on number-related
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modules. In Section 3.3, we strengthen the auxiliary
loss function in NMNss to further concentrate attention
in the same sentence.

3.1 Question-aware Interpreter

The interpreter in the NMNs framework is responsible
for executing specialised modules given the context
(i.e. paragraph). For number-related modules such
as “find-num”, the question is not taken into account,
which limits NMNs’ performance on numerical
reasoning, as information in the question is not taken
into account. As an example, let us take a clear look
at the “find-num” module in NMNs.

find-num(?P) — 72. This module takes as input
the distribution over paragraph tokens, and produces
output an distribution over the numbers:

SH :PiTWnPnj, (1)
A =softmaz(S}), )
T=) Pi-A}, 3)

where input P and output 7 are distributions over
paragraph tokens and numbers respectively, P is the
paragraph token representations, i is the index of the
i*" paragraph token, n; is the index of the j* num-
ber token, and W, is a learnable matrix. Note that
when computing the similarity matrix between the
paragraph token P; and the number token Py, in
Equation 1, there is no interaction with the question.

When the correct number types or related entities
can be easily found in the question, incorporating
the question in “find-num” can help narrow down the
search of numbers in the paragraph. The first example
in Figure 1 shows that the NMNss fails to locate the
correct number as the wrong event is recognized,
without interacting with the question.

Inspired by this idea, we propose the question-to-
paragraph alignment modification to number-related
modules. Specifically, the definition of “find-num” is
modified as follows:
find-num(P, Q) — 7", where the additional input
Q obtained from the programmer represents the
distribution over question tokens, and the new output
is represented by 7. Additional computational steps
(Equation 4 to 7 below) are added after Equation 3:

*We follow Gupta et al. (2020) and use same variables,
annotations in equations for consistency.

St = QT Wy Py, @)
AY =softmaz(SY), 5)
T'=) QAL ©)
k
T'=AT+(1-X\)-T, @)

where Q is the question token representations and k
is the index of the k' question token.

As can be seen from the above equations, the input
of the improved “find-num” module is extended to
include not only paragraph but also question token
distributions instead of only the paragraph. More
precisely, 77 is another alignment matrix between all
question tokens and number tokens, using the same
form of Bi-linear attention computation as 7.

Finally, the new distribution 7™ is produced by the
weighted sum of 7 and 7" with an additional hyper-
parameters A. Here we fix A=0.5 so that NMNs treats
the paragraph and the question equally. Other number-
related modules are also revised in a similar way, e.g.

“find-date”, “compare-num-lt-than”, “find-max-num”.

3.2 Number-Entity Positional Constraint

It is highly likely for a paragraph to contain multiple
numbers and entities, as shown in Figure 1. For such
paragraphs, the original NMNs allows all numbers
to interact with all entities in the computation of
number-related modules such as “find-num”. This
is detrimental to performance as, intuitively, a number
far away from an entity is less likely to be related to
the entity. As the second example in Figure 1 shows,
NMNs connects “December 1997 to the entity
“PUK and KDP” since “2003” is far away from it,
resulting in wrong predictions eventually.

To tackle this issue, we add another computational
component, the relation matrix U™, into number-
related modules. Taking the “find-num” module
as an example, the following step is added before
Equation 2 when computing S{J?:

SHESSHIR RS (8)
where o is element-wise multiplication. In the above
equation, the value of S;} is updated with the relation
matrix U™, which constrains the relationship between
the i’ paragraph token and j* number token. More
specifically, let s; be the token index set for the
t'" sentence in the paragraph. Thus, if both the i
paragraph token and the ;%" number token belong to
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the same sentence, element UE, in row ¢ and column
7, 1s set to 1, otherwise 0:

n_ | 1, (i€es)A(nyes)
U= { 0, otherwise ©)

By adding this matrix, the module only keeps the
attention values of tokens in close vicinity within a
sentence, and learns to find the related numbers that
directly interact with entities. Similarly, this relation
matrix U™ is also applied to other number-related
modules to improve performance.

3.3 Auxiliary Loss Function

Gupta et al. (2020) employed an auxiliary loss to
constrain the relative positioning of output tokens with
respect to input tokens in the “find-num”, “find-date”
and “relocate” modules. For instance, the auxiliary
loss for the “find-num” module is as follows:

m Nz
Hpbo==> log(> IneiawAR),  (10)
i=1 j=0

where Ag is from Equation 2. The loss enables the
model to concentrate the attention mass of output
tokens within a window of size W (e.g. W =10).

However, these loss functions still allow irrelevant
numbers to have spuriously high attention values. Tak-
ing the second line in Figure 1 as an example, based
on the loss computation procedures, the number “De-
cember 1997 will be also “found” and connected to
the entity “PUK and KDP” in NMNSs. Obviously, this
irrelevant year information should not be taken into
consideration. Therefore, we propose to strengthen
the auxiliary loss to further concentrate attention mass
to those tokens within the same sentence:

m Nt
leéss:_Zlog(z]l(njESt)/\(iESt)Airj)v (11
i-1  j=0

where the s, is the token index set for the ¢ sentence

in the paragraph. In this way, the year “2003” is the
only consideration for the previous example.

4 Experiments

4.1 Dataset and Settings

We evaluate model performance on the same subset of
the DROP dataset used by the original NMNs (Gupta
et al., 2020), which contains approx. 19,500 QA pairs
for training, 440 for validation and 1,700 for testing.
The training procedures and hyper-parameter settings
are the same as the original NMNs (Gupta et al., 2020).
We report F1 and Exact Match (EM) scores following
the literature (Dua et al., 2019; Gupta et al., 2020).

4.2 Results

Table 1 shows the main results, where “original” rep-
resents the performance of the original NMNs (Gupta
et al., 2020). Row 4, “+qai+nepc+aux”, is our full
model, which includes the question-aware interpreter
(+qai), the number-entity positional constraint
(+nepc), and the improved auxiliary loss (+aux). It
can be observed that compared to “original”, our full
model achieves significantly higher performance with
F1 of 80.4 and EM of 76.6, representing an increase
of 3.0 and 2.6 absolute points respectively. Besides,
our significant test shows p <0.01.

Methods F1 EM
original(Gupta et al., 2020) 77.4 74.0
ours
+qai 790 749
+qai+nepc 799 76.0
+qai+nepc+aux 804 76.6

Table 1: Comparison between different models.

We also conduct an ablation study to discuss the
contribution of individual technique. The second
line, “+qai”, is the results with the question-aware
interpreter employed only. For this variant, the F1 and
EM scores improve on the original baseline by 1.6
and 0.9 points respectively. With the addition of the
number-entity positional constraint, “+nepc”, results
show an improvement of 2.5 and 2.0 points for F1 and
EM when comparing with “original”’. These results
show that all of the three techniques are effective in
improving numerical reasoning skills for NMNs.

We also report performance by subsets of different
question types in Table 2. Except for the number-
compare type, our model improves on the original
NMNSs across all other types of questions significantly,
by at least 3.2 absolute points for F1. In addition, our
model outperforms aforementioned MTMSN (Hu
et al., 2019) on all question types as well.

Question Type MTMSN  original ours
date-compare 85.2 826  86.0
date-difference 72.5 754  78.6
number-compare 85.1 92.7  90.1
extract-number 80.7 86.1 90.1
count 61.6 557 618
extract-argument 66.6 69.7 732

Table 2: Performance (F1) by question types.
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5 Conclusion

Neural Moudule Networks (NMNs) represent an
interpretable state-of-the-art approach to complex
question answering over text. In this paper, we further
improve NMNs’ numerical reasoning capabilities,
by making the interpreter question-aware and placing
stronger constraints on the relative positioning of
entities and their related numbers. Experimental
results show that our approach significantly improves
NMNs’ numerical reasoning ability, with an increase
in F1 of 3.0 absolute points.
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A NMNs model overview

In order to solve the complex question answering
problem, Gupta et al. (2020) proposed a Neural
Module Networks (NMNs) model. Consisting of a
programmer and an interpreter, NMNs can be more

interpretable as shown in Figure 2.

Question: How many yards
was the shortest touchdown
pass of the first quarter?

|__Programmer_]

l

Program: min>filter(first
quarter)>find(touchdown)

Paragraph: Minnesota
started off the first quarter
with Favre completing a 1-
yard touchdown pass to
tight end Visanthe Shiancoe.
The Packers responded
with quarterback Aaron
Rodgers completing a 62-
yard touchdown pass to

tight end Jermichael Finley.
In the second quarter, the
Vikings struck again with a
14-yard touchdown pass
from Favre to wide receiver
Sidney Rice, ...

[_interpreter ]|

Figure 2: Architecture of the NMNs model.

As Figure 2 shows, NMNs takes the question and
the paragraph as inputs. The programmer firstly maps
the question into corresponding “discrete” modules in
order. Then, the interpreter executes these generated
modules against the corresponding paragraph to
produce the final answer. Moreover, all modules are
differentiable so that the whole NMNs can be trained
in an end-to-end way.

B Settings for Experiments

We mainly use PyTorch and AllenNLP deep learning
platforms to implement our model. After 40-epoch
training on Ubuntu 16.04 with one V100 GPU Card

(16GB memory), it takes around 24 hours to converge.

And all reported results are produced based on the
saved checkpoint.

Name Value
batch size 4
epochs 40
hard em epochs 5
learning rate le-5
drop out rate 0.2
max question length 50
max paragraph length | 459
max decode step 14

Table 3: Hyper-parameter settings.

For hyper-parameters in our model, we don’t

conduct experiments on their search trials since we

employ the same settings as Gupta et al. (2020) did,
which can be found in Table 3. Note that they are
also the configuration to obtain the best performance.
For the added parameter A in Equation 7, we leverage
an empirical value A=0.5 without any fine-tuning.

Due to the page limitation, we didn’t include more
baselines, such as NAQANet (Dua et al., 2019). After
running on the same split of DROP dataset, the F1
and EM scores by NAQANet are 62.1% and 57.9%
respectively, which are substantially lower than our
results in Table 1, by over 17% for both scores. And
we did apply these components in Section 3 to other
modules, such as the “extract-argument” module
(extracts spans or tokens from paragraphs), and also
obtained better results (0.5% F1 increase). Besides,
for different question types, their statistics on the test
set can be found in Table 4.

Question Type Percentage
date-compare 18.6%
date-difference 17.9%
number-compare 19.3%
extract-number 13.5%
count 17.6%
extract-argument 12.8%

Table 4: Percentage by question types.

Current NMNs (Gupta et al., 2020) does not
support other arithmetic datasets, since some
arithmetic operations, including addition, are not
supported. Extending related arithmetic modules is
one of our future work, based on which the NMNs
could be trained on other datsets.
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