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Abstract

Deep-learning models for language generation
tasks tend to produce repetitive output. Vari-
ous methods have been proposed to encourage
lexical diversity during decoding, but this of-
ten comes at a cost to the perceived fluency
and adequacy of the output. In this work,
we propose to ameliorate this cost by using
an Imitation Learning approach to explore the
level of diversity that a language generation
model can reliably produce. Specifically, we
augment the decoding process with a meta-
classifier trained to distinguish which words
at any given timestep will lead to high-quality
output. We focus our experiments on concept-
to-text generation where models are sensitive
to the inclusion of irrelevant words due to the
strict relation between input and output. Our
analysis shows that previous methods for diver-
sity underperform in this setting, while human
evaluation suggests that our proposed method
achieves a high level of diversity with minimal
effect to the output’s fluency and adequacy.

1 Introduction

The use of deep-learning models for language gen-
eration tasks has become prevalent in recent years
as they achieve high performance without manu-
ally engineered rules or features (Wen et al., 2015b;
Mei et al., 2016; Dušek et al., 2018). However,
while the produced texts are qualitatively accept-
able according to most evaluation criteria, they are
often repetitive or disfluent when multiple diverse
outputs are needed. This problem is attributed to us-
ing the maximum-likelihood objective function for
training as it encourages the generation of highly
frequent words and sentence structures, i.e. models
overfit and do not learn to exploit the lexical and
structural diversity that is present in the dataset (Li
et al., 2016).

Here we focus on concept-to-text Natural Lan-
guage Generation (NLG), where the input is a mean-
ing representation (MR) and the output is an ut-

terance expressing the input in natural language.
Due to the stricter relation between input and out-
put, it is more challenging to promote diversity
in concept-to-text than other language generation
tasks. Diverging from greedy inference can lead
to error propagation that negatively affects the out-
put’s relevance to the input. However, assuming the
output is sequentially decoded, most research on
concept-to-text diversity focuses on sampling over
the probability distribution (Wen et al., 2015b).

More complex decoding strategies have been
proposed for the related task of open-domain NLG,
where the input is a natural language context and
the output is a relevant response. Fan et al. (2018)
limit the decoding distribution to a fixed number
of the Top-k words (Top-k Sampling), while Holtz-
man et al. (2020) limit the distribution to the largest
subset of words whose cumulative probability does
not exceed a predefined parameter p (Nucleus Sam-
pling). Nucleus Sampling improves over Top-k
by retaining a dynamic number of words per de-
coding step, but the probability mass p remains a
constant parameter. However, these strategies are
sensitive to their parameters k and p and there is no
established methodology to tune them so that the
output fluency and adequacy do not suffer while
also achieving high diversity.

In this paper, we propose Informed Sampling for
diversity, i.e. to sample amongst reliable words
that lead to diverse output but are not liable to lead
to disfluent word sequences through error propaga-
tion. To distinguish which words in the decoding
distribution can be reliably sampled by the NLG

model, we employ a meta-classifier that leverages
a diversity-specific training signal. Our approach
is only applied during decoding and is orthogonal
to the architecture of the NLG model, which we
assume as pretrained. Unlike previous decoding
strategies, Informed Sampling does not depend on
manually tuned parameters.

As there is no explicitly annotated data for In-
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Figure 1: Example decoding for [INFORM(WELCOME); INFORM(BYE)]; diverging at the third time step.

formed Sampling, we adapt three Imitation Learn-
ing (IL) frameworks to train the meta-classifier; IL
is a family of meta-learning frameworks that train
models based on expert demonstrations. We design
an expert policy as to infer which words are reliable
based on what the NLG model can produce without
negatively affecting the output’s quality. Through
this, the meta-classifier is fitted to the level of di-
versity captured by the NLG model.

We present experimental analysis on the appli-
cation of IL to the meta-classifier and compare
against related approaches. Additionally, this paper
explores the concept-to-text application of diver-
sity methods originally proposed for open-domain
NLG. Automatic and human evaluation suggests
that Informed Sampling produces diverse output
while maintaining its fluency and adequacy.

2 Related Work

There have been a number of different approaches
to encourage output diversity in open-domain NLG.
Li et al. (2016) propose mutual information maxi-
mization as a diversity focused objective function,
while Zhang et al. (2018) propose variational in-
formation maximization in combination with ad-
versarial learning. Zhao et al. (2017) produce di-
verse output by augmenting the input encoding
with diversity-specific information through Con-
ditional Variational Autoencoders. Going further
with modifying the encoding, Gao et al. (2019)
reshape the whole embedding space of the input,
arguing that a more structured latent space leads
to more diverse output. We explore the applica-
tion of these methods to concept-to-text NLG in
later sections, but we find that they underperform
compared to their open-domain use. These meth-
ods promote semantic diversity, and might be in-
compatible with concept-to-text where the output
semantics are strictly bounded by the input.

Research on neural output diversity for concept-

to-text NLG is limited and mostly focused on differ-
ent decoding strategies (e.g. beam search). Most re-
cently, Deriu and Cieliebak (2017) proposed “forc-
ing” the output of the first decoding step, arguing
that greedy inference from different starting points
leads to diverse but fluent sentences. They achieve
this by augmenting the input to bias the first step
of the decoding process towards particular words
observed in the data. However, the application of
their method is limited to the first decoding step.

Imitation Learning frameworks have been ap-
plied on a variety of structured prediction NLP
tasks, such as dependency (Goldberg and Nivre,
2013) and semantic parsing (Vlachos and Clark,
2014). Most related to this work, the LOLS frame-
work was applied to concept-to-text NLG from un-
aligned data (Lampouras and Vlachos, 2016).

3 Meta-Classifier for Diversity

Concept-to-text NLG is the task of converting a
machine-interpretable MR into natural language
text. The input MR consists of one or more pred-
icates; each predicate has a set of attributes and
corresponding values. The predicate dictates the
communication goal of the output text, while at-
tributes and values dictate content. For exam-
ple, the MR [INFORM(REST-NAME = MIZUSHI,
OKASAN)] denotes that the output should inform
the user of two restaurants called “Mizushi” and
“Okasan”. Concept-to-text datasets usually provide
multiple output references per MR. Specifically,
the MultiWOZ dataset (Budzianowski et al., 2018)
provides 1872 distinct references for the MR [IN-
FORM(WELCOME); INFORM(BYE)], e.g. “Glad to
help. Enjoy!”, “Glad to assist you. Goodbye.”

We treat NLG as a structured prediction problem,
where the output is a sequence of words constructed
via sequential decoding. Informed Sampling is or-
thogonal to the architecture of the NLG model, only
assuming a sequential decoding process. Figure 1
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shows a partial example of the diversity exhibited
by a trained NLG model, for the previously men-
tioned MR. At each timestep we can examine the
distribution that results from decoding and sample
accordingly to promote diversity; the words are
shown in descending probability. However, only a
subset of words in the vocabulary will lead to flu-
ent and adequate sequences. As mentioned before,
we denote these as reliable words. For example,
in t = 3 choosing the word “have” seems like a
sensible choice given the history; one can imag-
ine that this may lead to an output like “glad to
have been of help!” Unfortunately, due to the NLG

model being imperfect, this will actually lead to
the disfluent output “glad to have been help better.”
On the contrary, the word “assist” has less proba-
bility than “have” but it leads to the same subtree
as “help”, and to fluent output.

As briefly mentioned in the introduction, we pro-
pose to use a meta-classifier (see Figure 2), external
to the NLG model, that learns to distinguish which
words in the decoding distribution are reliable. The
meta-classifier is a simple feed-forward neural net-
work composed of alternating linear and ReLU
layers ending with a softmax. It considers each
word in the NLG model vocabulary individually,
and the output for each is a probability distribution
over values 0 and 1; 1 denotes the word as reliable.

The input c for a given word is a concatenation
of the NLG states and embeddings (eq. 1).

c =[ht,Wdcdt,Wwrxit+1,

Wwrxt−2,Wwrxt−1,Wwrxt]
(1)

where ht is the hidden state at step t, Wdc is the
input representation weight matrix, dt represents
input to be generated, Wwr is a word embedding
weight matrix, xt is the word at step t, and xit+1 is
the i-th word of the decoding distribution at t+1. In
this paper we use notations specific to the SCLSTM
architecture (Wen et al., 2015b). However, the
input of the meta-classifier can be generalised as
a concatenation of encoder, decoder hidden states
and word embeddings.

From the meta-classifier’s output we can infer
a vocabulary-length binary vector B that indicates
which words are reliable. In order to also consider
the NLG decoder’s probability distribution, we only
sample amongst the top consecutive reliable words
in B that are assigned a non-zero probability.

...

MC

Figure 2: Overview of the meta-classifier (MC); dotted
lines denote the MC, solid denotes NLG model.

4 Imitation Learning

Since diversity-specific labels are not explicitly
available in the data, we employ an expert policy
to infer which words are reliable, and use Imitation
Learning (IL) approaches to mimic the expert. IL
is a family of meta-learning frameworks, that train
a policy π using demonstrations provided by an
expert πref . In this work, the policy π refers to the
meta-classifier. The expert policy πref acts as a
dynamic oracle that returns whether a word is reli-
able; we discuss the expert further in section 4.1.

We explore the application of three IL frame-
works for training the meta-classifier: Exact Imi-
tation, DAGGER (Ross et al., 2011) and Locally
Optimal Learning to Search (Chang et al., 2015,
LOLS). We will briefly explain how we adapt these
frameworks, but a detailed explanation of the in-
volved algorithms is out of the paper’s scope.

Exact Imitation refers to training a policy π di-
rectly on the labels provided by the expert policy
πref . In practice, for each training instance in our
data, we use the underlying NLG model to gener-
ate a sentence. On each decoding step, we call
πref to determine the reliable words and train π.
We also sample the next word in the sentence us-
ing πref . We note that the underlying NLG model
remains constant throughout training and IL is ap-
plied solely on the meta-classifier.

DAGGER improves over Exact Imitation by gen-
erating the sentence using a mixture of the πref

and π policies, i.e. by sampling amongst the words
considered reliable by either πref or π. This way
π is exposed to sentences it would not have encoun-
tered solely using πref for sampling. In particular,
it is exposed to sentences produced by π itself, in a
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xt xit+1 Greedy decoding Preci Out
my favourite is Itacho . do 0.908 1
my personal favorite is Itacho . 1.0 1
my recommendation is the hotel Hilton 0.524 0
my computer shows this . I 0.658 0
my opinion . I would recommend 0.708 0
my suggestion would be the Itacho 1.0 1
my apologies . I would suggest 0.608 0

Table 1: Example of πref training signal inference.

sense exposing it to its own errors and thus helping
ameliorate error propagation. As in Exact Imita-
tion, we call πref to determine reliable words and
train π. Before we apply DAGGER, we perform
one iteration of Exact Imitation to initialise π.

LOLS generates the sentence using only the π
policy, again initialised via Exact Imitation. Addi-
tionally, at each decoding step the training signal is
provided by either πref or π according to a proba-
bility p. This probability is initially set to p = 1.0,
i.e. to always obtain the training signal via πref ,
but it exponentially decays after every iteration
with a rate of p = (1 − β)i, where β is the learn-
ing rate. Further details on how π can provide a
training signal can be found in section 4.1.

DAGGER and LOLS iteratively adjust the train-
ing signal and increasingly expose π to training in-
stances that are more similar to what π is likely to
encounter during test time. This helps address error
propagation, but also helps tune the meta-classifier
to the level of diversity that the NLG model can
comfortably produce. Specifically, LOLS has the
advantage of potentially improving over πref as it
exploits the training signal from π itself.

4.1 Inferring Training Signal from Policies

During IL, we employ a dynamic oracle πref that
determines whether a word xit+1 is reliable. Due to
the computational cost, πref is limited to consider
only i ∈ {0...d}; in this work we consider the top
d = 25 words, which is the maximum number of
consecutive reliable words as observed during pre-
liminary training. This limit is not applied during
decoding with the trained meta-classifier.

Intuitively, we need to examine whether the im-
pact of each xit+1 on the decoding process will
lead to a fluent and adequate sentence. To obtain
sentences that are affected by xit+1, we force xit+1

in step t + 1 and use the NLG model to greedily
generate the rest of the sentence. We then calcu-
late the n-gram overlap between the d sentences
and a set of references. To make the calculations

more consistent, we limit the produced sentences
to the previous word xt, xit+1, and the next 4 words
x∗t+2 . . . x

∗
t+5, similarly to the focused costing ap-

proach proposed by Goodman et al. (2016). If a
sequence ends prematurely (e.g. by generating an
〈eos〉 token), we pad it to the appropriate length.

An example application of πref is shown in Ta-
ble 1 for the MR [INFORM(REST-NAME = ITACHO),
REQUEST(REST-TYPE)]. Note that the previous
word xt is the same for all examined xit+1, while
x∗t+2 . . . x

∗
t+5 differ. The n-gram overlap is calcu-

lated via modified 4-gram precision, i.e. BLEU-4
score (Papineni et al., 2002) without the brevity
penalty. Since the expert hypotheses are all fixed
in size, we cut the brevity penalty to speed up the
calculation of the expert. The expert considers the
words and corresponding modified 4-gram preci-
sions Preci in ascending i, considering a word i as
reliable if Preci ≥ max(Prec0, . . . , P reci−1).

To promote more diversity through πref ,
the aforementioned reference sets are obtained
by decomposing the corresponding MR into
its attributes, and then retrieving from the
training instances all the references these at-
tributes correspond to. For example, for [IN-
FORM(WELCOME); INFORM(BYE)] we would
also retrieve all references corresponding to [IN-
FORM(WELCOME); REQUEST(NAME)] as they
share the INFORM(WELCOME) attribute.

In the LOLS framework, we also obtain the train-
ing signal via π. In this work, this is similar to how
we calculate πref but instead of greedily generating
the rest of the sentence for each xit+1, we generate
by sampling using π. In order to allow a broader
exploration and generate a more consistent signal
when sampling, multiple hypotheses are produced
and precision is averaged over them.

5 Experiments

The following experimental analysis is performed
on the MultiWOZ dataset (Budzianowski et al.,
2018) which contains human-to-human written con-
versations, annotated with corresponding MRs. The
conversations concern a user trying to use a vir-
tual assistant to perform certain tasks, e.g. book a
restaurant or a taxi, find attractions. The dataset is
comprised of 55026, 7290 and 7291 utterances for
training, validation and testing respectively. In the
training set, there are 486 different attributes, 8635
unique MRs and a total of 46671 distinct sentences.
We note that scarcity of data is one of the major
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challenges of concept-to-text NLG, and that Multi-
WOZ is one of the largest and more diverse datasets
available. Both DSTC8 and DSTC9 challenges use
MultiWOZ in their tasks1.

5.1 Evaluation Metrics

To measure the diversity of the outputs we com-
pute Self-BLEU (Zhu et al., 2018) and diversity-n
(Li et al., 2016). In our experiments, we will be
reporting 1 - Self-BLEU to make the score eas-
ily interpretable (the higher the score, the more
diverse the system output is), while for distinct-
n we provide the percentage of distinct n-grams
(n = 1, 2, 4) and distinct whole sentences.

Correctness of the output is evaluated with slot
error (Wen et al., 2015a, ERR), i.e. the percentage
of values in the MR that are missing, repeated or hal-
lucinated in the output. Overall performance is eval-
uated with BLEU-4, METEOR (Lavie and Agar-
wal, 2007) and MoverScore (Zhao et al., 2019). We
should note that word overlap metrics can be unre-
liable when evaluating systems with a high level of
diversity in the output. Since every MR is aligned
with a limited set of references, more diversity will
lead to less overlap between the output and the ref-
erences. BLEU is particularly problematic, as it
has been shown not to be a reliable discriminator
between high quality systems even when not con-
sidering a particularly diverse output (Novikova
et al., 2017). For this reason, we further support
our experiments with human evaluation.

5.2 System Configurations

Apart from the experiments with SpaceFusion (Gao
et al., 2019), all our experiments make use of the
Semantically Conditioned Long Short-term Mem-
ory (SCLSTM) architecture, proposed by (Wen
et al., 2015b), as the underlying NLG model. While
recent architectures have been adapted to take ad-
vantage of large pretrained language models (Peng
et al., 2020), we opt not to use them here as re-
lated work does not exploit external data either.
For our meta-classifier, we initialised using a sin-
gle iteration of Exact Imitation over the full dataset.
Due to time constraints, for the following training
iterations with any IL framework, only 10% ran-
domly selected sentences were used. We evaluated
the meta-classifiers generated by our last iteration.
For the MMI objective function we implemented

1https://sites.google.com/dstc.community/dstc8/tracks,
https://sites.google.com/dstc.community/dstc9/tracks

MMI-antiLM as suggested by Li et al. (2016). At
decoding, the MMI-antiLM parameters were set as
λ = 0.5 and g = 5. Beam Search and MMI are
performed with beam size = 10. SpaceFusion was
trained using the configuration provided with the
code. Tests on different settings did not achieve
significant improvements. Values for the random
vector r were generated in the range −5, 5. For
First Word Control, we selected all the words that
appear more than 60 times as first word in the train-
ing references, resulting in a set of 67 different
possible first words. At inference time, one sen-
tence is generated per each first word. For Top-k
and Nucleus Sampling, since parameters k and p
are not tunable, we report results for ranges 2-10
for k and 0.10-0.95 for p.

The aforementioned parameters in related work
(λ, g, r, k, p), were all tuned based on observations
of output and diversity metrics. Precise tuning of
such manual parameters remains a challenge as
word-overlap metrics are unreliable predictors of
actual output quality (see Section 5.1).

5.3 Reranking

For each input, we generate 10 possible outputs and
rerank them according to two criteria. We prioritize
utterances with lowest slot error, and then sort them
according to their normalised sentence probability.
The final output is sampled uniformly from the
top 5 most probable remaining sentences. This is
applied on all considered models to minimise the
effect of random sampling on the results.

5.4 Analysis of Previous Diversity Methods

Please consult Table 2 for automatic evaluation
metrics. We can see from the low numbers in the
diversity metrics (1 - Self-BLEU and distinct-n)
that none of previous diversity methods produce
much output diversity in concept-to-text NLG. Be-
low, we provide some brief analysis on the results.
Beam Search: similarly to what has been reported
in open-domain NLG research (Li et al., 2016), Ta-
ble 2 shows that Beam Search produces greedy-like
outputs with minimal variations.
MMI-AntiLM: using Beam Search with MMI as
objective function improved the diversity of the out-
put. However, an analysis of the text revealed that
the generated sentences do not differ substantially
from the ones obtained with maximum-likelihood,
and that the achieved diversity was the result of in-
troducing disfluent words within the first g tokens.
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Greedy Beam FWC MMI SF Top-k Nucleus IS-E IS-D IS-L
b = 10 g, λ = 5, 0.5 |r| = 5 k = 2 p = 0.84

BLEU 0.654 0.663 0.592 0.486 0.439 0.336 0.488 0.326 0.334 0.334
METEOR 0.496 0.496 0.479 0.479 0.332 0.400 0.434 0.393 0.395 0.395
Mover 0.804 0.799 0.721 0.649 0.642 0.675 0.710 0.646 0.645 0.649
Slot Error 4.071 1.608 0.305 2.091 45.218 0.830 0.753 0.897 0.762 0.897
1-SB 0.014 0.017 0.018 0.044 0.008 0.093 0.101 0.104 0.096 0.096
Dist-1 0.004 0.004 0.004 0.006 0.002 0.007 0.007 0.007 0.007 0.007
Dist-2 0.022 0.024 0.023 0.049 0.013 0.066 0.072 0.064 0.061 0.061
Dist-4 0.079 0.087 0.095 0.156 0.045 0.399 0.342 0.429 0.415 0.417
Dist-Sent 0.307 0.482 0.491 0.487 0.266 0.869 0.919 0.961 0.957 0.957

Table 2: Automatic evaluation results for different methods on diversity. IS-X refers to Informed Sampling trained
with either Exact Imitation (IS-E), DAGGER (IS-D) or LOLS (IS-L).
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First Word Control (FWC): despite being pro-
posed for concept-to-text NLG, First Word Control
did not achieve more diversity than Beam Search.
We have observed that in most cases the forced first
word has no major effect on the sentence. For ex-
ample, for the MR [REQUEST(TAXI-LEAVE)], forc-
ing “Okay”, “Alright” or “Great” will not produce
diversity as the model will complete the sentence
with “What time would you like to leave?”.
SpaceFusion (SF): compared to the above meth-
ods SpaceFusion obtained the lowest scores for
diversity and highest slot error. This makes sense
as the method was not designed for concept-to-
text NLG nor for lexical diversity in general, and
the trained autoencoder tends to produce identical
or almost identical sentences as the S2S encoder.
The joint training collapses the sentence embed-
dings into a similar representation, preventing the
decoder from distinguishing different autoencoder
states. This is explained by the strict semantic re-
lation between the MR and the reference, and the
similarities within the reference set and the fuse
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Figure 4: Close up of the distribution produced by the
concept-to-text NLG model.

regularisation term. The extremely high slot er-
ror can be attributed to the lack of an attention
mechanism in SpaceFusion. Widening the range of
the random vector added to the latent vectors can
increase diversity but not without reducing the rel-
evancy of the sentences further. We conjecture that
SpaceFusion might achieve a better performance
with an input-optimised model and parameters, but
that is beyond the scope of this paper.

Figure 3 show how the quality of the texts pro-
duced by Top-k and Nucleus Sampling when paired
with stochastic sampling vary as their respective
parameters increase.2 Despite enlarging the sam-
ple pool results in the augmentation of diversity,
Top-k and Nucleus Sampling performed compara-
bly across all the parameters, obtaining greedy-like
results. Figure 4a shows the average probability
of the top-10 words. Since most of the probability
mass is clustered in the top 4 words, with the top-1
taking 70% of it, we can conclude that stochastic
sampling is not appropriate for concept-to-text NLG

as little to no diversity would be introduced.

2We present detailed results in the Appendix.
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5.5 Top-k and Nucleus Sampling Analysis

In addition to stochastic sampling, Figure 3 shows
the performance of Top-k and Nucleus Sampling
when paired with uniform sampling. For Top-k
(Figure 3a), while the diversity in the text increases
drastically, the BLEU score drops exponentially
over k. The score halves even for k = 2 (one
step beyond greedy decoding) and reaches a 0.005
BLEU score at k = 10. Figure 4b shows that 42%
of the generated words have a probability of 1.0 (or
nearly 1.0). Even though diversity methods aim to
reduce the bias towards highly probable words, it is
safe to assume that in concept-to-text NLG, words
with a probability of 1.0 are likely to be the sole
correct output. For this reason, when k increases,
errors on these cases become more probable. In ad-
dition, it is fairly reasonable to trust the low scores
of word-overlap metrics on the incorrectness of
the output produced by top-k due to their high cor-
relation with human judgements when evaluating
low-quality text (Zhao et al., 2019).

On the other hand, Nucleus Sampling paired
with uniform sampling is able to introduce diver-
sity in a more controlled way, outperforming Top-k
by maintaining a high level of BLEU while steadily
increasing the diversity generated. (Figure 3b). We
note that Nucleus Sampling can achieve any de-
sired level of diversity through different values of
p. However, picking an optimal value for p is not
straightforward as the effect of each level of di-
versity to the quality of the output is unreliably
measured by the word overlap metrics.

5.6 Evaluation of Informed Sampling

Table 2 also shows our three Informed Sampling
models trained with Exact Imitation (IS-E), DAG-
GER (IS-D) and LOLS (IS-L). All the configurations
obtained comparable automatic evaluation results,
suggesting that the benefits of LOLS do not help in
this task. We conjecture this is due to the high qual-
ity of the expert policy which provides a reliable
and representative training signal for the diversity
that the NLG is capable of producing correctly.

Compared to previous methods our approaches
show a much higher level of diversity in the output.
However, we observe a significant drop in the word
overlap metrics (BLEU-4, METEOR and Mover-
Score). As we mentioned in section 5.1, these met-
rics rely on a limited set of evaluation references,
and are unfortunately unreliable when there is a
high level of diversity in the output. We consider

Fluency Adequacy
raw z-score raw z-score

Greedy 82.555 0.334 84.233 0.205
IS-E 73.892 0.028 79.790 0.057
IS-D 71.824 -0.032 79.043 0.020
IS-L 73.343 -0.002 79.846 0.017
Nucleus 76.753 0.120 82.581 0.156

Table 3: Human Evaluation results.

Fluency Adequacy
raw z-score raw z-score

IS-E 49.258 -0.041 65.357 0.012
IS-D 53.593 0.080 64.265 -0.006
IS-L 54.324 0.104 65.509 0.065
Nucleus 39.762 -0.295 60.561 -0.017

Table 4: Human Evaluation results for texts always
sampling the last word of the reduced sample pool.

Self-BLEU and distinct-n to be accurate as they
do not rely on references. To better determine the
output’s quality, we perform human evaluation.

For human evaluation we include the output of
Nucleus Sampling and greedy decoding. To further
focus the human evaluation solely on output quality,
we aim to keep the level of diversity across systems
as close as possible. The behavior of greedy decod-
ing is not adjustable, but we can adjust the level of
diversity of Nucleus Sampling using different p val-
ues. Unfortunately, we cannot use the development
data to pick p as we observed it leads to different
Self-BLUE values in the test set which would com-
promise the comparison. We set p = 0.84 as that
leads to the same Self-BLEU as our systems on
the test data. This also leads to a higher BLEU
score by 0.16 points, but the difference for seman-
tic similarity based metrics is more marginal, with
a difference of only 0.04 for METEOR and 0.06
for MoverScore. We note that the inclusion of Nu-
cleus Sampling and greedy decoding is to provide
context for the human participants, and not to di-
rectly compare against them as methods. Greedy
decoding is more fluent as it produces no diversity,
and Nucleus Sampling is optimized in an unrealis-
tically favorable manner, as there is no established
methodology to tune the parameter p otherwise.

We evaluate the fluency and adequacy of the
texts via Direct Assessment (Graham et al., 2017);
a human evaluation framework that has been em-
ployed on MT (Bojar et al., 2018), surface real-
isation (Mille et al., 2018) and video captioning
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(Awad et al., 2019) output. We used the publicly
available code of Direct Assessment3 to setup tasks
on the Amazon Mechanical Turk (AMT) platform.

To minimise correlation between the criteria, sep-
arate tasks were created asking participants to as-
sess the fluency and adequacy of the provided texts;
a 100-point Likert scale was used. For fluency, par-
ticipants were asked to judge how grammatical and
natural the text was. The task for adequacy was
more complicated as participants were asked to
compare the text with a checklist of snippets that
it should include. We generated the checklist of
snippets through simple rule based NLG (i.e. tem-
plates). Every text was evaluated by at least 3 par-
ticipants. We limited the crowd-workers that could
participate in the tasks to those residing in English-
speaking countries, and who had a high acceptance
rate. Even so, after consulting the participants’ re-
liability based on the Direct Assessment platform
analysis, we had to filter out 27% and 50% of those
who assessed fluency and adequacy respectively.

We sampled 1500 texts from each of the dif-
ferent Informed Sampling configurations, Nucleus
Sampling and greedy inference. Table 3 shows the
raw and mean standardised z-scores of the human
assessments. To determine whether the observed
differences were statistically significant we used
the Wilcoxon rank sum test. On both fluency and
adequacy the greedy model is the best, while IS-E
and Nucleus are comparable on fluency. All other
configurations have no statistically significant dif-
ference between them. This confirms that Informed
sampling learns a level of diversity that the NLG

model can generate without particularly hurting the
output’s quality when compared to an unrealistic
optimization of Nucleus Sampling. While fluency
and adequacy is lower than greedy inference (as is
to be expected), the gain in diversity is significant.

5.7 Sample pool analysis

To better assess the edge cases of the decoding
strategies, we generate 750 texts from Nucleus and
each Informed Sampling configuration by always
picking the least probable word in the range that
each method returns. This will help us determine
the quality of the texts for which the NLG model
is least confident, but the decoding strategies still
consider to be reliable enough to generate. Table 4
shows the raw and mean standardised z-scores for

3https://github.com/ygraham/crowd-alone
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Figure 5: Average sample pool size over decoding.

this setting.4 Again, most configurations show no
statistically significant difference between them,
with the exception of IS-L and Nucleus on fluency.
This shows that Informed Sampling is better at de-
termining edge cases where it can reliably generate
diverse output without hurting quality.

In addition, Figure 6 shows how the sample pool
varies over the course of decoding a sentence (i.e.
at each timestep) for each decoding strategy. We
compare the behavior of IS-L and Nucleus, when
decoding the sentences by either uniform sampling
or always picking the least probable (edge) word.5

IS-L generally begins with a larger pool size at
timestep t = 0, indicating that it considers more
diverse ways to begin the sentences. Overall, we
observe that the pool size for Nucleus is larger
and becomes even larger and more inconsistent at
later timesteps. This is especially prevalent when
picking the last word, which suggests that Nucleus
leads the underlying NLG model to become less
confident, possibly due to error propagation. On
the other hand, IS-L demonstrates more consistent
behavior, reducing its pool size over time as fewer
sentence variations become available.

6 Conclusion

In this paper, we proposed Informed Sam-
pling which employs a meta-classifier exploit-
ing diversity-specific training signals to determine
which words in the decoding distribution lead to
reliably diverse generation. Due to the lack of ex-
plicit training signal for diversity, we adapted three
Imitation Learning frameworks and showed that
their application helps Informed Sampling deter-
mine the level of diversity that the underlying NLG

4Automatic metrics results are included in the appendix.
5IS-E and IS-D produce sample pools similar to IS-L. Full

plot of Figure 6 is provided in the Appendix.
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model is comfortable to produce. Our experimen-
tal results show that Informed Sampling leads to
highly diverse output while minimising the cost
to the quality of the text. We also show that In-
formed Sampling is better than previous work at
determining the edge cases where it can still reli-
ably generate diverse output even though the NLG

model assigns a lower probability. Additionally,
we presented a thorough analysis of open-domain
diversity methods applied to concept-to-text NLG.

Informed Sampling is agnostic to the underly-
ing model; its input consists of hidden states/em-
beddings and a probability distribution that can
be obtained from almost any language generation
model. In future work, we aim to extend Informed
Sampling to other language generation tasks, e.g.
machine translation and open-domain NLG. Ad-
ditionally, it would be interesting to explore the
application of Informed Sampling over the proba-
bility distribution of large pretrained models.
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A System Configurations

This section is similar to the system configurations
section of the main paper, but includes many more
configuration details.

Apart from the experiments with SpaceFusion
(Gao et al., 2019), all our experiments make use
of SCLSTM as underlying NLG model. Using the
implementation provided by Budzianowski et al.
(2018)6, the model has been trained with 4 hidden
layers, states of size 100 and 0.25 dropout, Adam
(Kingma and Ba, 2015) as loss optimiser, learning
rate of 0.005 and gradient clipping at 0.5. Early
stopping was applied when validation loss did not
decrease within 6 epochs.

For our meta-classifier, we used 3 linear/ReLU
layers with 512 as hidden state size, trained for 30
epochs per dataset iteration with Stochastic Gradi-
ent Descent and a learning rate of 0.05. For LOLS,
exponential decay is performed with a parameter
β of 0.1. We initialised using a single iteration
of Exact Imitation over the full dataset. Due to
time constraints, for the following training itera-
tions with any IL framework, only 10% randomly
selected sentences were used. We evaluated the
meta-classifiers generated by our last iteration.

In addition to our proposed method, we ex-
plored six different techniques for diversity: sam-
pling Beam Search, First Word Control (Deriu and
Cieliebak, 2017), MMI-AntiLM (Li et al., 2016),
SpaceFusion (Gao et al., 2019), Top-k (Fan et al.,
2018) and Nucleus Sampling (Holtzman et al.,
2020). Beam Search and MMI are performed
with beam size = 10 and the sentences are selected
among the top 10 beams with the criteria described
in Section 5.3. For the MMI objective function
we implemented MMI-antiLM as suggested by Li
et al. (2016). For the auxiliary language model,
we used a 2-layer, 650 vector size LSTM, trained
for 40 epochs on the MultiWOZ references. At
decoding, the MMI-antiLM parameters were set as
λ = 0.5 and g = 5. SpaceFusion was trained using
the configuration provided with the code. Tests
on different settings did not achieve significant im-
provements. Values for the random vector r were
generated in the range −5, 5. For First Word Con-
trol, we selected all the words that appear more
than 60 times as first word in the training refer-
ences, resulting in a set of 67 different possible first
words. SCLSTM was modified as in Deriu and
Cieliebak (2017) and trained with the configuration

6https://github.com/andy194673/nlg-sclstm-multiwoz/

described above. At inference time, one sentence
is generated per each first word and the output is
selected with the criteria described in Section 5.3.
For Top-k and Nucleus Sampling, since parameters
k and p are not tunable, we report results for ranges
2-10 for k and 0.10-0.95 for p.

The aforementioned parameters in related work
(λ, g, r, k, p), were all tuned based on observations
of output and diversity metrics.

B Complete Results

Tables 5 and 6 show detailed results of automatic
metrics for Top-k across different values of k for
uniform and stochastic sampling respectively. Sim-
ilarly, Tables 7 and 8 show detailed results for Nu-
cleus Sampling across different values of p. These
results are corresponding to those shown in Fig-
ure 3 of the main paper.

Table 9 shows the results for Space Fusion by
varying the range of the r random vector added
to the input latent variable. Similarly to k and p,
performance and diversity are inversely correlated
when the range is widened. However, this change
does not considerably affect the slot error, which
remains drastically higher than other systems.

Table 10 shows automatic results for the edge
case experiment presented in Section 5.6 of the
main paper, and correspond to the human evalua-
tion experiments summarised in Table 4. Similarly
to the results presented in Table 2, Nucleus Sam-
pling achieved the highest BLEU score. However,
all systems performed similarly according to ME-
TEOR and MoverScore, while Informed Sampling
methods produced outputs with fewer slot errors
than Nucleus. Diversity metrics are not included as
diversity comparison is not informative when per-
formed on experiments where the word choice at
each timestep is forced (here to the least probable
word) rather than sampled.

C Examples

Table 11 and 12 show some output examples pro-
duced by each diversity method after reranking
based on slot error and normalised sentence proba-
bility. We present the top 3 sentences, and do not
filter out repeated sequences (as in our evaluation).

In the first example, for the meaning rep-
resentation [INFORM(TRAIN-REF = ABC123),
INFORM(TRAIN-PRICE = 10)], all the systems
generated sentences with structures similar to the
greedily-decoded output. Beam Search, MMI and
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 7 k = 10
BLEU 0.654 0.336 0.207 0.144 0.105 0.069 0.005
METEOR 0.496 0.400 0.368 0.352 0.343 0.329 0.253
Mover 0.804 0.675 0.604 0.559 0.533 0.497 0.368
Slot Error 4.071 0.830 1.329 2.192 2.819 4.461 30.667
1 - SB 0.014 0.093 0.199 0.297 0.375 0.483 0.846
Dist-1 0.004 0.007 0.008 0.008 0.008 0.008 0.007
Dist-2 0.022 0.066 0.096 0.117 0.134 0.162 0.400
Dist-4 0.079 0.399 0.638 0.771 0.844 0.919 0.999
Dist-Sent 0.307 0.869 0.943 0.978 0.985 0.990 0.996

Table 5: Complete results for Top-k with uniform sampling.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 7 k = 10
BLEU 0.654 0.633 0.609 0.594 0.589 0.578 0.556
METEOR 0.496 0.489 0.480 0.476 0.473 0.470 0.461
Mover 0.804 0.797 0.784 0.780 0.775 0.768 0.752
Slot Error 4.071 0.728 0.652 0.643 0.482 0.576 0.559
1 - SB 0.014 0.028 0.038 0.047 0.050 0.058 0.081
Dist-1 0.004 0.005 0.005 0.006 0.006 0.006 0.007
Dist-2 0.022 0.032 0.039 0.044 0.046 0.051 0.063
Dist-4 0.079 0.138 0.177 0.204 0.216 0.238 0.289
Dist-Sent 0.307 0.592 0.673 0.708 0.738 0.770 0.819

Table 6: Complete results for Top-k with stochastic sampling.

First Word Control behaved as described in Section
5.4. The rest of the systems were able to introduce
some degree of diversity, while Nucleus Sampling
and Space Fusion produced repeated sentences.

On the other hand, for the [INFORM(TRAIN-REF

= ABC123), INFORM(TRAIN-PRICE = 10)], all
the systems with the exception of Beam Search and
MMI, produced diverse sentences. However, First
Word Control, and Space Fusion generated some
irrelevant content, while Top-k, Nucleus Sampling,
and IS-E present some disfluency.

Table 13 illustrates some output examples gen-
erated by Greedy (as benchmark), Nucleus and In-
formed Sampling for the edge case experiment pre-
sented in Section 5.6. These examples correspond
to the human evaluation experiments summarised
in Table 4 and Table 10. Overall, neither Informed
Sampling models nor Nucleus sampling were able
to generate consistently correct and fluent outputs.
However, the table illustrates some examples of
how catastrophic error propagation can be when
non-reliable words are sampled. Specifically, for
the first MR, Nucleus Sampling produced a non-
sensical sentence which we attribute mainly at the
generation of the tokens “british” and “,”. Informed
Sampling models also suffer from error propaga-

tion (as seen on the second MR), but its effects are
not as frequent or severe as when using Nucleus
Sampling.

D Human evaluation platform examples

Figures 7 and 8 show examples of the evaluation
platform as shown to the human participants of
Amazon Mechanical Turn. Figure 7 asks the partic-
ipants to rate the fluency of the text, while Figure 8
is used to rate adequacy. For the latter, people
were asked to compare the text with a checklist of
snippets that it should include. The checklist of
snippets was generated through simple rule based
NLG (i.e. manually authored templates).
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p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.75 p = 0.8 p = 0.85 p = 0.9 p = 0.95
BLEU 0.654 0.654 0.655 0.653 0.646 0.633 0.596 0.574 0.535 0.480 0.392 0.230
METEOR 0.495 0.495 0.497 0.496 0.496 0.497 0.470 0.461 0.449 0.432 0.401 0.360
Mover 0.804 0.804 0.804 0.804 0.799 0.789 0.766 0.751 0.7333 0.704 0.656 0.557
Slot Error 4.080 3.674 2.878 2.167 1.261 0.906 0.770 0.643 0.719 0.982 1.244 3.801
1 - SB 0.014 0.014 0.015 0.018 0.023 0.030 0.044 0.057 0.074 0.109 0.187 0.398
Dist-1 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.009
Dist-2 0.022 0.022 0.023 0.025 0.030 0.034 0.042 0.049 0.058 0.075 0.113 0.215
Dist-4 0.079 0.080 0.082 0.092 0.113 0.141 0.190 0.229 0.280 0.359 0.502 0.760
Dist-Sent 0.307 0.310 0.331 0.389 0.480 0.588 0.727 0.799 0.863 0.924 0.957 0.956

Table 7: Complete results for Nucleus Sampling with uniform sampling.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.75 p = 0.8 p = 0.85 p = 0.9 p = 0.95
BLEU 0.654 0.654 0.656 0.656 0.656 0.651 0.635 0.628 0.621 0.608 0.594 0.578
METEOR 0.495 0.495 0.497 0.498 0.497 0.496 0.489 0.486 0.483 0.478 0.473 0.468
Mover 0.804 0.804 0.805 0.805 0.806 0.804 0.794 0.786 0.790 0.779 0.772 0.763
Slot Error 4.088 3.665 2.920 2.108 1.405 0.990 0.813 0.686 0.686 0.567 0.626 0.550
1 - SB 0.014 0.015 0.015 0.018 0.021 0.024 0.029 0.034 0.039 0.044 0.054 0.065
Dist-1 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.006 0.006 0.006 0.007
Dist-2 0.022 0.023 0.022 0.024 0.027 0.030 0.033 0.036 0.039 0.042 0.048 0.054
Dist-4 0.079 0.080 0.081 0.089 0.100 0.118 0.139 0.157 0.170 0.190 0.216 0.245
Dist-Sent 0.307 0.309 0.327 0.374 0.448 0.528 0.603 0.646 0.678 0.718 0.750 0.789

Table 8: Complete results for Nucleus Sampling with stochastic sampling.

|r| = 1.5 |r| = 5 |r| = 10 |r| = 20

BLEU 0.466 0.439 0.341 0.233
METEOR 0.365 0.332 0.244 0.141
Mover 0.671 0.642 0.537 0.384
Slot Error 52.98 45.218 60.344 83.299
1 - SB 0.002 0.008 0.025 0.045
Dist-1 0.002 0.003 0.003 0.004
Dist-2 0.007 0.013 0.020 0.026
Dist-4 0.019 0.045 0.099 0.142
Dist-Sent 0.100 0.266 0.526 0.659

Table 9: Results for Space Fusion across different hypersphere radius around the latent vectors.

Nucleus
p = 0.84

IS-E IS-D IS-L

BLEU 0.243 0.194 0.212 0.177
METEOR 0.340 0.350 0.346 0.342
Mover 0.523 0.567 0.560 0.563
Slot Error 24.581 19.325 19.350 20.112

Table 10: Automatic evaluation results for texts always sampling the last word of the reduced sample pool.
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MR [INFORM(TRAIN-REF = ABC123), INFORM(TRAIN-PRICE = 10)]
Greedy booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .

Beam
Search

booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
booking was successful , the total fee is 10 GBP payable at the station . your reference number is ABC123 .
booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123

MMI
booked has 10 GBP thing . reference number is : ABC123 .
booked has mention fee of 10 GBP . reference number is : ABC123 .
booked has mention total fee is 10 GBP payable at the station . reference number is : ABC123 .

First
Word
Control

booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
ok. the booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
your booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .

Space
Fusion
|r| = 5

booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
the booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .

Top-k
k = 2

booking is complete . your reference number is ABC123 and it will be 10 GBP .
your train has booked . your total fee is 10 GBP and your reference number is ABC123
booking was completed . the reference is ABC123 and it will cost 10 GBP .

Nucleus
Sampling
p = 0.84

booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
booking was successful , the total fee is 10 GBP payable at the station . reference number is : ABC123 .
the total is 10 GBP and your reference number is ABC123 .

IS-E
yes , the booking was successful . your reference number is : ABC123 , the cost is 10 GBP .
yes , the booking was successful , you reference number is ABC123 . 10 GBP payable at the station
your tickets have been reserved . your total is 10 GBP , which you can pay at the station , your reference # is ABC123

IS-D
booking was successful . reference number is 10 GBP payable at the station . your reference number is : ABC123 .
your ticket has been booked ! your reference number is : ABC123 , the price is 10 GBP .
yes , your tickets have been booked ! the cost is ABC123 and the total cost is 10 GBP .

IS-L
great ! booking was successful and the fee is 10 GBP which you can pay at the station . your reference number is : ABC123 .
yes , booking was successful and your total is 10 GBP . you can pay that at the station . reference number is ABC123
great ! booking was successful ! your reference is ABC123 and you will pay 10 GBP at the station .

Table 11: Top 3 outputs for the MR [INFORM(TRAIN-REF = ABC123), INFORM(TRAIN-PRICE = 10)]. RED and
BLUE text mark adequacy and fluency errors respectively.

MR [INFORM(REST-NAME = TANDORI), INFORM(REST-AREA = EAST)]
Greedy Tandoori is in the East side . would you like me to book it for you ?

Beam
Search

Tandoori is located in the East side . would you like me to book it for you ?
Tandoori is in the East side . would you like me to book it for you ?
Tandoori is located in the East side . would you like to book a table ?

MMI
Tandoori going is located in the East side
Tandoori going is located in the East side .
Tandoori going is located in the East side . would you like a reservation ?

First
Word
Control

unfortunately , i have 4 Indian restaurants . i have Tandoori in the South and 1 in the West , and 1 in the East .
yes , there are 4 Indian restaurants . Tandoori in in the South and 1 in the West , and 1 in the East .
of course ! there are 4 Indian restaurants in the South , Tandoori in the West and 1 in the East .

Space
Fusion
|r| = 5

Tandori is in East .
i can book you a table for you . i can book you a table for you . how many people and for how many nights and
how many nights and how many people will be staying ?
i have the Tandori in the East .

Top-k
k = 2

i have the Tandoori in East side , shall i book you ?
i have a listing in Tandoori , it is in East side , can i make a booking ?
i have a restaurant located at Tandoori in East side , can i make you a reservation at the address of them?

Nucleus
Sampling
p = 0.84

Tandoori is in the East side part of town . would you like a reservation ?
it ’s located in the East side . i can book a reservation at Tandoori if you are interested .
would you like to book a table at Tandoori at the East side ,

IS-E
there is a restaurant in the East side that meets those criteria . would you like to try Tandoori ?
Tandoori is in the East side part of the city . would you like me to check availability ?
i have a listing in the East side . would you like to book you a reservation at the Tandoori ?

IS-D
Tandoori is a nice restaurant in the East side
i can book Tandoori in the East side , would you like reservations ?
Tandoori is in the East side area , shall i book your table ?

IS-L
i have a listing for the restaurant in the East side . would you like me to make a reservation at Tandoori for you ?
Tandoori is in the East side side of the city . would you like the reservation ?
Tandoori is an excellent restaurant in the East side . shall i make the reservation ?

Table 12: Top 3 outputs for the MR [INFORM(REST-NAME = TANDORI), INFORM(REST-AREA = EAST)]. RED
and BLUE text mark adequacy and fluency errors respectively.
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MR [INFORM(RESTAURANT-PRICE = EXPENSIVE)]
Greedy it is in the expensive price range .

Nucleus
great the british chinese expensive options , does n’t matter when you have it there and just for additional
info and welcome again if you ’re interested in books .

IS-E sure . they ’re in a expensive price .
IS-D its in a expensive price .
IS-L the restaurant is expensive .
MR [INFORM(ATTRACTION-NAME = JELLO GALLERY; KETTLES YARD)]
Greedy cafe jello gallery and kettles yard are both great options .
Nucleus well and the cafe jello gallery on my favorites i were listed are looking for you either of the .
IS-E sure ! i can suggest the cafe jello gallery , kettles yard .
IS-D sure , i would like to suggest cafe jello gallery .
IS-L there ’s cafe jello gallery or the kettles yard , or slot-attraction-recommend-name .
MR [REQUEST(BOOKING-DAY; BOOKING-PEOPLE; BOOKING-STAY]

Greedy
i can help you with that . how many people will be staying , and what day will you be arriving , and
how many nights will you be staying ?

Nucleus and just what day and time how many people is it staying for you ?
IS-E okay , can you give me the details ?
IS-D okay , can you give me the details ?

IS-L
how long is your stay ? what day do you plan on arriving , for how long are you staying and what time
would like your reservation to book the restaurant for you ?

Table 13: Output text generated by Nucleus, Informed Sampling and Greedy on sample pool edge cases.
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Figure 6: Average sample pool size over decoding. Solid lines correspond to uniform sampling, and dashed lines
correspond to sampling the least probable word in the sample (i.e. the edge case experiment).

Figure 7: Evaluation platform for assessment of output fluency.
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Figure 8: Evaluation platform for assessment of output adequacy.


