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Abstract

Entity grids and entity graphs are two frame-
works for modeling local coherence. These
frameworks represent entity relations between
sentences and then extract features from such
representations to encode coherence. The ben-
efits of convolutional neural models for ex-
tracting informative features from entity grids
have been recently studied. In this work, we
study the benefits of Relational Graph Convo-
lutional Networks (RGCN) to encode entity
graphs for measuring local coherence. We
evaluate our neural graph-based model for
two benchmark coherence evaluation tasks:
sentence ordering (SO) and summary coher-
ence rating (SCR). The results show that our
neural graph-based model consistently outper-
forms the neural grid-based model for both
tasks. Our model performs competitively with
a strong baseline coherence model, while our
model uses 50% fewer parameters. Our work
defines a new, efficient, and effective baseline
for local coherence modeling1.

1 Introduction

Local coherence is a discourse property that dis-
tinguishes a high-quality text from a random se-
quence of sentences. Modeling local coherence is
crucial for various downstream NLP applications,
e.g., summary evaluation and generation (Barzilay
and Lapata, 2008; Parveen et al., 2016), readabil-
ity assessment (Barzilay and Lapata, 2008; Mesgar
and Strube, 2014), essay scoring (Burstein et al.,
2010; Mesgar and Strube, 2016), dialogue evalu-
ation and generation (Mesgar et al., 2020, 2021),
and machine translation (Born et al., 2017; Kuang
et al., 2018).

Motivated by the Centering theory (Joshi and
Weinstein, 1981), many approaches to local coher-
ence modeling rely on entity relations between sen-
tences. The entity grid (Barzilay and Lapata, 2005,

1https://github.com/UKPLab/emnlp2021-
neural-graph-based-coherence-model

2008) and the entity graph (Guinaudeau and Strube,
2013) are two well-studied frameworks for repre-
senting entity relations in a text. Entity grid-based
models use grids while entity graph-based mod-
els use graphs to capture entity relations between
sentences. Several methods have been proposed
to enrich these representations and also to extract
features from these representations to model local
coherence. Recent work shows the effectiveness of
convolutional neural networks (CNNs) for extract-
ing features from entity grids to encode coherence
(Tien Nguyen and Joty, 2017; Joty et al., 2018).
Pre-trained transformer-based encoders can also
capture relations between tokens in a text (Devlin
et al., 2019). However, these encoders are poten-
tially incapable of capturing long-distance relations
(Martins et al., 2021), specifically where the text
length is greater than the maximum input length in
these encoders.

In this work, we revisit graph-based coherence
assessment by introducing a neural graph-based
coherence model. To do so, we represent a text via
a graph (Figure 1) since a graph can capture long-
distance relations in a text. Such a graph contains
two types of edges: (1) Edges that capture entity-
based relations between sentences, and (2) edges
that capture the linear order of sentences in the text.
To encode such graphs, we adapt Relational Graph
Convolutional Networks (RGCNs) (Schlichtkrull
et al., 2018). RGCNs encode nodes of a graph into
vectors using the graph’s connectivity structure and
any feature information captured in the graph, such
as edge types. We then apply a self-attention layer
to these node vectors to capture to what extent each
sentence of the text is crucial for estimating the co-
herence of the entire text. We finally use an output
layer to transform the outputs of the self-attention
layer to a score, which estimates the coherence de-
gree of the text. Figure 2 depicts an overview of
our model.

We evaluate our model for two benchmark co-

https://github.com/UKPLab/emnlp2021-neural-graph-based-coherence-model
https://github.com/UKPLab/emnlp2021-neural-graph-based-coherence-model
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s1: LDI Crop., Cleveland, said it will offer $50 million in commercial paper
backed by lease-rental receivables.

s2: The program matches funds raised from the sale of the commercial paper
with small to medium-sized leases.

s3: LDI leases and sells data-processing telecommunications and other high-tech
equipment.

s4: LDI termed the paper ’non-resource financing’, meaning that investors would
be repaid from the lease receivables, rather than directly by LDI Corp.
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Figure 1: A sample text in which entity mentions shown by bold (a), and its corresponding graph (b).
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Figure 2: An overview of our coherence model.

herence evaluation tasks: (1) Sentence Ordering
(SO) on the Wall Street Journal (WSJ) corpus, and
(2) Summary Coherence Rating (SCR) on the Doc-
ument Understanding Conference (DUC 2003) cor-
pus. The results of our experiments confirm that
our model consistently outperforms the neural grid-
based coherence models (Tien Nguyen and Joty,
2017; Joty et al., 2018) by about 3.10% for SO and
1.2% for SCR. Our model performs on par with a
recent coherence model (Moon et al., 2019), while
our model uses 50% fewer parameters.

2 Method

2.1 Graph Representations

For a text as a sequence of sentences
T = (s1, ..., sn), we construct a graph
G = (V, E ,R) in which V is the set of nodes,
E is the set of edges, and R denotes the label
set for edges (Figure 1). Each node vi ∈ V is
corresponded with a sentence si in the text T . We
connect the nodes in a graph by two types of edges:
(1) Edges with “adj” labels which connect nodes
associated with any two adjacent sentences in the
text to capture their linear order; and (2) Edges
with “ent” labels which capture entity relations
between sentences. We add an entity edge between
nodes vi and vj if sentence si precedes sentence

sj and these sentences contain co-referring entity
mentions. Edge directions capture the order of
sentences. We use boldface notations for variables
that refer to vectors or matrices.

2.2 Neural Graph-based Model

Our model consists of three layers (Figure 2): an
RGCN, a self-attention, and an output layer.

RGCN As nodes in a graph represent sentences
in a text, we first map sentences to vectors in an
embedding space. Given sentence s = (t1, ..., t|s|)
with |s| tokens, we first map each token t to its cor-
responding embeddings t. We then apply BiLSTM
to embeddings of tokens to condition each token
representation on the representations of its neigh-
boring tokens in the sentence. :

−→
H ,
←−
H = BiLSTM

(
[t1, t2, ..., t|s|]

)
. (1)

The reason that we use BiLSTM (instead of
transformer-based encoders like BERT) is that we
aim to keep our model’s size in terms of the number
of parameters efficient. We concatenate the output
vectors associated with the last tokens in the left-to-
right (

−→
H ) and right-to-left (

←−
H ) LSTM directions

to obtain the sentence vector s = [
−→
H |s|;

←−
H |s|],

where “;” is the concatenation function.
We adapt an RGCN layer to take these sentence

vectors and enrich them with the graph structure of
the text as well as edge types as follows:

vi = σ
(∑
r∈R

∑
j∈Nr(vi)

1

|Nr(vi)|
sjWr

)
, (2)

where Wr ∈ Rd×d encodes the label r ∈ R be-
tween node vj and vi. The set Nr(vi) contains the
nodes connected to vi by edges with label r.

Self-attention We use a multi-head
self-attention (Vaswani et al., 2017) layer to
estimate to what extent each sentence contributes
to the coherence representation of a text. Each
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attention head computes a representation zi of
node vector vi as follows:

zi =

n∑
j=1

αij (vjWa), (3)

where Wa ∈ Rd×d is learning parameters. We
define attention weights αij as follows:

αij =
exp(eij)∑n
k=1 exp(eik)

,

eij =

(
Wqvi

)>(
Wkvj

)
ds

,

where eij is the attention function, and Wq,Wk ∈
Rd×d are its parameters. ds is the dimension
of the input vectors. K independent atten-
tion heads are concatenated and linearly trans-
formed to obtain final node representations, vi =

[z
(1)
i ; ...; z

(K)
i ]Wc.

Output layer We then apply a mean pooling to
the output vectors of the attention layer to obtain a
vector representing the coherence of the entire text.
We map this vector to a score as follows:

c = (
1

n

n∑
i=1

vi)wo + bo, (4)

where wo ∈ Rd and bo ∈ R are trainable parame-
ters of the output layer. The output of the model c
estimates the coherence degree of the entire text T .

2.3 Training and Evaluation
We train our model in a ranking scenario (Joty et al.,
2018). Given T+ as a text with a coherence degree
higher than that of text T−, we update parameters
of our model with respect to the following loss
function L(Θ) = max{0, τ − c+ + c−}, where
c+ and c− are the coherence degrees our model
estimates for text T+ and text T−, respectively. τ
is the margin, Θ indicates all trainable parameters
in our model. During training, our model shares
all the layers to obtain c+ and c−. Once the model
is trained for a task, we use it to score any text
independently during evaluation for that task.

3 Experiments

We evaluate our model for two benchmark tasks
for coherence modeling: sentence ordering (SO)
and summary coherence rating (SCR). In SO, a text
is compared with random permutations of its sen-
tences (Barzilay and Lapata, 2008). A coherence

# Texts # Pairs Avg. # Sent.

Train 1240 23744 22.49
Dev 138 2678 18.85
Test 1053 20411 21.74

Table 1: Data splits used for sentence ordering.

model should ideally rank a text higher than its per-
mutations concerning coherence. In SCR, we deal
with ranking summary texts, where each summary
text comes with a coherence rating assigned by hu-
man judges (Barzilay and Lapata, 2008). Given a
pair of summary texts with different coherence rat-
ings, a coherence model is expected to rank them
properly with respect to their coherence ratings.

Datasets For SO, we follow prior work (Moon
et al., 2019; Joty et al., 2018; Tien Nguyen and Joty,
2017) and use the Wall Street Journal (WSJ) En-
glish news corpus. We use the same data splits and
text permutations as used by Moon et al. (2019).
Sections 00–13 of WSJ are used for training and
sections 14–24 for testing (Table 1). We randomly
select 10% of texts from the training set for devel-
opment purposes. We compare any of these texts
with 20 permutations.

For SCR, we use the dataset proposed by Barzi-
lay and Lapata (2008) and used by prior work
for coherence evaluation (Guinaudeau and Strube,
2013; Tien Nguyen and Joty, 2017). The dataset
comprises texts from the DUC-2003 corpus, which
contains English summaries produced by human
experts and extractive summarization systems.
Seven human annotators judged the summaries in
a seven-point scale to rate how coherent the sum-
maries were without having seen the source texts.
For any summary in this dataset, the average of
seven ratings, each assigned by a human judge, is
taken as the coherence rating of the summary. Each
data point in this dataset is a pair consisting of two
summaries of the same text, where the rating of
one of the summaries is higher than the rating of
the other one. The training set contains 144 pairs,
among which 14 pairs are used for development.
The test set contains 80 pairs.

Settings We compare our model (Sec-
tion 2) with the following coherence models:
EntGraph (Guinaudeau and Strube, 2013),
Neural EntGrid (Tien Nguyen and Joty, 2017),
Lex. Neural EntGrid (Joty et al., 2018), and Moon
et al. (2019). We use the source code of the model
proposed by Moon et al. (2019) to reproduce their
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Model SO SCR

EntGraph 80.00 80.0
Neural EntGrid 85.93 86.3
Lex. Neural EntGrid 88.51 -
Moon et al. (2019) 90.69 75.0

Ours 92.41 87.5

Table 2: Results in accuracy (%) for sentence ordering
(SO) and summary coherence rating (SCR).

results on our machines. For others, we report
the results from their papers. We use word2vec
(Mikolov et al., 2013) as word embeddings since
we aim to compare with Lex. Neural EntGrid
in identical settings. Additionally, it keeps the
number of parameters in our model low. We
leave the study about the impact of different
embeddings on the performance of our model for
future work. We construct our graphs using the
grids identical with those used by Neural EntGrid
where all nouns are taken as entity mentions,
and the string match approach is used to detect
coreferent mentions. The batch sizes for training
and evaluation is 5, τ is set to 5, and we train
our model up to 5 epochs. The sizes of the word
vectors, the BiLSTM and the RGCN layer are
300, 256 and 512, respectively. We optimize the
parameters by Adam with a learning rate 0.0001
and L2 regularization. We use only one RGCN
layer and one head for our attention. At each
epoch we evaluate the model on the validation
set. We use the model with the best scores on the
validation set for evaluations on the test set. We
run all experiments on a V100 GPU where each
run of our model takes on average about 5 hours.
We use accuracy as the evaluation metric, which
corresponds to the number of correct rankings
divided by the number of comparisons.

4 Results and Discussion

Table 2 shows the accuracy of the examined mod-
els for the SO and SCR tasks. Overall, our neural
graph-based coherence model outperforms the ex-
amined baseline coherence models for both tasks.

Our model performs substantially better than
EntGraph. Similar to EntGraph, we use graphs to
represent relations between sentences. However,
EntGraph relies on merely entity-based relations
to construct graphs and uses a heuristically-defined
feature (i.e., the average outdegree of nodes in a
graph) to estimate the text coherence. Our model

performs better because our graphs contain edges
for capturing linear order of sentences as well as
entity-based relations. Moreover, our model adapts
RGCN to extract features for estimating coherence.

Our model also outperforms the examined entity
grid-based models. The Neural EntGrid and Lex.
Neural EntGrid models represent entity relations
in text by entity grids and then apply CNNs to
these grids to extract features for modeling the text
coherence. Differently, our model uses graphs to
represent relations between sentences and applies
RGCN to learn features from graphs.

Our model slightly outperforms the model pro-
posed by Moon et al. (2019). We note that the best
results for M&M are 92.93 for SO and 83.8 for
SCR, achieved with ELMo as word embeddings.
We compare with their Word2Vec setting to study
the influence of our models, not word embeddings.
Moon et al. (2019)’s model uses no explicit rep-
resentations of text structure (neither graphs nor
grids). It captures linear relations between adjacent
sentences using a neural bilinear layer, and their re-
lations with a global representation of a text using
a CNN-based module. This model is trained by a
language model loss together with a ranking loss
specifically designed for SO. Our model achieves
scores similar to those of (Moon et al., 2019)’s
model, while our model is simpler and smaller. We
compare the number of our model’s parameters
with that of the (Moon et al., 2019)’s model for SO.
For a fair comparison, we use identical settings for
encoding sentences in both models. The number of
our model’s parameters (≈ 5.0 M) is almost half of
that in the (Moon et al., 2019)’s model (≈ 9.5 M),
indicating that our model compete with this model
while using 50% fewer number of parameters.

Note that the Neural EntGrid’s score for SCR
is its best performing results, where the model is
first pretrained for SO and then fine-tuned on the
training set of the SCR’s dataset. Our model outper-
forms the Neural EntGrid model while our model
is trained for SCR from scratch, i.e., without pre-
training. It is worth noting that the size of the test
split used for SCR is small (80 text pairs). The im-
provements achieved by our model translates into
the fact that our model makes 10 and 6 out of 80
correct rankings more than what Neural EntGrid
and the (Moon et al., 2019)’s model make, respec-
tively. However, such improvements on the SCR’s
dataset are important as texts in this dataset are
associated with human-provided coherence ratings.
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Model SO SCR

Ours 92.41 87.5
Ours w/o ent. 91.89 85.0
Ours w/o adj. 90.05 87.5

Table 3: The impact of different edge types.

Table 3 depicts the accuracy of our model when
different edge sets are used to construct graphs.
“Ours w/o ent.” shows our model trained on graphs
with only adjacent edges. “Ours w/o adj.” shows
our model trained on graphs with only entity edges.
We observe that edges with “adj” labels are more
predictive signals than entity-based edges for SO.
This observation intuitively makes sense as pertur-
bations may change the order of only adjacent sen-
tences. For SCR, entity-based relations are more
predictive. Summary texts are supposed to express
information about entities from source documents
in a few sentences. Interestingly, by removing
edges with “adj” labels, the performance of our
model does not decrease for SCR. In sum, our
model performs its best for both tasks when both
edge types are used to construct graphs.

5 Conclusions

We introduced a neural graph-based model for lo-
cal coherence assessment. We construct a graph
of relations among sentences in a text using entity-
based and linear relations between sentences. We
apply relational graph convolutional networks to
such graphs to extract features encoding coherence.
Our model outperforms its counterparts for sen-
tence ordering and summary coherence rating. The
high performance of current coherence models on
tasks with synthetic data possibly being not rep-
resentative of real-life performance (Mohiuddin
et al.). So, we aim to further study the performance
of our model for tasks with natural data.
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