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Abstract

Emotion dynamics formulates principles ex-
plaining the emotional fluctuation during con-
versations. Recent studies explore the emo-
tion dynamics from the self and inter-personal
dependencies, however, ignoring the temporal
and spatial dependencies in the situation of
multi-modal conversations. To address the is-
sue, we extend the concept of emotion dynam-
ics to multi-modal settings and propose a Di-
alogue Transformer for simultaneously model-
ing the intra-modal and inter-modal emotion
dynamics. Specifically, the intra-modal emo-
tion dynamics is to not only capture the tem-
poral dependency but also satisfy the context
preference in every single modality. The inter-
modal emotional dynamics aims at handling
multi-grained spatial dependency across all
modalities. Our models outperform the state-
of-the-art with a margin of 4%-16% for most
of the metrics on three benchmark datasets.

1 Introduction

With the development of conversational agents,
e.g., Apple Siri, Google Assistant, Microsoft Cor-
tana, etc., there emerges pressing needs for Emo-
tion Recognition in Conversations (ERC). Differ-
ent from conventional emotion recognition (Tzi-
rakis et al., 2017) that treats emotions as stable
traits, ERC involves emotion dynamics (Hazarika
et al., 2018b) in conversations. Existing studies
propose methods for modeling vanilla emotion dy-
namics by capturing self and inter-personal depen-
dencies (Morris and Keltner, 2000). The two depen-
dencies are methodologically considered as mod-
eling individual and conversational context using
variants of context-dependent models (Cho et al.,
2014; Hochreiter and Schmidhuber, 1997). Bidi-
rectional contextual LSTM (Poria et al., 2017) is
a straightforward approach but suffers from inade-
quacy of long-range summarization. To overcome
the shortcoming, attention mechanism (Majumder
et al., 2019; Jiao et al., 2019) and memory network
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Figure 1: An example of multi-modal conversation.

(Hazarika et al., 2018b,a) are introduced. Besides,
variants of hierarchical Recurrent Neural Networks
(Majumder et al., 2019; Hazarika et al., 2018a;
Ghosal et al., 2019) are proposed to model self and
inter-personal dependencies simultaneously. For
better context modeling, pre-training techniques
are employed to ERC (Ghosal et al., 2020).

Despite the progress of existing studies in model-
ing vanilla emotion dynamics in conversations, the
temporal and spatial dependencies within multiple
modalities are ignored. Thus, we extend the con-
cept of emotion dynamics to multi-modal settings,
which takes account of the intra-modal and inter-
modal emotion dynamics, or multi-modal emotion
dynamics for short. The intra-modal emotion dy-
namics is an emotional influence that one modality
received from itself during a conversation. It needs
temporal modeling in each modality. The inter-
modal emotion dynamics is another emotional in-
fluence that one modality received from the other
modalities at each conversation turn. It requires
spatial modeling across all modalities. The inter-
plays between intra-modal and inter-modal emo-
tion dynamics produce final emotional predictions.

For intra-modal emotion dynamics, the tempo-
ral dependency of one modality can be captured
through modeling the self and inter-personal depen-
dencies as it is done in vanilla emotion dynamics.
However, multi-modal expressions exhibit different
dependence on context information. Such charac-
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teristic is ignored by existing studies on ERC. Intu-
itively, spoken words are highly semantic that re-
quire inferences from the context to understand the
emtions (Poria et al., 2017), while facial attributes
or tones of voice are relatively concrete in which
emotions are instantly burst in a short time, i.e.,
within an utterance period (Datcu and Rothkrantz,
2014). The phenomenon is illustrated in Figure 1.
Here, the 7th-turn utterance “My sandwich” does
not exhibit any anger unless looking back to infer
that A is angry because B ate his sandwich. On
the contrary, the anger is directly shown up in the
frown faces or loud intonations at the 7th utterance
period. Thus, the modeling of intra-modal emotion
dynamics should satisfy the context preferences of
different modalities.

For inter-modal emotion dynamics, the spatial
dependency can be captured by interactive weight-
ing across multi-modal features. Existing stud-
ies on ERC (Majumder et al., 2019; Hazarika
et al., 2018a,b) use concatenation to learn the lin-
ear weights, which lacks the interactions between
modalities. Many studies on multi-modal learn-
ing(Gu et al., 2019; Mao et al., 2018; Tsai et al.,
2019a) apply interactive weighting to fuse infor-
mation from multiple modalities. However, most
of them consider only one granularity of feature
interaction. We argue that interactive weighting
should consider both prototype and representation
dependencies. The prototype dependency relates to
position-wise neuron-grained feature interactions
that allocate different weights to neurons in a vec-
tor. The representation dependency handles vector-
grained feature interactions that allocate a single
weight to all neurons in a vector. The modeling of
inter-modal emotion dynamics should consider the
two granularities of dependencies.

In this paper, we propose a DialogueTRans-
forMer (DialogueTRM) that models the intra-
modal and inter-modal emotion dynamics simul-
taneously. For intra-modal emotion dynamics, we
facilitate Transformers for temporal modeling that
satisfies the context preferences of different modali-
ties. For inter-modal emotion dynamics, we design
a Multi-Grained Interactive Fusion (MGIF) to deal
with the prototype and representation dependen-
cies across modalities. Finally, by incorporating
the intra-modal and inter-modal emotion dynamics,
our DialogueTRM achieves more accurate emo-
tional predictions than State-Of-The-Art (SOTA).

We highlight our contribution as follows:

* We propose a novel understanding of emotion
dynamics in multi-modal settings, indicating

— The intra-modal emotion dynamics, inde-
pendently modeled under preferred con-
text settings for each modality.

— The inter-modal emotion dynamics, mod-
eled in a fashion of multi-grained inter-
active fusion across modalities.

* Our DialogueTRM achieves SOTA perfor-
mance on three ERC benchmark datasets, and
we conduct a series of experiments to verify
the effectiveness of each module in our model.

2 Related Work

Emotions are hidden mental states associated with
thoughts and feelings (Poria et al., 2019b). Without
physiological signals, they are only perceivable
through human behaviors like spoken words, tones
of voice, and facial attributes.

Emotion recognition is an interdisciplinary
field that spans psychology, cognitive science, ma-
chine learning, natural language processing, and
others (Picard, 2010). It involves handling multi-
modal data. Early studies on emotion recognition
are usually single-modal oriented (Ekman, 1993;
Schroder, 2003; Strapparava et al., 2004). Pio-
neers have explored the advantages of combining
facial expressions and speech signals to predict
emotions (Tzirakis et al., 2017; Wollmer et al.,
2010; Datcu and Rothkrantz, 2014; Zeng et al.,
2007). Recent studies(Tsai et al., 2019a; Liang
et al., 2018; Wang et al., 2019; Tsai et al., 2019b)
have considered all the three modalities, whose pri-
mary focus is on fusion strategy while ignoring the
emotion dynamics in a conversation. Notice that
(Tsai et al., 2019b; Liang et al., 2018) take account
of the intra-modal and cross-modal interactions be-
tween modalities, however, they ignore the context
preference for each modality.

Emotion Recognition in Conversations is dif-
ferent from traditional emotion recognition due to
emotion dynamics in conversations. By comparing
with the recent proposed ERC approaches (Zhou
et al., 2018; Majumder et al., 2019; Hsu et al.,
2018), Poria et al. discovered that traditional emo-
tion recognition approaches (Colneri¢ and Demsar,
2018; Kratzwald et al., 2018; Mohammad and Tur-
ney, 2010; Wu et al., 2006; Shaheen et al., 2014)
failed to work well on ERC datasets, because the

2695



same utterance within different context may exhibit
different emotions (Poria et al., 2019b).

ERC is advancing in the recent few years.
scLSTM (Poria et al., 2017) is an RNN-based ap-
proach that captures the self-dependency using a bi-
directional LSTM. CMN (Hazarika et al., 2018b)
and ICON (Hazarika et al., 2018a) distinguish the
self and inter-personal dependencies by leverag-
ing memory network. DialogueRNN (Majumder
et al., 2019) uses multiple GRUs with global at-
tention and further develops ERC to multi-party
conversations. DialogueGCN (Ghosal et al., 2019)
uses the Graph Convolutional Network (GCN)
to model complex interactions between interlocu-
tors. BiERU (Li et al., 2020) focus on the party-
ignorant transferring of emotion in a conversation.
Recently, several pieces of work, e.g., transfer
learning ERC (Hazarika et al., 2019), and com-
monsense knowledge ERC (Ghosal et al., 2020),
have employed pre-training models to the task of
ERC. However, those approaches ignore the multi-
modal emotion dynamics in conversations. Our
dialogueTRM is specially designed to model such
kinds of emotion dynamics.

Multi-modal Fusion seeks to generate a single
representation to boost a specific task involving
multiple modalities when building classifiers or
other predictors. Many surveys (Guo et al., 2019;
Kaur and Kautish, 2019; Angadi and Reddy, 2019)
have investigated the strategies of multi-modal anal-
ysis with different kinds of clues. We divide fusion
techniques into two groups.

The first is combination approaches, including
concatenation (Majumder et al., 2019), hadamard
product (Kiros et al., 2014), summing up (Mao
et al., 2014), differential operation (Wu et al.,
2019), gate (Mao et al., 2018), attention (Tsai et al.,
2019a). According to whether there are interac-
tions between features, those approaches can be
categorized into linear weighting fusion (first three)
and interactive weighting fusion (latter three). The
second is learning approaches. According to the
learning objective, approaches can be categorized
as task-oriented and self-learning fusion. Task-
oriented fusion (Frome et al., 2013; Hazarika et al.,
2018a; Majumder et al., 2019) is for supervised
learning, whose hidden states are the learned fea-
tures. Self-learning fusion (Feng et al., 2014;
Socher et al., 2014, 2013) is often unsupervised
learned by structures like Restricted Boltzmann
Machines (Srivastava and Salakhutdinov, 2012) or

autoencoders (Ngiam et al., 2011). The strategy is
to reconstruct source representation to target repre-
sentation. Both source and target representations
could be one or any combination of the multiple
modalities (Feng et al., 2014; Ngiam et al., 2011).

Our MGIF has a similar idea with the Sub-View
Attention (SVA) mechanism (Gu et al., 2019). The
main differences are, 1) Our MGIF considers both
prototype and representation granularities of fea-
ture interactions while SVA considers only the sub-
view granularity; 2) Our MGIF can deal with mul-
tiple modalities while SVA is dyadic fusion.

3 Task Formulation

Let X = {}i|i € [1, L], \; € [1, N]} be a conver-
sation containing a sequence of L utterance-level
expressions involving IV speakers. At the ¢-th turn,
the emtion of the \;-th speaker is conveyed through
an expression :ng\l = {:cj‘l(u), a:j‘f(a), mg\l(v)} in utter-
ance xl’.\f(u), acoustic xf"a and visual x;\ZU modal-
ities. According to the speakers that are involved,
we define two types of context within a sliding win-
dow of K, which are indi-context, gof‘i = {z|T €
[max (1,7 — K),i),A\ = \;}, and conv-context,
¢; = {x}|7 € [max(1,i — K),i),\ € [1,N]}.
Table 1 presents an example of the two types of
contexts in a conversation.

Table 1: Context examples in a conversation when L =
8§, 5=3,and K =5

: 1 1 2 1 2 1 2
conversation ‘ X = {al, x5, 23, xi, o3, 23, x%, 23}

target ‘ x

L i
indi-context ‘ Pt = {$%75031}

conv-context ‘ ¢ = {xd, 23, x4, v3, 23}

4 Model

4.1 Intra-Modal Emotion Dynamics

The intra-modal emotion dynamics needs to not
only capture the temporal dependency but also
satisfy the context preference of different modal-
ities. Transformer (Vaswani et al., 2017) can be
easily switched to sequential structure for context-
dependent modeling or feed-forward structure for
context-free modeling. Thus, we use Transformer
as the backbone. The modeling of intra-modal emo-
tion dynamics is depicted on the left of Figure 2.
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Figure 2: Model architecture.

4.1.1 Context-Dependent Modeling

Emotions expressed in utterance modality prefer to
be modeled in context-dependent settings. The self
and inter-personal dependencies are two factors for
context-dependent modeling.
Self dependency. Unlike traditional ERC ap-
proaches that separate the process of utterance en-
coding and dependency modeling, i.e., CNN en-
codes utterances and RNN learns dependencies
among utterances (Majumder et al., 2019), we unify
the two processes in one BERT (Devlin et al., 2019).
Specifically, BERT encodes each utterance by re-
ceiving a sequence of raw lexical input, containing
information from not only the utterance itself but
also the indi-context. Since the utterance-context
pairs are spoken by the same speaker, the infor-
mation relates to the self dependency is naturally
preserved in the output representations of BERT.
Additionally, there exists a length imbalance be-
tween the utterance and its context, we leverage the
segment embeddings and [SEP] token in BERT to
explicitly distinguish the utterance-context pair in
a sequence rather than directly concatenating them.
Given an utterance, m;‘f(u), and its indi-context,

@ii(u)’ the procedure of feature encoding and self

dependency modeling can be formulated as,

[SEPp;"

=BERT([CLS]z"

A
Fistuy (w)

where fi)‘(iu) is the utterance feature output at the

[CLS] position of BERT. The feature retains the
Ai-th speaker information at the i-th conversation
turn. [CLS| and [SEP] are special tokens in BERT.
Inter-personal dependency. Since the speaker
information is retained, the inter-personal depen-
dency can be modeled through interactions within
speaker-based features obtained from last stage.

Rather than using graph convolutional networks to
connect those features (Ghosal et al., 2019), we
deploy deep layers of multi-head attention in a
Transformer to calculate the interactions. Ginve an
L-length feature sequence F{,,)={ fli‘(iu) lie[1, L]},
the interactions are calulated as,

7i,(u) = Transformer(F{y, p;), 2
5i=00---011---1100---0,  (3)

i—K—1 K L—1i

where 7; (,,) 1s the i-the turn utterance representa-
tion. p; is an L-length attention mask. It masks the
future and distant historical information, enforc-
ing emotional interactions to be within a K -length
conv-context. More information about attention
mask can be found in (Kaitao et al., 2019).

4.1.2 Context-Free Modeling

Emotions expressed in acoustic and visual modal-
ities prefer to be modeled in context-free set-
tings. We follow (Hazarika et al., 2018b) that
employs openSMILE (Eyben et al., 2010) and 3D-
CNN (Tran et al., 2015) to extract acoustic features,
f;‘(ia), and visual features, fi‘(iv), respectively. Both
sources of features are extracted from utterance-
level videos without any context information.
Given feature sequences F,)={ fi’?("a) lie[l, L]}
and Fi,)={ f;\("v) li€[1, L]}, the acoustic and visual
representations can be calculated as

7i,(a) = Transformer(Fq), p;), 4)

74,(v) = Transformer(F(,), pi), 5)

pi=00---0100---0, (6)
——— ——

i—1 L—i

where 7; () and 7 (,,) are the i-the turn acoustic
and visual representations, respectively. p; turns
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on context-free settings, so that the interactions are
within the target expression itself.

4.2 Inter-Modal Emotion Dynamics

The inter-modal emotion dynamics should consider
multi-grained feature interactions to combine more
predictive features from different modalities. The
prototype and representation dependencies are two
granularities for fusing multi-modal features. The
modeling of inter-modal emotion dynamics is de-
picted in the middle of Figure 2.

4.2.1 Prototype Dependency

The prototype dependency can be learned through
position-wise interactions between neurons of two
equal-dimension vectors. We design a multi-modal
gate to learn the prototype dependency, allocating
different weights to neurons in each vector. Specifi-
cally, the multi-modal gate enforces a position-wise
trade-off between two vectors, so that more predic-
tive neurons are amplified in one vector, while the
counterpart do the opposite. Instead of directly
applying Hadamard product between two equal-
dimension vectors (Fukui et al., 2016), our strat-
egy has to compute a pair of weights. We adopt
a neural network to compute the weights, taking
the two candidate vectors as input. Furthermore,
inspired by the softmax in the attention mecha-
nism, we propose a position-wise normalization,
that force a position-wise comparison for better
learning the neuron importance. Given utterance
T, (u) and acoustic r; (,) representations, our multi-
modal gate is calculated as,

hi () = tcmh(WUri’(u)), @)
hi(a) = tanh(Wr; (), ®)
Ziua) = O (W2 Irs ()i i o) )
hi (ua) = Zi (ua) * P (u)s (10)
i auwy = (1 = 2 (ua)) * Pi(a) (11

Here, z; (uq) and 1—z; (,q) are a pair of weights
for neurons in h; () and h; (,), where “1—"" oper-
ation behaves as the position-wise normalization.
The normalization relates to a weight trade-off and
enforces an explicit position-wise comparison be-
tween neurons in h; () and h; ). The weight
Zi (ua) IS computed based on interactions between
Ti(u)> Ti(a)- O ensures the weights ranging from
0 to 1. * is the Hadamard product. W are the
weight matrices. z; (yq), R () and h; (4 are equal-
dimension vectors. ; (,q) and h; (g, are represen-

)

tations after feature mapping. The above equan-
tions can be refomulated as,

hi,(ua): hi,(au) = GATE(ri,(u)7 Ti,(a)) (12)
Similarly, we can obtain

hi,(uv)7 hi,(vu) = GATE(Tz,(u) ) Ti,('u))a (13)

Ri (av)> i, (va) = GATE(7; (0), Ti (). (14)

4.2.2 Representation Dependency

The representation dependency is modeled through
interactions in a sequence of six gated representa-
tions, allocating one weight to one representation.
The interactions are calculated via deep layers of
multi-head attention in a Transformer. Specifically,
the procedure is as follows, (1) packing the multi-
modal representations into a sequence with a fixed
order; (2) inserting a special embedding, ec g, at
the head of the sequence, similar to that in BERT;
(3) feeding the sequence to a Transformer and cal-
culating deep multi-head attention for representa-
tion dependency, formulated as,

M; = ecLshi(ua)ti(auwi(woyi (vu)lti(av)i(va)
(15)
(16)

o0; =Transformer(M;, p;),

where o; is the final representation output at the
ecrs position, and p; is the attention mask that
sets all positions to ones.

4.3 Discriminator

The discriminator uses a two-layer perceptron with
hidden layer activated by tanh. As shown in the
right of Figure 2, we use the softmax for Categori-
cal Emotion (CE) and linear layer for Dimensional
Emotion (DE), denoted by,

softmaX(Wthmh(Wooi)), for CE; (17
t WPtanh(WCo), for DE,
arg max P;[j|, for CE;
gi = j (13)
P; for DE,

where W are the weight matrices, ¥; is the pre-
dicted emotion.

5 Experiment

5.1 Datasets

Three benchmark datasets, IEMOCAP (Busso
et al., 2008), MELD (Poria et al., 2019a), and
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Table 2: Main results on three benchmarks. “-M” and “-U” denote models using multi-modal or utterance-only

settings. MM denotes if models use multi-modal settings.

T3]

represents no results reported in original paper.

Model ay | [EMOCAP | MELD AVEC
0dels ACC Fl1 ACC Fl1 Valence  Arousal Expectancy Power
c-LSTM-U x 563 561 |- 56.7 | 0.16 0.25 0.24 0.10
AGHMN x | 635 635|595 575 - - - -
DGCN x | 653 642 |- 58.1 - - - -
BiERU x | 66.1 647 | - 60.8 | 036 0.64 0.38 0.37
DialogueTRM-U | x | 682 681|646 632] 073 0.44 0.38 0.32
c-LSTM-M Vv 598 590 - 0.14 0.23 0.25 -0.04
CMN Vv | 619 614 - 0.23 0.30 0.26 -0.02
DRNN Vv | 634 627|561 570| 035 0.59 0.37 0.37
ICON Vv | 640 635 - 0.23 0.29 0.26 0.22
DialogueTRM-M | / | 69.5 69.7 | 65.7 63.5| 0.76 0.52 0.40 0.40

AVEC (Schuller et al., 2012), are adopted to evalu-
ate our model. IEMOCAP consists of 151 dyadic
conversation videos with 6 emotion types. Follow-
ing (Majumder et al., 2019), we apply the first four
sessions for training and the last for testing. The
validation is randomly selected from the training set
with a ratio of 0.1. MELD consists of 1433 multi-
party conversation videos with 7 emotion types.
We apply the official splits for training, validation,
and testing. The visual source may involve multi-
ple speakers and is hard to use. Thus, experiments
on MELD do not use visual information. AVEC
consists of 95 dyadic conversation videos with four
real-value annotations per utterance in terms of Va-
lence, Arousal, Expectancy, and Power (Mehrabian,
1996). We apply the official splits for training and
testing. The validation is randomly selected from
the training set with a ratio of 0.1.

5.2 Implementation Details

We use the off-the-shelf pre-trained BERTY,,q
model with default parameters and finetune it dur-
ing training. It outputs 768-dimensional utterance
features. The visual and acoustic features are fixed
512- and 100-dimensional vectors, respectively, ob-
tained from an open-source project!. Those vectors
are projected to 768 dimensions to match the input
size. The intra-modal component, a 6-layer, 12-
head-attention, and 768 hidden-unit Transformer
encoder, is implemented with PyTorch API us-
ing default parameters. For inter-modal modeling,
we construct a 4-layer, 8-head-attention, and 768-

"https://github.com/SenticNet/conv-emotion

hidden-unit Transformer encoder. We use AdamW
(Loshchilov and Hutter) as the optimizer with ini-
tial learning rate= 6e-6, 51 = 0.9, B2 = 0.999,
L2 weight decay of 0.01, learning rate warmup
over the first 1, 200 steps, and linear decay of the
learning rate. To make it easy for reproduction,
our model does not apply to multi-GPU settings.
Our hardware (11GB GPU memory) affords a max-
imum context window of 14. A larger context can
achieve better performance (Jiao et al., 2019) which
is beyond the concern of this paper.

5.3 Main Results

Traditional baselines of ERC can be divided into
two groups. One is utterance-only based models,
including ¢-LSTM-U (Poria et al., 2017), the earli-
est study we can track in ERC, AGHMN (Jiao et al.,
2019), an attention gated hierarchical memory net-
work, DGCN (Ghosal et al., 2019), using graph
neural network to address context propagation is-
sue, and BiERU (Li et al., 2020), applying a party-
ignorant bidirectional emotional recurrent unit for
ERC. The other is multi-modal based models, in-
cluding c-LSTM-M, the multi-modal version of c-
LSTM-U, CMN (Hazarika et al., 2018b), the first
memory network based ERC model, DRNN (Ma-
jumder et al., 2019), the first approach for multi-
party ERC, ICON (Hazarika et al., 2018a), devel-
oping CMN with more emotional interactions.
The results are based on an average of 5 runs
and are presented in Table 2. Following (Majumder
et al., 2019), we use weighted average ACCuracy
(ACC) and F1 Score (F1) to evaluate the categor-
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Table 3: Comparison with recent ERC methods using
pre-training techniques on IEMOCAP.

Models | ACC  FI
BERT} 0 | 56.7 564
TL-ERC - 58.8
DRNNS§ - 64.7
COSMIC - 65.2
DialogueTRM-U 68.2  68.1
remove transformer 674 674
remove segment embedding 65.8 65.7
remove [SEP] tokens 65.3 65.2

ical emotions on IEMOCAP and MELD and use
pearson’s corRelation coefficient (R) to evaluate
the dimensional emotions on AVEC. From the re-
sult, the ACC and F1 of our DialogueTRM-M
markedly outperform SOTA, indicating 5%, 7%
improvements on IEMOCAP and 10%, 4% im-
provements on MELD, respectively. On AVEC,
DialogueTRM-M outperforms SOTA in most of
the criteria, which are 16%, 5%, 8% improvements
in Valence, Expectancy, and Power, respectively.
Since the utterance features of traditional baselines
are based on CNN, the improvement is partly due
to the boosting from BERT.

For fair comparisons, we investigate some very
recent ERC approaches that incorporate pretraining
techniques. The results are presented in Table 3.
BERTY}, ¢, 1s identical to the utterance encoder
without modeling self dependency. TL-ERC (Haz-
arika et al., 2019) leverage BERT to transfer affec-
tive knowledge from a general-domain conversa-
tional corpus to the task of ERC. COSMIC (Ghosal
et al., 2020) is based on ROBERTa, a more power-
ful pre-training model than BERT, and incorporates
DRNN with commonsense for ERC. DRNNS is
DRNN with RoBERTa features reported in (Ghosal
et al., 2020). Since BiERU is not open-sourced,
we cannot present its result in pre-training set-
tings. All the methods are in utterance-only settings
on IEMOCAP. DialogueTRM-U markedly outper-
forms those methods. We believe our results can
help build a comparable baseline for future studies
addressing ERC with pre-training techniques.

5.4 Analysis

To better understand multi-modal emotion dynam-
ics, we conduct a series of experiments to test its
effect from different aspects.

Table 4: Analysis of (u)tterance, (a)coustic, (v)isual ex-
pressions in different context settings on IEMOCAP.
and * denote context-free and context-dependent set-
tings. I means our context settings. { means context
settings in other studies

ACC F1 | ACC FI1
i 56.7 564 | u 68.2 68.1
a 46.8 449 | a 447 429
b 336 368 |0 322 337
a+0 50.5 494 | a+v 417 470
a+o+i 588 583 | a+v+u 572 57.1
a+o+ul  69.5 69.7 | a+v+uf 689 68.8

The temporal aspect. To verify that different
modalities exhibit different dependence on context
information, we present results for different com-
binations of modalities in Table 4. We manage
the context setting using attention masks in Trans-
formers. We use * and * to denote context-free
and context-dependent settings, respectively. As
seen, emotions in visual and acoustic modalities
prefer context-free settings. An intuitive explana-
tion is that identifying emotions from acoustic or
visual modalities is based on very concrete features,
e.g., frown or loudness for “angry”. If we incor-
porate previously extracted features, e.g., tear or
sob for “sad”, it becomes ambiguous for predicting
the “angry”. The emotion modeling in utterance
modality strongly depends on context information
and dominates the performance. Thus, our strat-
egy of using multi-modal information is to satisfy
their context preference, while previous methods
indiscriminately apply context-dependent settings.

The spatial aspect. To test the effect of our
multi-grained interactive fusion, we perform a
comparison with other fusion strategies. Additive,
Concat, and Max-pooling are three simple fusion
methods that add, concatenate and max-pool multi-
modal features, respectively. Bilnear (Fukui et al.,
2016), GMU (Arevalo et al., 2020), and MulT (Tsai
et al., 2019a) are three advanced single-grained fu-
sion methods, in which the first two approaches
only capture the prototype dependency, and the
last one only captures the representation depen-
dency. The results are shown in Table 5, and we
focus on the performance gained from utterance-
only to multi-modal settings. The performance of
MulT is limited because the model forces all the
modalities to use context-dependent settings. The
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Table 5: Fusion results on IEMOCAP showing the F1
performance (gain) from (U)tterance-only to (M)ulti-
modal settings.

Fusion Techniques ‘ U — Myain

Additive
Concat
Max-pooling

68.1 — 68.60.5T
68.1 — 68.50.41
68.1 — 68'70.6T

Bilnear 68.1 — 69'00-9T
GMU 68.1 — 68.80A7T
MulT 68.1 — 68.40.3T
Our MGIF 68.1 — 69.71_6¢

68.1 — 69'21-1T
68.1 — 68.90 51

w/o representation dependency

w/o prototype dependency

gain of our MGIF is markedly higher than those of
single-grained approaches. Furthermore, we con-
duct an ablation study on MGIF. The results are
presented in the last two rows of Table 5, includ-
ing w/o representation dependency, i.e., concate-
nating the six gated representations without using
the Transformer, and w/o prototype dependency,
i.e., directly using the Transformer to wrap repre-
sentations without multi-modal gate. We find that
prototype dependency contributes more to MGIF.

Utterance context modeling. Since utterance
modality dominates the performance, we conduct
an ablation study on utterance context modeling.
Specifically, we step by step remove some key op-
erations in DialogueTRM-U. The results are listed
in the last three rows of Table 3. We can find that
differentiating utterance and context is effective,
and segment embedding contributes more to such
differentiation.

5.5 Case Study

Short utterance cases. “yeah.” appears 23 times
in the test set. Given only the target utterance, the
accuracy is 43.48%. After adding utterance context,
it increases to 65.22%. After adding multi-modal
information, it arrives at 73.91%.

Multi-modal rectified cases. We analyze cases
that incorrectly predicted in utterance-only settings
but correctly predicted in multi-modal settings.
Among the cases, “neutral” and “frustrated” are
in the majority with the ratios of about 30.38%
and 27.85%, respectively. Moreover, about 85.41%
“neutral” and 70.45% “frustrated” cases are recti-
fied from negative emotions. It means multi-modal
provides easy-to-distinguish information for nega-

0] v ow e

You marry that girl, you are
- : N - T Ang Fru Fru
. pronouncing him dead...

...and then what's that going to do to

i L bl = -
. your father? Do you know? I don't. Tl ang | gEEy Fru

All right, then, Mom. [BREATHING] % T+2 Fru  Fru  Fru

-

@ Just give it some more thought. r T+3 Fru Neu Neu
o

Figure 3: Conversation cases with MP (Multi-modal-
Predicted), TP (Text-Predicted) and GT (Ground-
Truth) emotions, where ’Neu’, ’Exc’, ’Fru’ stands for
neural, excited and frustrated, respectively.

tive emotions. The reason is probably that human
tends to use neutral words to cover their negative
emotions yet show up in the faces or intonations.
Emotion shift cases. We analyze cases that exhibit
Intra-speaker Emotion Shift (Intra-ES), e.g., the
emotion shift from person A at 7+1 to person A at
T'+3 in Figure 3, and Inter-speaker Emotion Shift
(Inter-ES), e.g., the emotion shift from person B at
T'+2 to person A at T'+3 in Figure 3. We present
the results in table 6. Note that our model mainly
improves the performance of Inter-ES cases and
is relatively poor for Intra-ES cases. It provides a
direction for future studies.

Table 6: Performance of cases that exhibit Intra-ES and
Inter-ES on IEMOCAP. Numbers in parenthesis indi-
cate the average count of the corresponding shifts per
conversation. We present the OriGinal (OG) perfor-
mance for comparision.

OoG
ACC F1

Intra-ES (13.2)
ACC Fl1

Inter-ES (22.0)

Models ‘ ACC  Fl

DialogueTRM-U

DialogueTRM-M| 69.5 69.7

68.2 68.1| 529 529 | 73.8 738
551 554 | 747 743

6 Conclusion and future work

This paper describes a novel understanding of emo-
tion dynamics in multi-modal conversations. The
proposed DialogueTRM provides a straightforward
yet effective strategy to model both intra-modal
and inter-modal emotion dynamics for the task of
ERC. Satisfying context preferences of different
modalities and multi-grained interactive fusion are
two major factors that our model addresses. In
the future, we would formulate more principles for
analyzing complex emotional behaviors in conver-
sations, e.g., addressing the limitation of our model
for intra-speaker emotion shift.
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