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Abstract

Abstractive dialogue summarization suffers
from a lots of factual errors, which are due to
scattered salient elements in the multi-speaker
information interaction process. In this work,
we design a heterogeneous semantic slot graph
with a slot-level mask cross-attention to en-
hance the slot features for more correct sum-
marization. We also propose a slot-driven
beam search algorithm in the decoding process
to give priority to generating salient elements
in a limited length by “filling-in-the-blanks”.
Besides, an adversarial contrastive learning as-
sisting the training process is introduced to al-
leviate the exposure bias. Experimental per-
formance on different types of factual errors
shows the effectiveness of our methods and hu-
man evaluation further verifies the results.

1 Introduction

Current state-of-the-art conditional text genera-
tion models accomplish a high level of fluency
and informativeness, mostly thanks to advances in
seq2seq architectures with the attention and copy
mechanisms (See et al., 2017) and the pre-trained
transformer-based models for natural language un-
derstanding (Lewis et al., 2019; Yang et al., 2020).
Despite this progress (Kryscinski et al., 2019),
there are still many limitations facing neural text
summarization, the most serious of which is their
tendency to generate summaries with a substantial
number of factual errors. Besides, the ROUGE
scores (Lin, 2004), the most commonly used eval-
uation metrics, are inadequate to quantify factual
correctness and only capture the information cover-
age at token-level, i.e., n-gram overlap, which does
not always convey the desired semantics and reach
consensus with human judgement.

Recently, as people increasingly exchange in-
formation in the way of dialogue, giving a high-
quality summarization for the dialogue is partic-
ularly necessary, which can help people quickly
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Figure 1: An example from SAMSum dataset. Dashed
circles are elements of event, which are marked with
same circle numbers as corresponding parts in refer-
ence. X represents errors of factual inconsistent and
factual incomplete.

grasp the core information of the long dialogue
history without reviewing the complex context and
is significant to improve the efficiency of social
contact. However, as a special kind of text form,
the dialogue is usually informal and dynamic. Ut-
terances are often said by different speakers alter-
nately in different language styles, which leads to
the description of one event being fragmented and
scattered in multiple utterances. These inherent dif-
ferences between dialogues and documents make it
easier to product various factual errors, i.e., factual
inconsistent and incomplete, in the generated sum-
maries, as shown in Fig.1. Therefore, it is urgent to
develop a neural model, focusing on exploring the
factual correctness, to generate overall high-quality
summaries for the multi-people dialogue scene.

There have been some recent researches on ab-
stractive dialogue summarization, such as deploy-
ing document summarization methods to the con-
versation settings (Gliwa et al., 2019), utilizing the
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dialogue acts (Goo and Chen, 2018) and key point
sequences (Liu et al., 2019a), topic word informa-
tion (Zhao et al., 2020), and analyzing the conver-
sational structures (Chen and Yang, 2020, 2021).
Other researches have also pushed the frontier of
guaranteeing the factual consistency in abstractive
document summarization systems via proposing
related evaluation metrics (Kryscinski et al., 2020;
Maynez et al., 2020) and designing models (Dong
et al., 2020; Cao et al., 2020). However, the current
methods (1) fail to utilize the unique semantic and
structural information of dialogues to identify the
salient elements and guide the decoding process,
so that to deal with factual errors for dialogue sum-
marization, (2) lack overall evaluation metrics for
factual correctness. We argue that the slot-aware
structure is important to improve the performance
of factual correctness for dialogue summarization.
Besides, except for factual consistency metric, the
factual completeness metric is also an indispens-
able key to evaluate factual correctness.

In this paper, we propose a Semantic Slot
guided Adversarial sequence-to-sequence network
(SSAnet). The SSAnet contains a heterogeneous
semantic slot (HSS) graph, where different types of
nodes represent different slot labels and the edges
are the dependencies between slot values. Atten-
tions of three different granularities, i.e. tokens,
utterances, and slots, are unified into one architec-
ture to promote the learning of the relationships
between all granularities. Crucially, the slot-level
attention mechanism can make the model directly
select the appropriate slot features from the HSS
graph to fill the corresponding slot in the summary
sequence, which ensures the correctness and com-
pleteness of the salient information in the generated
content. In the decoding process, we propose a slot-
driven beam search algorithm based on Song et al.
(2021) to give priority to generating salient ele-
ments in a limited length by “filling-in-the-blanks”.
Besides, to alleviate the exposure bias, we also use
a contrastive learning strategy with adversarial per-
turbations (Lee et al., 2020) by actively exposing
some wrong tokens during training. Finally, we
propose a new evaluation metric to quantify factual
completeness at the slot-level.

Our contributions can be summarized as follows:
(1) To the best of our knowledge, we are the first
to design a novel slot-level attention operation by
copying features from an HSS graph to the cor-
responding slots. (2) We propose a slot-driven

beam search algorithm to give priority to gener-
ating salient elements in a controlled way, which
ensures the fluency and factuality of summaries.
(3) A contrastive learning with adversarial pertur-
bations is introduced to alleviate the exposure bias
for dialogue summarization. (4) We perform ex-
periments on two large-scale datasets to verify the
effectiveness of our proposed methods and propose
a new metric to evaluate the factual completeness.

2 Related Work

2.1 Abstractive Dialogue Summarization

Recently, abstractive dialogue summarization has
attracted more attention. Some early researches
adopted the dialogue act (Goo and Chen, 2018),
key point sequence (Liu et al., 2019a), and topic
segmentation (Liu et al., 2019b; Li et al., 2019)
for dialogue summarization. However, the used
datasets are either very small or non-public. Later,
Gliwa et al. (2019) proposed a large-scale dataset
about daily chats, named SAMSum. On this ba-
sis, some studies attempted to leverage the topic
word information (Zhao et al., 2020) and the con-
versational structures (Chen and Yang, 2020, 2021)
to improve the performance. Besides, (Zhu et al.,
2021b) recently propose another large-scale media
interview dataset (namely MediaSum) and evaluate
several benchmark summarization models. How-
ever, current methods only focus on modeling the
dialogue context via different ways to raise the
ROUGE scores, but ignore whether the generated
summaries are correct. To this end, we utilize the
semantic slot information to guide the model to
focus on generating the salient elements. While
ensuring the high-level ROUGE scores, it also im-
proves the factual consistency and completeness.

2.2 Fact-aware Summarization

When it comes to factual errors, some work fo-
cuses on designing evaluation metrics towards fac-
tual consistency, as many human evaluations have
shown that ROUGE scores correlate poorly with
faithfulness (Maynez et al., 2020). They range from
using fact triples (Goodrich et al., 2019; Zhang
et al., 2020), textual entailment predictions (Falke
et al., 2019), adversarially pre-trained classifiers
(Kryscinski et al., 2020), to question answering
(QA) systems (Wang et al., 2020; Durmus et al.,
2020). Another line of the related work focuses
on enforcing factuality in summarization models.
Cao et al. (2017); Zhu et al. (2021a) proposed
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RNN-based and Transformer-based decoders that
attend to both source texts and extracted knowl-
edge triples, respectively. Li et al. (2018) pro-
posed an entailment-reward augmented maximum-
likelihood training objective. Dong et al. (2020);
Cao et al. (2020) designed post-editing correc-
tors to boost factual consistency in generated sum-
maries. Our model is inherently different from
these models, as we try to boost the factuality via
incorporating the semantic slot information while
generating the summary, instead of correcting af-
ter generating, which can significantly improve the
performance of multiple factual correctness metrics
without a huge drop on ROUGE scores.

3 Methodology

As illustrated in Fig.2, our methods include three
parts: (1) a heterogeneous semantic slot graph, (2)
a dual-encoder, and (3) a slot-aware decoder.

3.1 Heterogeneous Semantic Slot Graph

The semantic slot information is a specific con-
cept in the dialogue system and the slots can be
understood as the defined attributes of the event,
that is, the backbone of the dialogue content (Yuan
and Yu, 2019). Although the current neural mod-
els are supposed to, or might implicitly recognize
some salient contents in dialogue, they are often
difficult to describe events consistently and com-
pletely. Therefore, we extract the slot values from
the dialogue context and construct a heterogeneous
semantic slot graph.

Specifically, we first define the slot labels via
Stanford CoreNLP and get the slot values by fine-
tuning Chen et al. (2019) (See Sec 4.1). Then, we
use a dependency parser tool (Manning et al., 2014)
to dig out the dependencies between slot values,
which are formed as (slot1, dependency, slots).
By integrating the triples, we obtain the graph
G=(V, E), where slot values v; are nodes in V,
and nodes belonging to the same slot label are re-
garded as the same type of nodes. F is an adja-
cent matrix, where e;;=1 indicates that there exists
some dependency between slot values.

3.2 Dual-Encoder

To model the dialogue context, we utilize a dual-
encoder, i.e., a sequence encoder and a graph en-
coder, which obtain the hidden representations at
token-level, utterance-level, and slot-level.
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Figure 2: The structure of our proposed model SSAnet,
which is based on BART.

3.2.1 Sequence Encoder

A pre-trained encoder, i.e., BART (Lewis et al.,
2019), is adopted as the feature encoder to ex-
tract token representations and utterance represen-
tations due to its effectiveness in representation
learning. Given a dialogue D with m utterances,
d;={w;1, ..., wy, } denotes the i-th utterance with
l; tokens. we feed the input sequence into BART:
{®10, @11, -y ®mi,, } = BART({wio0, w11, ..., Wi, })
(1
Here we add a special token w;=[CLS] (i €
{1,...,m}) at the beginning of each utterance and
regard ;o as the utterance-level representation.

3.2.2 Graph Encoder

Initializers For node initialization, we employ
the token-level output embeddings from sequence
encoder to initialize each token in v; and then av-
erage all token embeddings as the initial represen-
tation s; of the node. For edge initialization, the
BART(-) is used to encode the dependency e;; into
the initial representation 7;;.

Relational Graph Attention Layer Based
on the constructed HSS graph, we apply a graph
attention network (Velickovié et al., 2018) with the
dependency information to aggregate the slot-level
features. This layer following a residual connection
is designed as:

_ exp(LeakyReLU(Wo[Wgsi; Wesj; 7i5]))

Zle/\fi exp(LeakyReLU(Wqo[Wqsi; Wisi;ril))

h? = 0’( Z aiijsi) + s;
JEN;

Q5

2
where W, are weight matrices, o is the activation
function, and V is the neighborhood of v; in G.
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Figure 3: An illustration of the decoding process (beam_size=1). Our decoder selects the most probable token of
the same slot label from all positions and give priority to non-"O" slot labels, i.e., PERSON, ACT, etc.

3.3 Slot-aware Decoder

To aggregate multi-granularity representations, we
improve the BART decoder based on Transformer
with two extra cross-attentions added to each de-
coder layer, which attends to the representations at
utterance-level and slot-level. It is worth noting that
the slot-level mask cross-attention is realized with a
novel Mask, which represents the corresponding re-
lationship between the slot values in HSS graph and
the tokens in target summary, that is, whether they
belong to the same slot label. In each decoder layer,
after performing the token-level cross-attention and
the utterance-level cross-attention, the slot-level
mask cross-attention operation is then performed
to conduct cross attentions over slot nodes {v.|y/|}
of the HSS graph encoded from graph encoder to
obtain the slot-attended representations.

Concretely, the summary tokens are regarded
as a query matrix and the slot node representa-
tions act as a key matrix, so that every summary
token simultaneously assesses how much informa-
tion shall be obtained from every representation
of the same type slot node. In this way, the target
summary sequence representation Y, which is the
sum of token-level cross-attention representation T
and utterance-level cross-attention representation
U, is projected to query matrix Q €R"*¢. The slot
node HY is projected to key matrix K eRIVIxd and
value matrix V €R!V1*? by linear projections with-
out bias: [Q; K; V] = Linear([Y; H’; HY]) where
[] is the concatenating operation. Slot-level mask
cross-attention is calculated by:

T
H® = softmax(M)V 3)
where * denotes element-wis€ multiplication, and
M eR™*IVlis the utilized mask which is defined:

1, label(i) = label(j)
M _{ —inf, else

Just like Transformer (Vaswani et al., 2017), the

output vectors are then feed into a feed-forward
network for forward passing in the decoder.

Algorithm 1 Slot-driven Beam Search

1: procedure SLOTBEAM(DIALOGUE(D), n, L, K)

2: n <— max length of summary

3 L < number of non-O slot value

4: S + {[MASK] x n} Initial summary sequence
5: MG {0,1},«v| Two slot-aware matrices

6: Mp < [1] |y Position matrix

7

8

H {(073/7/\/12, M)} Hypothesis set

: fori=1,...,ndo

9: Cand + {}

10: for hyp € H do

11: if 7 < L then

12: Calculate probability of non-O slot values
13: Prx|v| < softmax( Gen(D,Sl) ® Mg)
14: else

15: Calculate probability of O-slot values

16: Prx|v| < softmax( Gen(D, Sl) oM9)
17: endif ,

18: score ,S , M, M3 < hyp

19: P —POM,
20: for sy, wi, pr € P do
21: Record the tokens and positions
22: sc/g)re” < score /—i— Sk
23: S <« replace(S ,pr, wk)
24: M, < replace(M,, pr, (0], |y
25: Cand.add((score” ,S" M;,M;))
26: end for
27: H + Top-K(Cand)
28: end for
29: end for
30: return H  The best summary sequence

31: end procedure

Slot-driven Beam Search  The general beam
search algorithm is a form of pruned breadth-first
search and seeks the K-best candidate summaries
having the highest log-likelihood to generate the
next token one by one. Although beam search is
one of the few NLP algorithms that has stood the
test of time and has been widely used in many text
generation tasks, it products a high search error
rate due to the long-distance probability transition
(Meister et al., 2020).
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Inspired by Song et al. (2021), our slot-driven
beam search simultaneously predicts the most prob-
able tokens for all positions and decodes the sum-
mary tokens in order of priority under the guidance
of semantic slot information rather than using a left-
to-right order, as shown in Fig.3, which makes the
most important tokens (salient elements) generated
first, less important ones later. This algorithm de-
signs two binary slot-aware matrices /\/lg and Mg
and, both of which indicates the corresponding re-
lations between all source tokens in the vocabulary
list and the slot labels of the summary. The Mg
and MG are defined as:

1
Mg,ij = { —inf

Mdo,ij = { l_ln f

Besides, a position matrix M, € {0, 1}, |y
is also contained to record what positions have
been filled by summary tokens and what positions
remain available. The detailed process is shown in
Algorithm 1

{j € slot value} N {label(j) =i}
else

{j ¢ slot value} N {i = O}
else

3.4 Learning Objective

Following Lee et al. (2020), we introduce a con-
trastive learning strategy during training to improve
generalization, which is realized by respectively
adding a small perturbation and a large number
of perturbations to the hidden representations of
the target summary sequence to generate negative
examples and positive examples. In this way, the
conditional likelihood of the negative example is
minimized but very close to the source sentence
in the embedding space, and the conditional likeli-
hood of the positive example is enforced to remain
high. The overall objective is as follows:

min — Larew(0) + aLxr(0) = B{Lneg(0) + Lpos (0)}

“4)
where «, 3 are hyperparameters, searched through
cross-validation and control the importance of con-
trastive learning and KL divergence.

4 Experiments

4.1 Datasets

We experiment with two large-scale abstractive
dialogue summarization datasets: the SAMSum
dataset (Gliwa et al., 2019), which is about natural
conversations in various scenes of the real-life, and
the MediaSum dataset (Zhu et al., 2021b), which is
about interview transcripts from NPR and CNN.

Dataset D_tok S_tok D_slo S_slo A_tur A_spe
SAMSum | 839 203 305 64 9.9 22
MediaSum | 1,553.7 144 3575 4.2 30.0 6.5

Table 1: Data statistics. D_tok and S_tok are the token
numbers of dialogues and gold summaries. D_slo and
S_slo are the slot numbers of dialogues and gold sum-
maries. A_tur and A_spe are the average numbers of
turns and speakers.

Data Preprocessing We give the semantic
slot information by following steps: (1) We firstly
use Stanford CoreNLP (Manning et al., 2014) to
do NER to get the nominal slots by integrating
the high-frequency entity types with similar con-
cepts into one slot label such as (COUNTRY, CITY,
STATE_OR_PROVINCE)— LOCATION and re-
taining the low-frequency entity types with special
significance such as MONEY— PRICE. (2) We then
use Stanford CoreNLP to do Pos Tagging to get the
verbal slots and adjective slots. The slot label cor-
responding to the tokens marked as VB, VBP, VBZ,
VBN and VBG is regarded as "ACT". The slot la-
bel corresponding to the tokens marked as JJ, JJR,
JJS is regarded as the "STATE". (3) By manually
integrating and modifying the results of NER and
Pos Tagging, 15 types of slot labels and 17 types
of slot labels are defined for SAMSum dataset and
MediaSum dataset. (4) Finally, we fine-tune the
pre-trained slot filling model (Chen et al., 2019) to
get the complete semantic slot information.

We follow Gliwa et al. (2019) to adopt
14,732/818/819 for training/validation/test split
on SAMSum dataset. We employ the split, i.e.,
443,596/10,000/10,000, for MediaSAM dataset fol-
lowing Zhu et al. (2021b). Other statistics of the
two datasets are shown in Table 1.

4.2 Baselines

The following models are adopted as baselines:
(1) Pointer-Generator model (PG) (See et al.,
2017); (2) Transformer (Vaswani et al., 2017)
(TRAN); (3) Topic-word Guided Dialogue Graph
Attention model (TGDGA) (Zhao et al., 2020);
(4) Dialogue Heterogeneous Graph Network (D-
HGN) (Feng et al., 2020); (5) BART (Lewis
et al., 2019); (6) BART-based Multi-View Seq2Seq
model (M-BART) (Chen and Yang, 2020); (7)
Structure-aware sequence-to-sequence model (S-
BART) (Chen and Yang, 2021).

4.3 Evaluation Metrics

We use three automatic evaluation metrics to eval-
uate our models. The first is ROUGE scores (Lin,
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Model SAMSum Dataset MediaSum Dataset
R-1 R-2 QGQA SIC | R-1 R2 R-L QGQA SIC

PG (See et al., 2017) 40.09 15.28 36.63 30.67 27.61| 2877 1224 24.18 12.53 19.42
TRAN (Vaswani et al., 2017) 37.27 1076 3273 30.11 23.74| 25.62 927 21.13 11.84 15.88
TGDGA (Zhao et al., 2020) 43.11 19.15 4049 33.80 31.17| 31.44 1574 2681 15.03 2232
D-HGN (Feng et al., 2020) 42.03 18.07 39.56 31.28 29.43| 30.03 14.52 26.09 1392 21.14
BART (Lewis et al., 2019) 4822 2453 46.58 35.04 33.16| 35.09 18.05 31.44 17.71 26.76
M-BART (Chen and Yang, 2020) 4935 25.61 4773 3559 3391| 3581 19.24 3232 17.87 27.03
S-BART (Chen and Yang, 2021) 48770 24.88 4724 3582 34.74| 35.19 1843 31.58 18.32 2738
SSAnet 51.28 27.15 49.37 3891 42.54| 3743 20.67 34.05 2473 34.56

Table 2: Results in terms of ROUGE scores, QGQA, and SIC on test set of SAMSum and MediaSum datasets.

2004), the standard summarization quality metrics,
which compare the word-level unigram, bigram,
and longest common sequence overlap with the
gold summary. Since the ROUGE scores have been
criticized for their poor correlation with factual con-
sistency, we use the QA-based model, i.e., QGQA
(Wang et al., 2020), which have a high correlation
with human judgements on factuality.

Except for factual consistency, factual complete-
ness is also crucial to evaluate the factual correct-
ness. To fill in this gap, we propose a new evalua-
tion metric: slot Information Completeness (SIC).
Formally, SIC is a recall of semantic slot infor-
mation between a candidate summary and a gold

summary, which is defined as follows:

SIC = Zses Cofg]ftmutch(s) (5)
where S stands for a set of slot values in the gold
summary, Count,qichn(8) is the number of values
co-occurring in the candidate summary and gold
summary, and |.S| is the number of values in set.

5 Results and Analysis

5.1 Main Results

Results on SAMSum  As reported in Table 2,
all baselines and our model are evaluated automat-
ically with ROUGE scores, QGQA, and SIC. We
can observe that, compared to simple sequence-
to-sequence models (PG and TRAN), incorporat-
ing the extra information such as commonsense
knowledge (D-HGN) and topic word information
increases all scores. However, the performance
of factual correctness metrics (QGQA and SIC)
are very poor. Besides, although the utilize of pre-
trained models, i.e., BART, M-BART, and S-BART,
achieves a high level of ROUGE scores, the QGQA
and SIC do not improve significantly, especially
SIC. It suggests that the previous models only fo-
cus on improving the ROUGE scores, but ignore
the exploring on factual consistency and factual
completeness, which would cause the generated
summaries with high ROUGE scores, but are in-

correct and low-quality. It is worth noting that
our SSAnet significantly boosts factual consistency
measure and factual completeness measure (QGQA
and SIC) by large margins, with improvements on
ROUGE scores at the same time. This shows our
model has the ability to improve the correctness of
system-generated summaries via semantic slot in-
formation without sacrificing the informativeness.

Results on MediaSum  As shown in Table 2,
we notice that all results for the abstractive sum-
marization models are especially lower than those
on SAMSum dataset, because of the increase in
the number of speakers and turns, and the high
requirement of compression ratio. However, it is
encouraging that the SSAnet surpasses the best per-
forming model S-BART by 6.41 points and 7.18
points for QGQA and SIC scores, which shows that
the semantic slot information guides the model to
generate salient elements and plays an important
role in reducing factual errors.

0.6
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event-int event-ext

slot-int slot-ext

incomplete  corect

OM-BART SAM ©SSAnet SAM BM-BART_MED @SSAnet MED

Figure 4: Fractions of examples in two datasets exhibit-
ing different error types generated by M-BART and
SSAnet.

5.2 Analysis of Error Types

To examine the performance of models, we quali-
tatively analyze the actual factual errors produced
by them. We identify the factual errors through
manual inspection and define two broad categories
of errors: factual inconsistency and factual incom-
pleteness. The errors of factual inconsistency occur
at slot-level and event-level, each of which is fur-
ther divided into intrinsic and extrinsic.

1. Factual Inconsistency

(1).Slot-Int:The tokens for slot values are in-
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correctly replaced by other slot values also ap-
peared in the original dialogue within the same
type of slot label, i.e., "at (TIME) 6 (NUMBER) pm
(TIME)"—"at (TIME) 8 (NUMBER) pm (TIME)".
(2).Slot-Ext:The tokens for slot values do not
present in the original dialogue, i.e., hallucination.
(3).Event-Int:Due to the misinterpreting and
wrongly integration salient elements, the semantic
of the summary is in contradiction to the original
dialogue. For example, "Sara baked cookies and
Sally ate some"—"Sally baked cookies and ate".
(4).Event-Ext:The pragmatic meanings de-
scribed in the summary are not mentioned in
the original dialogue, such as "Bob buys an
apple"—"Bob plays the basketball".
2. Factual Incompleteness

The salient elements (slot values) presented in
the original dialogue are lost in the summary, such
as "Mary is going to a bar on Green Street for the
birthday party at 10 p.m"—"Mary will go to a bar
for the birthday party".

We use the above taxonomy to annotate exam-
ples from SAMSum and MediaSum. For each
dataset, we use the state-of-the-art model M-BART
(Chen and Yang, 2020) to generate summaries fol-
lowed by manual annotation (100 examples). Ad-
ditionally, our model SSAnet is also annotated for
error analysis in the same way.

Fig.4 shows the distribution of factual errors
for these different settings. We first analyze the
performance conducted by the M-BART on two
dialogue summarization datasets. For SAMSam,
we can see that 75% of the generated summaries
contain factual errors. Of these 75%, the bulk of
the produced errors is intrinsic, which is because
that this dataset contains human-written gold sum-
maries and is generally more reliable. Besides,
the errors of factual inconsistent (35%) and fac-
tual incomplete (19%) are primarily event-related
caused by sentence compression or fusion. For
MediaSum, more summaries (90%) generated by
M-BART model are factually incorrect and most of
them (63%) is extrinsic. One reason for this is that
the MediaSum data is automatically constructed ac-
cording to topic descriptions and does not contain
fact-related overviews. We then observe the re-
sults on two datasets trained by our SSAnet, which
shows that most error types are reduced. Especially,
the Event-Int error of factual consistency and the
errors of factual incompleteness drop to 18% and
9% for SAMSum, and the Slot-Ext and Event-Ext

errors related to factual consistency decreased by
3 and 5 points for MediaSum. It demonstrates that
our methods effectively alleviate many kinds of
factual errors in dialogue summarization.
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(a) without contrastive learning (b) with contrastive learning

Figure 5: Visualization for the embedding space (a)
without contrastive learning, and (b) with contrastive

learning.

Model R-1 R-2 R-L QGQA SIC

SSAnet 51.28 27.15 49.37 38.91 42.54
w/o SCA 49.53 25.81 48.04 37.28 40.71
w/o SBS 50.44 26.72 48.92 36.18 37.86
w/o SCA&SBS | 48.86 25.03 47.11 35.03 36.33
w/o pos 51.10 26.86 49.52 38.69 42.33
w/0 neg 50.88 26.71 49.20 38.63 42.38
w/o pos&neg 49.82 2649 48.64 38.57 42.16

Table 3: Ablation studies for slot-level mask cross-
attention (SCA), slot-driven beam search (SBS), and
contrastive learning on test set of SAMSum dataset.

5.3 Ablation Study

As shown in Table 3, we first explore the contri-
butions of the slot-level mask cross-attention mod-
ule and the slot-driven beam search algorithm on
SAMSum dataset. We can see that removing any
components leads to the decline of performances.
The removal of SCA almost has the same effect
on R-1, R-2, R-L, QGQA, and SIC, which indi-
cates that the SCA can comprehensively improve
the n-gram overlap, factual consistency and factual
completeness. However, deleting the SBS, that is,
using the traditional beam search algorithm as the
decoding strategy, makes little impact on ROUGE
scores, but results in the decreases of 2.63% and
4.68% for QGQA and SIC. The huge impact on fac-
tual correctness evaluation metrics shows that our
SBS can effectively reduce the factual errors in the
generated summaries by controlling the decoding
process. When the SCA and SBS are removed at
the same time, the structure of the model is similar
to BART and the performance of all metrics are
also similar.

We then examine the contrastive learning frame-
work. We can see that the adversarial perturbations,
i.e., positive and negative pairs, can improve the
performance to some extent. The visualization of
this process is shown in Fig.5. Concretely, we apply
the average pooling to the embeddings of the en-
coder outputs corresponding to source dialogue se-
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PERSON STATE ACT Misc TIME

Dialogue one:

Rita: I'm so bloody tired. Falling asleep at work.

Tina: | know what you mean.

Tina: | keep on nodding off at my keyboard hoping that the boss doesn't notice.
Rita: The time just keeps on dragging on and on and on....

Rita: | keep on looking at the clock and there's still 4 hours of this drudgery to go.
Tina: Times like these | really hate my work.

Rita: I'm really not cut out for this level of boredom.

Tina: Neither am I.

M-BART: Rita and Tina are bored at work. !

SSAnet:%ﬂTnaﬂbored atworkaﬂthereslst_n!tthoursofihve-dmdge&
1 95 6 1315 7,14

1 2 12 4 16 3 1 8,10

Dialogue two:
Lilly: sorry, I'm gonna be late.

_t Incomplete e redundant ~—* Inconsistent

Dialogue three:

Jane: Hey David, you're coming home for Christmas next week right?
David: Of course.

Jane: Good!

Jane: Do you know what your dad would like for Christmas?

Jane: | can't think of anything.

David: You should get him an ipad.

David: He can read books, email, watch movies, play games.

Jane: Ok, that sounds good, where can | get one?

David: I'll order it online and have it shipped home.

Jane: Thanks for your help.

Jane: And please let me know when you'll get here once your travel arrangements are set.

Ground Truth: David is coming home for Christmas next week. Jane has no idea what to buy

their father so David is going to order an ipad online.

Lilly: don't wait for me and order the food

Gabriel: no problem, shall we also order something for you?
Gabriel: so that you get it as soon as you get to us?

Lilly: good idea!

Lilly: pasta with salmon and basil is always very tasty there.

for her.

M-BART: Lilly is going to be late, so Gabriel will orderi_th_g- .qg_:for her.
SSAnet: II.|_‘IIy E Eoing fg ‘b_e‘ late. Gabriel v‘v_|II‘ order pasta with salmon ?Ld basil.
1.8 9 1011212 3 15 4 6 13 5 14 7,16

J\\

\/_‘
M-BART: David is commg home for Chnstmas next week He will order an ipad for his dad and

frave-it-shipped-ome. Jane W|ll buy it.
Y~V N %

P 7 _— P —~
SSAnet: David is coming home for Chris‘i/mas,;e’xt\week. Jane can not think anything to buy for

o — prbiac i o fatt
3 26 1 2 22 6 4 525 7 16 18 12 9 23 8 19
TV eV,
dad. David will order an ipad online.
e i
1020 11 21 13 24 14 1517

Figure 6: Sample summaries for dialogues from SAMSum dataset. The numbers underlined indicate the order in

which the summary tokens are generated.

“there’s” stands for “there is”. It maps to two tokens according to Byte

Pair Encoding (BPE). Each sentence has an ending period, so the last word also maps to two tokens.

quences Hg, the decoder outputs corresponding to
target sequences H;, the additional posmve exam-
ples H, and the negative examples H. All of them
are projected onto a two-dimensional space with t-
SNE. As shown in Fig.5(b), the model pushes away
the H from the H; and pulls the H to the embed-
ding of the Hs. However, for the model without
contrastive learning, the Hy and H are far away
from the Hg, and the H are very close to them as
shown in Fig.5(a).

Readability Factualness
Model Flu. Gra. Con. Com.
Ground Truth 4.82 479 4.30 4.05
M-BART 4.29 3.75 3.39 3.14
S-BART 4.20 3.68 3.57 3.22
SSAnet 4.11 3.64 3.98 3.82
w/o SCA 4.09 3.60 3.75 3.61
w/o SBS 432 3.79 3.61 3.39
w/o SCA&SBS 4.27 3.73 3.37 3.13

Table 4: Human evaluation on the Fluency (Flu.),
Grammaticality (Gra.), Factual Consistency (Con.),
and Factual Completeness (Com).

5.4 Human Evaluation

We run a human evaluation to investigate the qual-
ity of summaries. 100 samples are randomly se-
lected from the test set of SAMSum and five an-
notators are hired from Amazon Mechanical Turk
to rate the readability and factualness of ground
truth, and summaries generated from M-BART, S-
BART, and our models. Each annotator uses a
Likert scale to score summaries from 1 (worst) to
5 (best) on readability—how fluent and grammati-
cal the summaries are, and on factualness-whether
the summaries are consistent with the original dia-

logue and the events described in the summary are
complete.

As shown in Table 4, the generated summaries
perform poor in grammaticality, factual consis-
tency, and completeness. Compared with S-BART,
the SSAnet and its variants have lower scores on
readability, but have higher scores on factualness,
which is due to the strategy of giving priority to gen-
erating salient elements by “filling-in-the-blanks”
in the decoding process. Therefore, the fluency
and grammaticality scores of SSAnet without SBS
increase to 4.32 and 3.79. However, the SSAnet
greatly improves the scores of factual consistency
and completeness and is almost close to the perfor-
mance of ground truths, which indicates that both
of the SCA and SBS in our model play important
roles in factual correctness. The outputs of three
samples from SAMSum dataset can be found in
Fig.6. Dialogue one and two show the ability of
our model to solve factual incompleteness issues
and Dialogue three mitigates the inconsistent facts
in the generated summaries.

6 Conclusion

In this work, we propose a semantic slot guided ad-
versarial sequence-to-sequence network for abstrac-
tive dialogue summarization, which utilizes the
semantic slot information to improve the model ar-
chitecture and decoding algorithm via the slot-level
mask cross-attention mechanism and slot-driven
beam search. A contrastive learning with adver-
sarial perturbations is also introduced to assist the
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training process. Experiments demonstrated the
effectiveness of our proposed models in terms of
both readability and factualness.
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A Statistics of Slot Labels

ID | Relation Type %0

1 PERSON 7.10

2 TIME 2.50

3 NUMBER 1.10

4 LOCATION 0.40

5 TITLE 0.20

6 ORDINAL 0.10

7 ORGANIZATION 0.10

8 PRICE 0.06

9 PERCENT 0.05

10 | URL 0.02

11 | EMAIL 0.01

12 | MISC 2.60

13 | ACT 10.20
14 | STATE 3.40

1510 72.16

Table 5: Slot Label Types and Distribution in SAMSum
dataset.

ID | Relation Type %

1 PERSON 1.96
2 ORGANIZATION 1.65
3 TIME 1.48
4 NUMBER 0.56
5 EMAIL 0.47
6 WORK_OF_ART 0.28
7 FAX 0.19
8 PRICE 0.15
9 LOCATION 0.14
10 | PERCENT 0.12
11 | PRODUCT 0.05
12 | LAW 0.02
13 | LANGUAGE 0.01
14 | MISC 0.06
15 | ACT 10.97
16 | STATE 5.05
17 | O 76.834

Table 6: Slot Label Types and Distribution in Media-
Sum dataset.

B Training Details

Our methods are implemented with PyTorch
(Paszke et al., 2019) and HuggingFace. We fine-
tune the BART-large (Lewis et al., 2019) for all
experiments. For parameters in the original BART
encoder/decoder, we followed the default settings
and set the learning rate Se-5 with 120 warm-up
steps. For graph encoder, we set the number of hid-
den dimensions as 1024, the number of layers as 2,
and the dropout rate as 0.1. For the two extra cross-
attention added to BART decoder layers, we set the
number of attention heads as 4. The learning rate
for parameters in newly added modules was 3e-4
with 60 warm-up steps. The model is fine-tuned for
20 epochs and the batch size is 128. At test time,
the minimum lengths of generated summaries for
two datasets are 35 and 20, and the beam size is 10.

C Human Evaluation Guidelines

In this subsection, we give details of the human
evaluation guidelines.

C.1 Readability Annotation Guidelines

For readability, we make the annotators focus on
how fluent and grammatical the summary is and
we provide them the following guidelines:

1. First, the annotators judge whether the given
sentence is complete or not. If the sentence is
incomplete, the annotators will rate the scores as 1
both for fluency and grammaticality.

2. The annotators can understand the meaning
of a complete sentence through their analysis, but
there are many grammatical problems in the sen-
tence. The annotators rate the scores as 2 or 3 both
for fluency and grammaticality.
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3. The annotator can easily understand the mean-
ing of the sentence, and there are only minor gram-
matical problems in it. The annotators rate the
scores as 4 or 5 both for fluency and grammatical-

ity.
C.2 Factualness Annotation Guidelines

For factualness, we make the annotators focus on
two types of unfaithful errors: (a) factual inconsis-
tency, and (b) factual incompleteness. The guide-
lines are as follows:

1. We ask the annotators to check whether the
given sentence is consistent with the source texts
and whether the given sentence contains the com-
plete fact descriptions.

2. If the matching degree is less than 30%, the
annotators rate the scores as 1 or 2; if the matching
degree is more than 30% and less than 60%, the
annotators rate the scores as 3; if the matching
degree is more than 60% and less than 100%, the
annotators rate the scores as 4 or 5.
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