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Abstract
Extracting relation triplets from raw text is
a crucial task in Information Extraction, en-
abling multiple applications such as populat-
ing or validating knowledge bases, factcheck-
ing, and other downstream tasks. However,
it usually involves multiple-step pipelines that
propagate errors or are limited to a small num-
ber of relation types. To overcome these is-
sues, we propose the use of autoregressive
seq2seq models. Such models have previously
been shown to perform well not only in lan-
guage generation, but also in NLU tasks such
as Entity Linking, thanks to their framing as
seq2seq tasks. In this paper, we show how
Relation Extraction can be simplified by ex-
pressing triplets as a sequence of text and we
present REBEL, a seq2seq model based on
BART that performs end-to-end relation ex-
traction for more than 200 different relation
types. We show our model’s flexibility by fine-
tuning it on an array of Relation Extraction and
Relation Classification benchmarks, with it at-
taining state-of-the-art performance in most of
them.

1 Introduction

Extracting relational facts from text has been an
ongoing part of Natural Language Processing. The
ability to extract semantic relationships between en-
tities from text can be used to go from unstructured
raw text to structured data that can be leveraged
in an array of downstream tasks and applications,
such as the construction of Knowledge Bases.

Traditionally this task has been approached as
a two-step problem. First, the entities are ex-
tracted from text as in Named Entity Recogni-
tion (NER). Second, Relation Classification (RC)
checks whether there exists any pairwise relation
between the extracted entities (Zeng et al., 2014;
Zhang et al., 2017). However, identifying which
entities truly share a relation can become a bottle-
neck, requiring additional steps such as negative
sampling and expensive annotation procedures.

More recently, end-to-end approaches have been
used to tackle both tasks simultaneously (Miwa
and Sasaki, 2014; Pawar et al., 2017; Katiyar and
Cardie, 2017; Eberts and Ulges, 2020). This task is
usually referred to as Relation Extraction or End-
to-End Relation Extraction (RE). In this scenario, a
model is trained simultaneously on both objectives.
Specific parts of the model can be assigned differ-
ent tasks of the pipeline, such as NER, on the one
hand, and classifying the relations between the pre-
dicted entities (RC), on the other. By training both
tasks simultaneously, the model benefits from the
information bias between the tasks as in multi-task
setups (Caruana, 1998), improving performance on
the end-to-end RE task.

Although successful, these models are often
complex, with task-focused elements that need to
be adapted to the number of relation or entity types,
or they are not flexible enough to work for texts
of different nature (sentence vs. document level)
or domains. Moreover, they usually require long
training times in order to be fine-tuned on new data.

In this paper, we present REBEL (Relation Ex-
traction By End-to-end Language generation), an
autoregressive approach that frames Relation Ex-
traction as a seq2seq task, together with the REBEL
dataset, a large-scale distantly supervised dataset,
obtained by leveraging a Natural Language In-
ference model. Our approach provides some up-
sides over previous end-to-end approaches thanks
to our adoption of a simple triplet decomposi-
tion into a text sequence. By pre-training an
Encoder-Decoder Transformer (BART) using our
new dataset, REBEL achieves state-of-the-art per-
formance on an array of RE baselines within a few
epochs of fine-tuning. Its simplicity makes it highly
flexible to adapt to new domains or longer docu-
ments. As the same model weights are still utilized
after the pre-training phase, there is no need to train
model-specific components from scratch, making
training more efficient.
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Moreover, although it is devised for Relation
Extraction, the same approach can be generalized
to Relation Classification, achieving competitive
results.

We make REBEL available1 both as a stan-
dalone model that can extract more than 200 differ-
ent relation types, and as a pre-trained RE model
that can be easily fine-tuned on new RE and RC
datasets. We also provide the REBEL dataset and
the pipeline to extract high-quality RE datasets
from any Wikipedia dump.

2 Related work

2.1 Relation Extraction
The term Relation Extraction is often used in the
literature for different tasks and setups in the liter-
ature (Taillé et al., 2020). For clarity, we refer to
Relation Extraction (RE) as the task of extracting
triplets of relations between entities from raw text,
with no given entity spans, usually also called end-
to-end Relation Extraction. We refer to classifying
the relation between two entities in a given context
as Relation Classification (RC).

Early approaches tackled RE as a pipeline sys-
tem, identifying the entities present in the text using
Named Entity Recognition, and then classifying
the relation, or lack of, between each pair of enti-
ties present in the text (RC). Therefore, early work
made use of CNNs or LSTMs to exploit sentence-
level semantics and classify the relations between
two given entities (Zeng et al., 2014; Zhou et al.,
2016). Current approaches to Relation Classifica-
tion use Transformer models, with (Yamada et al.,
2020) being the current state of the art by enhanc-
ing BERT (Devlin et al., 2019) with entity-aware
components.

Early end-to-end approaches using neural net-
works classified all word pairs present in the input
text (Miwa and Sasaki, 2014; Pawar et al., 2017) us-
ing table representation, or table filling, re-framing
the task into filling the slots of a table (the rela-
tions) where rows and columns are the words in the
input. More recently, Wang and Lu (2020) used a
similar table-based formulation, where the table is
explicitly encoded using a table-sequence encoder.

Finally, there are pipeline systems that tackle
both parts of Relation Extraction, NER, and RC, by
jointly training components that take advantage of
the information shared between the tasks. In these
setups, entities are first extracted as in NER using

1https://github.com/babelscape/rebel

BILOU tags and then a biaffine classifier extracts
their relations, sharing part of the encoders for
both tasks. These range from LSTMs (Miwa and
Bansal, 2016; Katiyar and Cardie, 2017) to CNNs
(Adel and Schütze, 2017; Zheng et al., 2017) and,
lately, Transformer-based architectures (Eberts and
Ulges, 2020), that explicitly predict and encode
entity spans instead of the BILOU approach used
in NER.

All recent sentence-level RE models are based
on Transformer models, such as BERT (Eberts
and Ulges, 2020; Wang et al., 2020) or ALBERT
(Lan et al., 2020; Wang and Lu, 2020). To tackle
document-level RE, Eberts and Ulges (2021) use
a pipeline approach jointly trained on a multi-task
setup that leverages coreference resolution to oper-
ate at an entity level, rather than mentions.

While the aforementioned work highlights the
relevance of Relation Extraction as a task, the lack
of consistent baselines or a cohesive task definition
has led to discrepancies in the use of datasets and
the way models have been evaluated. Taillé et al.
(2020) explain the different issues in-so-far, and
also make an attempt to unify RE evaluation and
perform a fair comparison between systems.

We will follow their guidelines and use strict
evaluation, unless specified, for which a relation is
considered correct only if the head and tail entity
surface forms are correctly extracted (i.e., fully
overlap with the annotation), as well as the relation
and entity types (if available for the dataset).

2.2 Seq2seq and Relation Extraction

The pipeline and table filling methods described so
far have proved to perform well on RE, but still face
some challenges. They often assume at most one
relation type between each entity pair, and multi-
class approaches do not take other predictions into
account. For instance, they could predict two “birth
dates” for the same head entity, or predict relations
that are incompatible together. Moreover, they re-
quire all possible entity pairs to be inferred, which
can become computationally expensive.

Seq2seq approaches for RE (Zeng et al., 2018,
2020; Nayak and Ng, 2020) offer some off-the-
shelf solutions to these problems. Decoding mech-
anisms can output the same entities multiple times,
as well as conditioning future decoding on previous
predictions, implicitly dealing with incompatible
ones. However, as Zhang et al. (2020) discuss,
they still pose some issues. The triplets need to

https://github.com/babelscape/rebel
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be linearized into a somewhat arbitrary sequential
order, such as the alphabetical one. This issue is
explored by Zeng et al. (2019), who use Reinforce-
ment Learning to compute the extraction order for
the triplets. Moreover, seq2seq approaches suffer
from exposure bias, since at training time the pre-
diction is always dependent on the gold-standard
output. In Zhang et al. (2020) a tree-decoding ap-
proach mitigates these issues while still using an
autoregressive seq2seq approach.

In the meantime, seq2seq Transformer models,
such as BART (Lewis et al., 2020) or T5 (Raf-
fel et al., 2020) have been used in NLU tasks
such as Entity Linking (Cao et al., 2021), AMR
parsing (Bevilacqua et al., 2021), Semantic Role
Labeling (Blloshmi et al., 2021) or Word Sense-
Disambiguation (Bevilacqua et al., 2020) by re-
framing them as seq2seq tasks. Not only do they
show strong performance, but they also showcase
the flexibility of seq2seq models by not relying on
predefined entity sets, but rather on the decoding
mechanism, which can easily be extended to new
or unseen entities.

For our model, we employ an Encoder-Decoder
framework that can alleviate some of the previ-
ous issues seq2seq for RE has faced. While expo-
sure bias can still occur, the attention mechanism
enables long-distance dependencies as well as at-
tending (or not) to the previously decoded output.
Additionally, we devise a novel triplet linearization
with a consistent triplet ordering that enables the
model to leverage both the encoded input and the
already decoded output.

3 REBEL

We tackle Relation Extraction and Classification as
a generation task: we use an autoregressive model
that outputs each triplet present in the input text.
To this end, we employ BART-large (Lewis et al.,
2020) as the base model.

In a translation task, teacher forcing leverages
pairs of text in two languages by conditioning the
decoded text on the input. At training time the
encoder receives the text in one language, and the
decoder receives the text in the other language,
outputting the prediction for the next token at each
position.

In our approach, we translate a raw input sen-
tence containing entities, together with implicit
relations between them, into a set of triplets that
explicitly refer to those relations. Therefore, we

need to express the triplets as a sequence of tokens
to be decoded by the model. We design a reversible
linearization using special tokens that enable the
model to output the relations in the text in the form
of triplets while minimizing the number of tokens
that need to be decoded.

For REBEL, we have as input the text from the
dataset and, as output, the linearized triplets. If x
is our input sentence and y the result of linearizing
the relations in x as explained in Section 3.1, the
task for REBEL is to autoregressively generate y
given x:

pBART (y | x) =
len(y)∏
i=1

pBART (yi | y<i, x)

By fine-tuning BART on such a task, using the
Cross-Entropy loss as in Summarization or Ma-
chine Translation, we maximize the log-likelihood
of generating the linearized triplets given the input
text.

3.1 Triplets linearization
For RE, we want to express triplets as a sequence
of tokens such that we can retrieve the original
relations and minimize the number of tokens to
be generated so as to make decoding more effi-
cient. We introduce a set of new tokens, as mark-
ers, to achieve the aforementioned linearization.
<triplet> marks the start of a new triplet with
a new head entity, followed by the surface form
of that entity in the input text. <subj> marks
the end of the head entity and the start of the tail
entity surface form. <obj> marks the end of the
tail entity and the start of the relation between the
head and tail entity, in its surface form. To obtain a
consistent order in the decoded triplets, we sort the
entities by their order of appearance in the input
text and linearize the triplets following that order.
Triplets will also be grouped by head entity. There-
fore, the first triplet will be the one with the first
appearing head entity and the following relation
will be the one with the first appearing tail entity
related to that head entity, followed by the rest of
triplets with the same head entity. There is no need
to specify the head entity each time, reducing the
decoded text length. Once there are no more rela-
tions with that head entity, a new group of relations
will start, with the second appearing head entity in
the text, repeating the same process until there are
no more triplets to be linearized. This mechanism
is described in Algorithm 1.
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“This Must Be the Place” is a song by new wave band 
Talking Heads, released in November 1983 as the 

second single from its fifth album “Speaking in 
Tongues”

(This Must Be the Place, performer, Talking Heads)
(Talking Heads, genre, new wave)

(This Must Be the Place, part of, Speaking in Tongues)
  (Speaking in Tongues, performer, Talking Heads)

}
<triplet> This Must Be the Place 
<subj> Talking Heads <obj> performer 
<subj> Speaking in Tongues <obj> part of 
<triplet> Talking Heads <subj> new 
wave <obj> genre <triplet> Speaking in 
Tongues <subj> Talking Heads <obj> 
performer

Figure 1: Example of the triplet linearization process for REBEL.

Algorithm 1: Transform a set of relations
R into a text sequence
Result:
lin_triplets with all triplets as a sequence
of text.
Input:
E = Entities;
R = Relations;
sort() Sorts by placement in input text;
Start:
E = sort(E);
lin_triplets = "";
for e ∈ E do

R(e) = relations with e as subject;
R(e) = sort(R(e));
lin_triplets += <triplet> + e;
for r ∈ R(e) do

o = E(e, r) object of relation r;
lin_triplets += <subj> + o +

<obj> + r;
end

end

Figure 1 shows an example of the linearization
process for a list of relations and an input sentence.
Notice how This Must Be the Place appears twice
as a subject, but it is present only once in the out-
put as a subject entity. The original triplets can
easily be retrieved by taking the special tokens
into account. In RE datasets, the entity types are
also present in the triplets and need to be predicted
by the model. In that case, we apply a modifica-
tion of Algorithm 1 where instead of <subj> and
<obj>, we add new tokens for each entity type,
such as <per> or <org>, for person or organiza-
tion, respectively, and use them in the same fashion,
indicating the type of the entity they follow.

3.2 REBEL dataset

Autoregressive transformer models such as BART
or T5, have been shown to perform well on dif-
ferent generative tasks such as translation or sum-
marization, but they do require large amounts of
data to be trained. On the other hand, end-to-end
relation extraction datasets are scarce and often
small.

In Elsahar et al. (2018) the T-REx dataset was
created by devising a pipeline that extracts entities
and relations from DBpedia abstracts to overcome
this lack of big RE datasets. While the result is a
large dataset, the quality of the annotation presents
some issues. First, the use of a somewhat old entity
linking tool (Daiber et al., 2013) leads to entities
being wrongly disambiguated. Since the relations
are extracted by using those entities, this leads to
missing or faulty relations. Moreover, most of the
relations are extracted by assuming that, if the two
entities are present in the text, the relation is there-
fore entailed by this presence.

We overcome these issues by expanding upon
their pipeline to create a large silver dataset, used
as pre-training for REBEL. We use Wikipedia2

abstracts, that is, the part of each Wikipedia
page before the table of contents, extracted using
wikiextractor (Attardi, 2015). Then, we link
the entities present in the text as hyperlinks, to-
gether with dates and values, to Wikidata entities
using wikimapper3. From this, we extract all
the relations present between those entities in Wiki-
data. Our system can be used with any Wikipedia
dump, in multiple languages, enabling light and
quick extraction using a multi-core process and
SQL to avoid memory issues with the Wikidata
dump.

However, a relation in Wikidata does not nec-
2Downloaded on 2021/02/01 from: https://dumps.

wikimedia.org/enwiki/
3https://pypi.org/project/wikimapper/

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
https://pypi.org/project/wikimapper/
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Entity Types Relation Types Train Validation Test
CONLL04 4 5 1,290 (922) 343 (231) 422 (288)
NYT 3 24 94,222 (56,196) 8,489 (5,000) 8,616 (5,000)
DocRED 6 96 3,7486 (3,008) 3,678 (300) 8,787 (700)
ADE 2 1 6,821 (4,272) - -
Re-TACRED 17 40 58,465 (58,465) 19,584 (19,584) 13,418 (13,418)
REBEL (sent.) - 220 878,555 (784,202) 48,514 (43,341) 48,852 (43,506)
REBEL (full) - 1,146 9,282,837 (2,754,387) 513,270 (152,672) 515,186 (152,835)

Table 1: Dataset statistics. Number of triplets with number of instances in parenthesis.

essarily mean that the relation is entailed within
the text. Although in Elsahar et al. (2018) high
reliability is claimed using this method, it has been
shown to be noisy for frequent relations such as
country or spouse, and we have found several re-
lated annotation issues. We utilize a pre-trained
RoBERTa (Liu et al., 2019) Natural Language In-
ference (NLI) model4 to tackle this issue, and use
its entailment prediction to filter those relations not
entailed by the Wikipedia text. For each triplet,
we input the text containing both entities from the
Wikipedia abstract, and the triplet in their surface
forms, subject + relation + object, sepa-
rated by the <sep> token.

For the previous example and the triplet (Talking
Heads, genre, new wave), we input: “This Must
Be the Place” is a song by new wave band Talking
Heads, released in November 1983 as the second
single from its fifth album “Speaking in Tongues”.
<sep> Talking Heads genre new wave. We keep
those triplets for which the entailment prediction
is higher than 0.75. This proves successful in cre-
ating cleaner data in preliminary experiments and
removing noisy annotations. We create three ran-
dom splits, with validation and test each being 5%
of the total data.

While this data extraction pipeline may still keep
some noise, or exclude some relations that are en-
tailed by the text, it enables an automatic way
of gathering millions of entities and relations as
a silver dataset, sufficient for training our model.
We name our RE dataset creation tool cRocoDiLe:
Automatic Relation Extraction Dataset with NLI
filtering, and we make it available here5.

4 Experimental Setup

In this section, we describe the setup to train and
evaluate REBEL for four different widely used RE
datasets and one RC dataset. Statistics for all the

4xlm-roberta-large-xnli
5https://github.com/Babelscape/

crocodile

datasets, including our pre-training dataset, can be
found in Table 1.

While the training objective is on the autoregres-
sive task, we evaluate the model on RE, extracting
all the triplets from the generated output, and eval-
uating using Recall, Precision, and micro-F1 based
on the labeled triplets. For a triplet to be considered
correct, the entities and the relation, as well as their
types, have to be the same as the labeled ones (this
is known as “strict” evaluation in RE) using the
evaluation code from Taillé et al. (2020).

4.1 REBEL dataset

We create this dataset by matching Wikipedia hy-
perlinks with Wikidata entities as explained in Sec-
tion 3.2. To pre-train our model, we use a sentence-
level version of it, where only relations between
entities present in each sentence are kept. We keep
the 220 most frequent relations in the train split.

We fine-tune REBEL (using BART-large as the
base model) on the silver dataset for 6 epochs. We
refer to the resulting model as REBELpre−training.
While REBELpre−training is in and of itself capa-
ble of extracting relations subsuming about 220
types, we show that it also functions as a base step
for downstream RE and RC tasks, which are fine-
tuned on top of it.

4.2 CONLL04

CONLL04 (Roth and Yih, 2004) is composed of
sentences from news articles, annotated with four
entity types (person, organization, location and
other) and five relation types (kill, work for, or-
ganization based in, live in and located in). To
compare with previous work, we use the test split
from Gupta et al. (2016), and the same validation
set as Eberts and Ulges (2020), although we do not
include the validation set at final training time.

For CONLL04 we expand REBEL to include
entity types. As described in Section 3.1, we intro-
duce a set of new tokens for each entity type. For
CONLL04 these are <peop>, <org>, <loc>,

https://huggingface.co/joeddav/xlm-roberta-large-xnli
https://github.com/Babelscape/crocodile
https://github.com/Babelscape/crocodile
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<other>. We fine-tune on top of REBEL for 30
epochs and test on the best performing epoch on
the validation set.

4.3 DocRED
DocRED (Yao et al., 2019) is a recent dataset cre-
ated similarly to our pre-training data, by leverag-
ing Wikipedia and Wikidata. However, it focuses
on longer spans of text, with relations between
entities at a document level. There is a distantly su-
pervised portion, while the validation and (hidden)
test sets are manually annotated. It includes anno-
tations for 6 different entity types and 96 relation
types.

Despite the fact that DocRED was originally
designed as a relation classification task, we use
the splits from Eberts and Ulges (2021) and tackle
it as a relation extraction task. In DocRED there
are 6 entity types, consequently we use the tokens:
<loc>, <misc>, <per>, <num>, <time> and
<org> to indicate them.

We fine-tune on top of REBEL for 21 epochs
and test on the last checkpoint, using a beam search
of 10. For REBELpre−training, we use a version
trained on a filtered dataset not including any of
the Wikipedia pages present in DocRED validation
or test sets.

4.4 NYT
NYT (Riedel et al., 2010) is a dataset consisting of
news sentences from the New York Times corpus.
The dataset contains distantly annotated relations
using FreeBase. We use the processed version of
Zeng et al. (2018) called NYT-multi, which con-
tains overlapping entities, with three different entity
types, and 24 relation types.

We use <loc>, <per> and <org> to indicate
the 3 entity types. As for the 24 relation types, we
map these to natural language expressions to match
those seen at pre-training.

We fine-tune on top of REBEL for a maximum
of 42 epochs and test on the best performing epoch
on the validation set.

4.5 ADE
ADE (Gurulingappa et al., 2012) is a dataset on
the biomedical domain, for which Adverse-Effects
from drugs are annotated as pairs of drug and
adverse-effect. The dataset provides 10-folds of
train and test splits.

Drug and Adverse-Effect are the two entity types,
and are always the subject and object entities for

the single relation Adverse-Effect. Thus, we keep
the same setup as with REBEL, using the <subj>
token to distinguish between entity types, and re-
moving the relation from the output, as it is always
the same.

We fine-tune on top of REBEL for 25 epochs
and evaluate using the last checkpoint for each fold
in the dataset. Hyperparameters are selected by
using 10% of the training data in the first fold.

4.6 Re-TACRED

Re-TACRED (Stoica et al., 2021) is a Relation Clas-
sification dataset, a revised version of the widely
used TACRED (Zhang et al., 2017), fixing some of
the issues pointed out by Alt et al. (2020). We want
to extract the relation between two given entities, or
the no_relation prediction, accounting for 63% of
the 91,467 sentences in the dataset. To this end, we
follow the approach from Zhou and Chen (2021)
and Zhou and Chen (2021) and mark the entities in
the input text using punctuation marks. We do not
include any entity-type information.

The output is treated as in previous tasks, and
we do not force the decoding of the given entities,
as we find it is sufficient to mark them in the input.
We fine-tune on top of REBEL for 8 epochs and
evaluate using the last checkpoint.

5 Results

5.1 Relation Extraction

For our pre-training task using the REBEL dataset,
the model achieves 74 micro-F1 and 51 macro-F1.
The dataset is created by distant supervision and
serves as a pre-training step, however, it is worth
noting its performance for predicting up to 220
different relation types.

Results on selected baselines are presented in Ta-
ble 2, as well as additional metrics in Tables 3 and
4. We see an improvement across all datasets with
pre-trained REBEL, achieving between 1.2 and
6.7 absolute F1 points improvement over recent
state-of-the-art models. Using REBEL without the
pre-training, we see that performance decreases,
especially for smaller datasets or those with many
entity types. Nevertheless, it still achieves com-
petitive results, showing the flexibility of tackling
RE as a seq2seq task using Transformer Encoder-
Decoder models.

Additionally, REBEL shows a better perfor-
mance than TANL, which was trained in a seq2seq
fashion as well, using T5, with BART achieving
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CONLL04 NYT DocRED ADE
Strict Evaluation
SpERT (Eberts and Ulges, 2020) 71.5† - - 79.2
Table-sequence (Wang and Lu, 2020) 73.6 - - 80.1‡

JEREX (Eberts and Ulges, 2021) - - 40.4 -
TANL (Paolini et al., 2021) 71.4† 90.8 - 80.6
TANL (multi-dataset) (Paolini et al., 2021) 72.6† 90.5 - 80.0
REBEL 71.2 91.8 41.8 81.7
REBELpre−training 75.4 92.0 47.1 82.2
Boundaries Evaluation
TPLinker (Wang et al., 2020) - 91.9 - -
REBELpre−training - 93.4 - -

Table 2: Comparison (Micro-F1) with most recent systems. † = explicit use of train+dev ‡ = filtered overlapping
entities (2.8%)

Precision Recall F1

CONLL04 75.59
±1.53

75.12
±0.64

75.35
±1.01

NYT 91.71
±0.10

92.21
±0.14

91.96
±0.07

DocRED 45.89
±0.44

48.37
±0.44

47.10
±0.19

ADE 81.45
±1.51

83.07
±1.25

82.21
±1.08

Re-TACRED 89.48
±0.32

91.25
±0.22

90.36
±0.23

Table 3: Average micro metrics over 5 seeds (10-folds
for ADE) for REBELpre−training. Standard deviation
is indicated after the ± symbol.

lower results for their approach. Therefore, our
triplet linearization approach shows an improve-
ment over other decoding strategies.

Results on RE for DocRED show that, despite
being pre-trained on a sentence-based RE, REBEL
can perform competitively on document-level RE,
without the need for complex pipelines.

Moreover, by having a pre-trained version avail-
able, REBEL enables quick fine-tuning on newer
domains, such as ADE, with different or fewer rela-
tion types, or including entity types. While in order
to achieve the best performance we train for longer
epochs, REBEL still needs fewer training steps to
achieve competitive results compared to the other
systems. For instance, Paolini et al. (2021) train
CONLL04 for up to 200 epochs, Wang and Lu
(2020) for up to 5,000, while our model needs less
than 30 to achieve state-of-the-art results. Each of
these systems uses large language models that can

Precision Recall F1

CONLL04 75.22
±1.30

69.01
±1.68

71.97
±1.00

NYT 91.50
±0.12

92.02
±0.11

91.76
±0.04

DocRED 38.75
±0.54

45.48
±0.36

41.84
±0.40

ADE 80.80
±2.13

82.62
±1.45

81.69
±1.70

Re-TACRED 89.41
±0.50

91.39
±0.12

90.39
±0.26

Table 4: Average micro metrics over 5 seeds for
REBEL on test sets. Standard deviation is indicated
after the ± symbol.

be expensive to train, and shorter training time can
significantly decrease the costs.

5.2 Budget Training

We explore the training efficiency of
REBELpre_trained, and show the performance
when fine-tuned on a low number of epochs.
We experiment with CONLL04 and NYT com-
pared to the non-pre-trained model, SpERT and
TANL. SpERT was trained for just 20 epochs on
CONLL04, while TANL in its non-multi-dataset
version is trained for 200 epochs. We adjust each
learning rate scheduler to the number of epochs
and re-train each model for different epochs and
seeds.

Figures 2 and 3 show how in just 8 epochs for
CONLL04 and 3 for NYT, REBELpre_trained can
achieve a similar performance as the previous state
of the art. While the experiments are on the dev set,
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Figure 2: Micro-F1 performances on CONLL04 dev
set averaged over 5 seeds.
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Figure 3: Micro-F1 performances on NYT dev set av-
eraged over 3 seeds.

we do not observe big differences in performance
between test and dev for these two datasets (see
Appendix A.1 Tables 6 and 8). These results also
highlight the importance of pre-training REBEL,
as it achieves close to the final performance within
a few epochs. Also note that while other mod-
els achieve lower performances, they also reach
close to their final ones. Training for longer times
and using early stopping on the validation perfor-
mance are approaches used by most state-of-the-art
models, but this can lead to long and expensive
training times. Our experiments show that training
for fewer epochs may lead to a small decrease in
performance, but it brings the benefit of a more
affordable training time. The comparison with
other models should also take into account that our
pre-trained approach has been previously trained
on a massive dataset for 6 epochs, which combined
with the fine-tuning in this experiment would lead
to longer training times. However, all the other
models also rely on pre-trained LM and, similarly,
REBEL just needs to be pre-trained once and then
quickly fine-tuned on these new datasets.

F1
LUKE (Yamada et al., 2020) 90.3
RoBERTaLARGE

+ entity marker (Zhou and Chen, 2021)
90.5

REBEL 90.4
REBELpre−training 90.4

Table 5: Results on Re-TACRED

5.3 Relation Classification
As Table 5 shows, REBEL performs fairly well on
RC despite being designed for RE. While Zhou and
Chen (2021) presented a model with better results
(91.1 F1) using entity types, we compare our mod-
els with those that do not use them. Both versions
of REBEL achieve the same performance, in this
case, in contrast to what we saw with RE. This may
be due to the pre-training task being solely RE, as
well as the size of the dataset.

For REBEL, we evaluate using free generation
in the RC setup. Paolini et al. (2021) use likelihood-
based prediction which leads to an increase in per-
formance by computing the likelihood of each rela-
tion type to be decoded with the two given entities.
However, this also leads to an overhead of compu-
tation for datasets with a high number of relations
such as Re-TACRED. For this reason, we use free
generation and are unable to compute results for
Re-TACRED using TANL.

6 Conclusion

We have presented REBEL, alongside a new dis-
tantly supervised dataset for pre-training. REBEL
frames RE into a seq2seq task and, by leveraging
BART, achieves state-of-the-art performances in
an array of RE benchmarks. We have also shown
its flexibility in adapting to new domains, by train-
ing on just a few epochs to attain results that are
comparable to the previous state of the art, as well
as the possibility of using it to perform Relation
Classification.

We make REBELpre−training available as a stan-
dalone RE for more than 200 relation types together
with a pre-trained RE model to serve as a baseline
when fine-tuning on new RE datasets. Nonetheless,
REBEL is based on BART-large, which has a big
parameter footprint. Therefore, we also plan to re-
lease a pre-trained REBEL-base using BART-base.
This will enable quick and efficient RE.

Moreover, our dataset creation pipeline enables
a quick and effortless way of obtaining large high-
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quality RE datasets in multiple languages from a
Wikipedia dump. Since both Wikipedia and Wiki-
data are in constant change, our method provides
a way to keep up with those changes and to have
up-to-date RE datasets.

We leave to future work the possibility of using
a multi-dataset approach as in Paolini et al. (2021),
including both RE and RC datasets, and seeing if
it retains or improves performance. Furthermore,
using our silver dataset as pre-training could lead
to improved performance for other systems, espe-
cially those which have shown better performance
than REBEL without pre-training, such as Wang
and Lu (2020) for CONLL04.
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A Appendix

A.1 Results

Performances on the different dev sets can be found
in Tables 6 and 8.

Precision Recall F1

CONLL04 77.53
±1.96

74.2
±1.26

76.13
±1.02

NYT 91.64
±0.26

92.31
±0.12

91.97
±0.13

DocRED 46.65
±0.94

49.19
±0.43

47.89
±0.68

Re-TACRED 89.59
±0.21

90.81
±0.25

90.19
±0.13

Table 6: Average micro metrics over 5 seeds for
REBELpre−training on dev sets. Standard deviation is
indicated after the ± symbol.

A.2 Reproducibility

Experiments were performed using a single
NVIDIA 3090 GPU with 64GB of RAM and Intel®

Core™ i9-10900KF CPU.
The hyperparameters were manually tuned on

the validation sets for each dataset, but mostly left
at default values for BART. The ones used for the
final results can be found in Table 7. The number
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Max epochs Learning Rate Warm-up Weight Decay Batch size Time per epoch
CONLL04 33 10−5 10% 0.01 32 30 sec
NYT 42 2.5 · 10−5 10% 0.1 24 8 min
DocRED 20 10−5 10% 0.01 32 2 min
ADE 25 10−5 10% 0.01 32 1 min
Re-TACRED 6 10−5 10% 0.01 32 8.5 min
REBEL 3 10−5 1000 steps 0 32 9 hours

Table 7: Hyperparameters for the different datasets.

Precision Recall F1

CONLL04 74.69
±0.76

71.66
±1.01

73.14
±0.73

NYT 91.44
±0.12

92.02
±0.15

91.72
±0.10

DocRED 46.27
±1.17

35.92
±1.81

40.40
±0.86

Re-TACRED 89.31
±0.20

90.87
±0.41

90.08
±0.19

Table 8: Average micro metrics over 5 seeds for
REBEL on dev sets. Standard deviation is indicated
after the ± symbol.

of parameters for REBEL is the same as for BART-
large, 406M parameters, with a negligible increase
from the newly added tokens.


