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Abstract

In Visual Question Answering (VQA), exist-
ing bilinear methods focus on the interaction
between images and questions. As a result, the
answers are either spliced into the questions or
utilized as labels only for classification. On the
other hand, trilinear models such as the CTI
model of Do et al. (2019) efficiently utilize the
inter-modality information between answers,
questions, and images, while ignoring intra-
modality information. Inspired by these ob-
servations, we propose a new trilinear interac-
tion framework called MIRTT (Learning Mul-
timodal Interaction Representations from Tri-
linear Transformers), incorporating the atten-
tion mechanisms for capturing inter-modality
and intra-modality relationships. Moreover,
we design a two-stage workflow where a bilin-
ear model reduces the free-form, open-ended
VQA problem into a multiple-choice VQA
problem. Furthermore, to obtain accurate and
generic multimodal representations, we pre-
train MIRTT with masked language prediction.
Our method achieves state-of-the-art perfor-
mance on the Visual7W Telling task and VQA-
1.0 Multiple Choice task and outperforms bi-
linear baselines on the VQA-2.0, TDIUC and
GQA datasets.

1 Introduction

One key challenge for building robust artificial in-
telligence systems is to handle information that lies
across multimedia data. Visual Question Answer-
ing (VQA) (Wu et al., 2017) is a specific example
of the challenge, where, given a natural language
question about an accompanying image, the sys-
tem is required to produce a correct answer. This
is a typical multimodal problem since the intelli-
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What is the main color of the train?

Figure 1: Visual question answering task1

gence system needs to understand images and texts
simultaneously.

From the perspective of a single modality, there
have been plenty of backbone methods for learning
better representations of either language or vision.
For learning language representations, researchers
have developed several pre-trained models, such as
GPT-2 (Radford et al., 2019), BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). These ap-
proaches can learn the universal language represen-
tations on the large-scale corpus, which are benefi-
cial for downstream tasks (Qiu et al., 2020). Con-
cerning visual representations, He et al. (2016);
Ren et al. (2017); Simonyan and Zisserman (2015)
have been widely applied to extract image features.
Despite the success of these single-modality works,
learning the relationships between different modal-
ities is still an unsolved problem.

Existing VQA approaches focus on modeling
the relationship between visual and language fea-
tures represented by bilinear models. For ex-
ample, through applying bilinear feature fusion
methods, the image and text representations are
projected into a uniformed higher-dimensional
space. Multimodal Compact Bilinear pooling
(MCB) (Fukui et al., 2016) processes the vec-
tors in Fast Fourier Transform (FFT) space. For

1An example of image-question-answer pair from Vi-
sual7W dataset (Zhu et al., 2016)
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better cross-modality information exchange, (Yu
et al., 2019) and (Tan and Bansal, 2019) utilize co-
attention/cross-attention networks to capture the
high-level fusion features. Generally, these bilinear
approaches only consider how to learn the joint rep-
resentations between the questions and the images
while the answers are processed as labels, making
VQA task a multi-class classification task (Tan and
Bansal, 2019; Zhu et al., 2016; Lu et al., 2019; Li
et al., 2020).

However, the answers contain semantic informa-
tion, related to the question and the visual context.
For considering the answer information, trilinear
models represented by Compact Trilinear Interac-
tion (CTI) (Do et al., 2019), are designed to learn
the alignment relationships between the visual con-
text, the answers, and the questions. Unfortunately,
the trilinear interaction in CTI only considers the
inter-modality relationships but ignores the intra-
modality information, leading to unsatisfactory in-
ference results.

To tackle the above problems in the context
of VQA, we propose a new trilinear modali-
ties interaction framework called MIRTT (Learn-
ing Multimodal Interaction Representations from
Trilinear Transformers). Specifically, MIRTT can
extract more refined high-level feature informa-
tion from the inter-modality and intra-modality
relationships by introducing interactive attention
networks across three modalities and three self-
attention networks within a single modality. In
general, MIRTT can accommodate requirements
for processing three different modal features and
efficiently utilize the information from the answers.

The contributions of our work are as follows:

• By considering the inter-modality and intra-
modality relationships, we introduce a new
end-to-end trilinear interaction model MIRTT,
that enhances each single modality representa-
tion by proposed attention networks, resulting
in better inference ability in VQA.

• We propose a two-stage workflow to sim-
plify the harder Free-Form Opened-Ended
(FFOE) VQA into simpler Multiple Choice
(MC) VQA, which provides a method to solve
difficult VQA tasks.

• Our proposed MIRTT achieves state-of-
the-art performance on Visual7W telling
task (Zhu et al., 2016) and VQA-1.0 for MC
VQA and outperforms the bilinear methods on
the VQA-2.0 (Goyal et al., 2017), (Kafle and

Kanan, 2017a) and GQA (Hudson and Man-
ning, 2019) datasets for FFOE VQA. More-
over, we take advantage of the pre-training
task on our model, improving multi-modality
understanding.

2 Related Work

Visual question answering (VQA) task. Follow-
ing Antol et al. (2015) who defined the VQA
task (i.e., obtaining answers from a given image-
question pair), has received significant attention
from the entire artificial intelligence commu-
nity (Wu et al., 2017). There are two major types
of VQA tasks, Multiple Choice (MC) VQA and
Free-Form Opened-Ended (FFOE) VQA (Do et al.,
2019). In MC VQA (Zhu et al., 2016; Kafle and
Kanan, 2017b), the answer is chosen from a candi-
date answer list for a given image-question pair ac-
cessible in both training and test scenarios. FFOE
VQA is more complicated since the answers are
only available in the training phase, and there is no
candidate answer list for choosing answers. How-
ever, FFOE VQA is the most common VQA task
and almost all models are aimed at this problem.
The general solution is to extract the visual fea-
tures and linguist features first and then fuse them
with a multi-modality fusion model, followed by a
classifier or a generator to obtain the answer (Wu
et al., 2017). Among them, exploring different
fusion approaches is the mainstream research direc-
tion. On the one hand, the interactive relationships
between the query image and the question have
been fully modeled, such as element-wise oper-
ations (Antol et al., 2015) and bilinear methods
(Fukui et al., 2016; Kim et al., 2018; Ben-Younes
et al., 2017, 2019). On the other hand, some works
have improved the VQA performance by consid-
ering the answer information (Hu et al., 2018; Do
et al., 2019). For example, Jabri et al. (2016) com-
bines the three input representations through a sim-
ple Multilayer Perceptron (MLP), and Wang et al.
(2018) introduces a layered fusion operation by
merging the image-question bilinear embeddings
and the image-answer bilinear embeddings in joint
embedding space. In order to solve VQA in a tar-
geted manner, we make full use of the answer infor-
mation and propose a two-stage workflow, which
converts FFOE VQA to MC VQA.
Attention-based networks. Inspired by human’s
natural mechanism, Yang et al. (2016) introduce the
attention mechanism to VQA and achieve success.
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For bilinear feature fusion, some attention mecha-
nisms have been proposed, such as co-attention (Lu
et al., 2016) and dual attention (Nam et al., 2017).
In terms of trilinear feature fusion, the attention
map for trilinear inputs is computed by PARAL-
ING decomposition (Do et al., 2019). However, the
output is only a joint vector for classification. In
order to enhance each single modality representa-
tion by fusing the other modalities, we propose
Trilinear Interaction Attention (TrI-Att). More-
over, although self-attention can not fuse different
modalities, it can enhance the interaction within
each modality (Yu et al., 2019). Therefore, we de-
sign Self-Attention (Self-Att) unit for capturing the
intra-modality information.
Multimodal contextual representations. The
transformer-based models can achieve good per-
formance in the vision-language tasks. These mod-
els normally employ multi-layer transformers to
learn multimodal contextual representations. There
are two basic types of their architectures: single-
stream and two-stream. The single-stream models
concatenate image and language features first, and
then they get the cross-modality representations
with a single multi-layer transformer, such as VL-
BERT (Su et al., 2020) and UNITER (Chen et al.,
2020). The two-stream models take advantage of
self-attention transformers to encode language and
image features respectively, and then build joint
representations with cross-attention transformers,
such as LXMERT (Tan and Bansal, 2019) and ViL-
VERT (Lu et al., 2019). To better align vision-
language semantic, some works try to pre-train
transformer-based structures on a large corpus of
image-text pairs. The pre-training tasks usually
include masked language prediction, RoI-feature
regression, detected-label classification and cross-
modality matching (Tan and Bansal, 2019). In this
paper, our proposed trilinear transformers deal with
the three input embeddings different from former
transformer-based methods.

3 MIRTT: Learning Multimodal
Interaction Representations from
Trilinear Transformers

As shown in Figure 3, our model considers three
modality forms of input (e.g., images, questions
and answers). The backbone of MIRTT is two
transformers with multiple layers, which are based
on TrI-Att and Self-Att mechanisms. Finally, in
the output layer, we adopt MLP for specific down-

stream tasks.

3.1 Single-modality Embedding Extraction

Image embeddings. The image embeddings are
extracted from a Faster R-CNN model (Anderson
et al., 2018), a regional visual feature extractor. In
terms of specification, for each object, it extracts
a vector with dv dimensions. Therefore, an im-
age with v objects is represented as an embedding
matrix V ∈ Rv×dv .
Question and answer embeddings. We adopt
BERT (Devlin et al., 2019) to fine-tune as our text
extractor in the experiments. Specifically, the text
is converted to WordPiece embeddings first (Wu
et al., 2016). Then through fine-tuning, each em-
bedding will be projected into Rdq or Rda , for ques-
tion and answer, respectively. Finally, the question
with a max length of q is represented as Q ∈ Rq×dq ,
and the same for the answer that A ∈ Ra×da .

3.2 Trilinear Transformers

Image Embedding

Question Embedding

Answer Embedding

M

TrI-Att

fQ

fA

fV

Figure 2: Trilinear interaction attention

TrI-Att for inter-modality representations. For
better cross-modality information fusion, we de-
sign TrI-Att to project single-modality embed-
ding into inter-modality enhanced space (Figure
2). From section 3.1, let S = {V,Q,A} be the
multimodal input collection. Firstly, we introduce
the attention map M ∈ Rv×q×a, which is mainly
computed by matrix multiplication and sum-based
dimension reduction. The detailed calculation pro-
cess is as follows:

M = softmax

(∑
dv

∑
dq

∑
da

V ⊗Q⊗A
√
d

)
(1)

where softmax is a normalization operation of all
elements in M , and d is the arithmetic mean of dv,
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Figure 3: Model architecture of MIRTT

dq and da. Secondly, the fusion of initial single-
modality representation and the attention map f is
conducted as follows:

fV =
∑
q

∑
a

MV = TrI-AttV(V,Q,A) (2)

here, we take image representation V for example
(questions and answers are as the same), and the
fusion operation is similar to Eq. 1.

We further utilize multi-head attention (Vaswani
et al., 2017) to improve the robustness by intro-
ducing a linear mapping for each single-modality
representation. In general, the complete calculation
of inter-modality fusion is as follows:

fV =
Nh

||
i
TrI-AttV

i
(
VW i

V , QW i
Q, AW

i
V

)
(3)

where W i
V , W i

Q and W i
A are multi-head linear map-

pings, which are shared across the three forms of
representations. Nh is the number of heads. ||
indicates the concatenation of all multi-heads. Sim-
ilarly, the fusion representations of questions and
answers are:

fQ =
Nh

||
i
TrI-AttQ

i
(
VW i

V , QW i
Q, AW

i
V

)
(4)

fA =
Nh

||
i
TrI-AttA

i
(
VW i

V , QW i
Q, AW

i
V

)
(5)

After that, a fully connected feed-forward net-
work with residual connection follows.
Self-Att for intra-modality representations. We
apply the encoder of Transformer (Vaswani et al.,
2017) to capture the intra-modality relationships.

We deploy a multi-head self-attention mechanism,
followed by a feed-forward network with the resid-
ual connection. With input feature X ∈ Rn×d, the
multi-head self-attention is working as:

Nh

||
i
Self-AttM (X) =

Nh

||
i
softmax

(
XXT

√
d

)
XW i

M

(6)
where W i

M ∈ Rd×dh is the projection matrix for
a certain modality M in ith head. This structure
can enhance the long-distance dependency among
the multi-modality features, while weaken negative
impact on the result to a certain degree.
Trilinear transformers stacks. In total, the tri-
linear transformer stacks NL layers, where each
layer efficiently combines two transformer mod-
ules. The multiple modalities transformer has a tri-
linear interaction attention module and a fully con-
nected feed-forward (FF) network. And the single
modality transformer has three self-attention mod-
ules, following the same structure of the encoder in
Transformer (Vaswani et al., 2017). Our essential
motivation is to take advantage of the answer in-
formation, so a trilinear model is deployed first to
fuse the three modality information. However, this
leads to the loss of information in each modality
to some extent, so a single-modality transformer is
followed to reinforce the information of each own.
For the MC VQA task, we put the pooled answer
representations of the final layer into a binary clas-
sifier. Pick the answer of the highest binary score
as the right one.

3.3 Two-stage Workflow

In FFOE VQA, previous models usually do not
take the answer as input for keeping the same input
dimensions in the training and test phases because
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Figure 4: The overview of two-stage workflow2

the answer is not available in the test set. Knowl-
edge distillation is a solution that trilinear methods
could run by teaching a bilinear model in the train-
ing phase, and the bilinear model is evaluated in
the test phase. However, the answer information is
still inaccessible in the test set.

Therefore, as shown in Figure 4, we introduce a
two-stage workflow to make full use of the dataset.
Our proposal is a universal simplification process
for the FFOE VQA task, which gives full play to
the advantages of the bilinear and trilinear models.

In the first stage, we train a bilinear model for
the questions and images first, and then the top four
candidate answers are provided for each question
based on the output logits. Since the bilinear model
performs very high accuracy on the training set,
the candidate answers basically contain the correct
answer. In the test phase, the trilinear model is
fully dependent on the candidates from the bilinear
model.

In stage two, the candidates are first restruc-
tured into several image-question-answer pairs by
reuse the input image and question; therefore, the
number of the pairs is equal to that of the candi-
dates. Then the trilinear model utilizes the image-
question-answer pairs to choose a confident answer
under the MC VQA task setting (illustrated in Sec-
tion 3.2), where the answer-question and answer-
image alignment information is learned.

4 Experiments

4.1 The Pre-training Strategy

In the hope of initializing our model effectively, we
pre-train our model with the masked language mod-
eling task, which is in a way similar to BERT (De-
vlin et al., 2019). Since our model is trilinear, the
pre-training data format is triple of the question,
image, and correct answer. We utilize Visual7W,
VQA-2.0, and TDIUC datasets (the training set) to

Dataset Model Acc-MC

Visual7W
MCB 62.2
CTI 72.3
MIRTT (Ours) 74.4

VQA-1.0 MC

Dual-MFA 70.0
MCB 70.1
MFH 73.4
MIRTT (Ours) 77.0

Table 1: Comparison with the state-of-the-art results
on Visual7W and VQA-1.0. Our pre-trained MIRTT
model outperforms previous methods.

pre-train MIRTT. In detail, We mask the tokens of
questions and answers with a probability of 15%.
In these masked tokens, 80% of them are replaced
by sign [MASK], 10% of them are kept, and the
other 10% are replaced with random tokens.

4.2 Datasets and Evaluation Metrics

4.2.1 MC VQA Tasks

Dataset. Visual7W is a subset of Visual
Genome (Krishna et al., 2017). For each question-
image pair, there are four candidate answers, where
only one choice is correct. There are two tasks for
Visual7W: pointing and telling, and we conduct our
method on telling task. VQA-1.0 MC (Antol et al.,
2015) is similar to Visual7W, while there are 18
candidate answers for each question.

Metrics. Each question only has one correct
answer. Accuracy (Acc-MC) is used to measure
the performance (Zhu et al., 2016; Antol et al.,
2015). We evaluate our methods on “test” split of
Visual7W and “test-std” split of VQA-1.0 MC.

2An example image-question pair from VQA-2.0
dataset (Goyal et al., 2017)
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Dataset Text extractor Bilinear method Bilinear result Trilinear result Ensemble result

VQA-2.0
GRU BAN2 66.5 65.5 68.9
GRU SAN 63.0 65.0 66.8
BERT MLP 59.5 64.3 65.5
BERT ViLBERT 69.23 68.0 70.3

TDIUC
GRU BAN2 85.5 87.4 87.6
GRU SAN 82.3 86.0 85.6
BERT MLP 80.0 84.5 83.6

GQA
BERT BAN2 55.0 52.8 55.7
BERT SAN 54.8 52.4 55.9

Table 2: The results from test sets of VQA-2.0 and TDIUC. Comparisons between different bilinear methods and
text encoders on stage one. The trilinear results are from MIRTT models on stage two.

4.2.2 FFOE VQA Tasks
Dataset. VQA-2.0 is built from MSCOCO

dataset (Lin et al., 2014). VQA-2.0 minimizes an-
swer biases so that a language-only “blind” model
can not guess the right answers. TDIUC is a large
VQA deadset of real images, which has over 1.6M
questions of 12 categories. GQA consists of 22M
questions, and each image corresponds to a scene
graph. The questions focus on visual reasoning and
compositional question answering.

Metrics. In VQA-2.0, each question has ten
human-generated answers. To present the inter-
human variability, we define the accuracy-based
evaluation metric (ACC) as follows (Wu et al.,
2017):

ACC = min{n
3
, 1} (7)

where n is the frequency of the answer given by
the model in the answer set of the corresponding
image-question pair. In TDIUC and GQA, there is
only one right answer for each question. Therefore,
normal accuracy is used. For details, we evaluate
our methods on “test-dev” split of VQA-2.0, “Valid”
split of TDIUC, and “test-std” split of GQA.

4.3 Implementation Details

Except for the referenced models and special in-
structions, we fine-tune BERT as our text extrac-
tor for questions and answers. And we freeze the
Faster R-CNN detector (Anderson et al., 2018)
without fine-tuning as the image extractor. For
images, the maximum detected bounding box is

3The result is not the same as in the cited paper. Regret-
tably, after a lot of experiments, we still cannot reach the
accuracy in the cited papers. Under the fair experimental envi-
ronment, the ensemble result outperforms the bilinear result.

set to 50. For texts, the questions and answers are
trimmed to a sentence with a maximum length of
12 tokens and 6 tokens, respectively.

The hyper-parameters of MIRTT follow the de-
fault unless otherwise noted. The dimensions of
input images (dv), questions (dq) and answers (da)
are 2048, 768 and 768. To simplify the calculation,
we reduce dv to 768 with a linear projection. For
the TrI-Att and Self-Att, the number of heads is 12,
and the hidden dimension dh is 64.

In all experiments with a two-stage work-
flow, we utilize six layers MIRTT with col-
lection 2 (Table 3). Furthermore, our codes
will be made publicly available with instructions
https://github.com/IIGROUP/MIRTT. More exper-
imental settings can be found in the Appendix.

4.4 MIRTT Performance on MC VQA

As shown in Table 1, we compare our methods
with previous methods on Visual7W telling task
and VQA-1.0 multiple-choice task.

MCB (Fukui et al., 2016): a method that consid-
ers FFT space to combine multimodal features.

CTI (Do et al., 2019): a method that learns high-
level associations between three inputs by using
multimodal-tensor-based decomposition.

Dual-MFA (Lu et al., 2018): a framework that
fuses input embedding by selecting the free-form
image regions and detection boxes most related to
the input question.

MFH (Yu et al., 2018): a framework that models
both the image attention and question attention
simultaneously.

Our MIRTT with fine-tuning (Table 3) improves
the CTI ACC-MC by 2.1% and improves the MFH
ACC-MC by 3.6%.
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4.5 MIRTT Performance on FFOE VQA

To evaluate the effectiveness of the two-stage work-
flow (Figure 4), we apply several bilinear methods
as our backbones in stage one and set our MIRTT
as trilinear methods in stage two. In detail, the
candidate answers lists are generated by baselines;
each contains four answers.

SAN (Yang et al., 2016): Stacked Attention Net-
work utilizes multiple attention layers by querying
an image multiple times to infer the answer.

BAN2 (Kim et al., 2018): Bilinear Attention
Network fuses the question embeddings and image
embeddings by utilizing co-attention.

MLP: in this method, we use the first output
token embedding as the global representation of a
question. Then, we sum up all object embeddings
of an image after multiplying a learning weight
for each one. The global representations of the
question and the image are then added and fed into
an MLP layer for classification.

ViLBERT (Lu et al., 2019) builds intra- and
inter-relationship between vision and language
base on a pretrained transformer structure.

Ensemble results: the predictions are calcu-
lated by considering the outputs of stage one and
stage two. The ensemble method normalizes the
two results separately and adds them together. The
final prediction is the candidate answer with the
highest probability.

As shown in Table 2, the trilinear results and en-
semble results outperform the bilinear results. Our
two-stage workflow solves the problem that trilin-
ear models are not able to be deployed in FFOE
VQA. Furthermore, ensemble results show that bi-
linear models can utilize the answers after model-
ing the answer information by the trilinear models.

In particular, the GQA dataset is not introduced
in pre-training data. Our two-stage workflow and
MIRTT present better performances than the base-
line methods, which shows the generalization capa-
bility of our approaches.

4.6 Ablation Studies

4.6.1 The Components of MIRTT

Stacking layers and the size of pre-training
data. As shown in Table 3, MIRTT only needs
two layers to significantly outperform the others in
“Random” based on accuracy.

Random: MIRTT is trained on Visual7W with-
out pre-training.

Layers Random Collection 1 Collection 2

1 70.3 - -
2 70.9 73.0 73.7
4 70.4 73.3 74.2
6 70.6 73.5 74.2
8 70.3 73.5 74.4

Table 3: The behaviors of the MIRTT with a different
number of layers and different sizes of pre-training data
on the Visual7W dataset.

Collection 1: MIRTT is pre-trained on the train
sets of Visual7W and VQA-2.0.

Collection 2: MIRTT is pre-trained on the train
sets of Visual7W, VQA-2.0, and TDIUC.

After pre-training, MIRTT outperforms the non-
pre-trained one in each layer from random and
collection 1. And as the number of layers increases,
the accuracy of MIRTT with collection 1 is im-
proved. However, as the number of layers increases,
the capability of MIRTT with collection 1 seems
to reach its limit at six layers, and growth hits a
bottleneck.

Therefore, we add one more dataset to pre-train
MIRTT. Comparing with collection 1, MIRTT in
collection 2 can break the previously mentioned
bottleneck and reaches the best score at the high-
est layer with more pre-train data. Perhaps similar
to ViT (Dosovitskiy et al., 2021), these attention-
based deep models are sensitive to dataset size.
Therefore, the pre-trained MIRTT benefits from a
larger number of parameters and more data, achiev-
ing an accuracy of 74.4%. Moreover, we conduct
the randomized Tukey HSD p-values and effect
sizes based on one-way ANOVA (Sakai, 2018) to
support statistical significance of our results. De-
tails are in the Appendix.
Attention mechanisms. Since CTI does not con-
sider the intra-modality information, we attempt
to build some structures to enhance it. In the
term “CTI + Self-Att”, the original output of CTI
is a joint representation, then make a fusion by
adding text embeddings and the joint representa-
tion. After that, we implement the Transformer’s
encoders (Vaswani et al., 2017) with two layers.
As shown in Table 4, after adding self-attention to
obtain fine-grained information within the modal-
ity, the CTI is improved by 0.5% compared to the
original model.

BERT∗: We fine-tune BERT on input questions
and answers and fuse the extracted image embed-
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[Question]

What is the main color of the train?

[Answer list]

Blue ❌

Yellow ❌

Red✔

Gold ❌

(a) (b) (c)

Figure 5: The visualization of the attention map M from Eq. 1. The attention map is extracted from the last layer
of our best model with the best result on Visual7W. (a) is an example image-question-answer pair from the test set
of Visual7W (Zhu et al., 2016). The input image is attached with bounding boxes. (b) includes the related attention
maps for answers (“Red” and “Gold”). The details of each answer tokens are presented on (c).

Method Acc-MC
CTI 72.3
CTI + Self-Att 72.8
BERT∗ 65.4
BERT + TrI-Att 70.5
BERT + TrI-Att + Self-Att (MIRTT) 70.9

Table 4: Ablation experiments for attention mecha-
nism, evaluated on the test set of Visual7W.

dings. In detail, we utilize the same operation
of Bottom-Up and Top-Down (BUTD) (Anderson
et al., 2018) to fuse all representations.

To discuss two key components (“TrI-Att” and
“Self-Att”), we utilize two layers of MIRTT without
pre-training as our basic structure. By replacing the
simple fusion methods like adding, we enhance the
input embeddings by considering the inter-modality
information in TrI-Att. 5.1% improves the accuracy
as a result. Considering CTI can benefit from self-
attention mechanism, we implement the Self-Att in
our trilinear transformers. From the relative 0.4%
improvement, our MIRTT can also learn the intra-
modality information like “CTI + Self-Att”.
Visualization for TrI-Att. Figure 5 visualizes
the behavior of MIRTT by showing detailed at-
tention values of TrI-Att. The detected objects are
presented with their numerical labels. The spe-
cial tokens in questions and answers are provided
by BERT (Devlin et al., 2019). For the image-
question-(answer “Red”) pair, the correlation of
object “5” (the train) and token “Red” has a great

attention value. Moreover, the model focuses on
the pair “5”-“train”-“Red”, which is helpful in rea-
soning that the train in the image is red. In terms
of the answer “Gold”, the locomotive (object “2”)
gains more attention than the object “2” in “Red”.
Therefore, the answers could assist MIRTT in pre-
dicting the correct choices.

4.6.2 Cases for Two-stage Workflow
Figure 6 describes some examples with applying
our two-stage workflow (Figure 4). In detail, the
text extractors are all GRU, and the trilinear meth-
ods are MIRTT. The results show that our trilin-
ear method is able to retrieve the most proper an-
swer by utilizing the abundant information of the
answers. Whether the problem requires stronger
reasoning skills in (a), or the ability to find corre-
spondences (images, questions, and answers) as in
(b) and (c), MIRTT can handle it with a two-stage
workflow. Following different bilinear methods
as backbones, the trilinear method might predict
different answers, such as (d).

5 Conclusions

We introduced a trilinear interaction framework
called MIRTT, which captures inter-modality and
intra-modality information of images, questions,
and answers. Our method is based on TrI-Att and
Self-Att mechanisms. The pre-trained model shows
the effectiveness among the baselines on several
datasets. Meanwhile, a two-stage workflow is intro-
duced to apply the trilinear methods to FFOE VQA,
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(a) Q: What room are they 

located in?

office ❌

classroom ✔

(b) Q: Are people cooking?

yes ❌

no ✔

(d) Q: How many people are 

in this photo?

6 ❌

5 ❌

(c) Q: What color is the 

glass covering the pilot?

white ❌

blue ✔

[Bilinear Answer]

[Trilinear Answer]

[Images]

[Questions]

[Bilinear Answer]

[Trilinear Answer]

living room ❌

classroom ✔

yes ❌

no ✔

white ❌

blue ✔

5 ❌

4 ✔

Bilinear 

Backbone

BAN2

SAN

Figure 6: A collection of image-question-answer pairs by random selection from VQA-2.0 (Goyal et al., 2017).
Comparisons of whether to use two-stage workflow and different bilinear methods at the stage one in the test phase.

showing improvements on VQA-2.0, TDIUC and
GQA. We achieve state-of-the-art results on Vi-
sual7W and VQA-1.0 MC. Generally, with rich ex-
perimental comparisons and extensive discussion,
we demonstrate the value of the answer information
and provide a solution for the VQA tasks.
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A Dataset details

Dataset Train Valid Test

Visual7W 69.8k 28.0k 42.0k
VQA-1.0 248.3k 121.5k 244.3k
VQA-2.0 443.8k 214.4k 447.8k
TDIUC 1115.3k 538.9k -
GQA 15.4M 2.2M 4.2M

Table 5: The sizes of datasets associated to our paper

Pre-training Dataset. Amount of data for pre-
training datasets is shown in Table 5. Pre-training
dataset collection 1 includes Visual7W (train/val)
and VQA-2.0 (train/val). In VQA-2.0, there is a
list of human-generated answers to one question.
We treat the answer with the highest score as the
correct answer. The size of the image-question-
answer pre-training collection is about 756k. In
collection 2, we add the train set of TDIUC to pre-
train MIRTT. The size of pre-training tuples grows
to 1.87M.

B Implementation details

The whole details will be presented in our open-
source codes on Github. The Focal loss (Lin et al.,
2017) is used for training the proposed models.
Pre-training. When we pre-train MIRTT, the
batch size is 128, and the initial learning rate is
1e-4. We use the model of epoch 7 for later fine-
tuning.
Visual7W. Batch size is set to 32 for all models.
For random initialization, the learning rate is 1e-4,
and the number of the epoch is 17. For fine-tuning,
the learning rate is 3e-5, and the number of the
epoch is 11.
VQA-1.0. Initial learning rate is set to 1e-4, and
batch size is 16. Since each question has 18 choices,
there are 288 samples in one batch.
Two-stage workflow. The settings of hyper-
parameters of two-stage workflow are presented
in Table 6. Stage one and stage two are separate,
not end-to-end structures. In stage one, the bilin-
ear model is trained and we adopt a cross-entropy
loss function to get the logits of the answers. Then,
we get the top four candidates based on the logits,
which is the generated answer list. In stage two, we
encode the answers and put those embeddings of
three modalities into MIRTT to get representations.
We put the pooled answer representations into a

binary classifier and apply binary cross-entropy
based on labels generated from the FFOE dataset.
The number of candidate answers. To make our
proposal a universal framework on both FFOE
VQA and MC VQA tasks, we set the candidates to
be four Visual7W on VQA and RACE (Lai et al.,
2017) on QA. We will do related explorations based
on this in the future. There are a few interesting
problems. For example, if the candidate answers
don’t include the correct answer, the trilinear model
won’t work for this question. However, this prob-
lem is always possible unless the candidate list
includes all the answers, which is impossible. A
limited extension of the candidate list could help
improve the coverage of correct answers while con-
tradicting our design’s universality.

C P-value based on Randomized Tukey
HSD tests

Table 7, Table 8 and Table 9 show the statistical
significance test results of the runs on Table 3. The
name of runs are following the rules: name = D_L,
where D ∈ {Rand, Col1, Col2} is the name of the
size of pre-training data and L ∈ {1, 2, 4, 6, 8} is
the number of layers to use in MIRTT. For example,
Col2_2 stands for two layers MIRTT in collection
2.
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Stage one Stage two
Dataset Text extractors Bilinear method BS LR BS LR

VQA-2.0
(test-dev)

GRU SAN 256 1.00E-03 64 1.00E-04
GRU BAN2 256 1.00E-03 64 1.00E-04
BERT MLP 256 1.00E-04 64 1.00E-04
BERT ViLBERT 256 1.00E-04 64 1.00E-04

TDIUC
(valid)

GRU BAN2 256 1.00E-03 64 1.00E-04
GRU SAN 256 1.00E-03 64 1.00E-04
BERT MLP 256 1.00E-04 64 1.00E-04

GQA
(test-dev,test-std)

BERT BAN2 256 1.00E-04 64 1.00E-04
BERT SAN 256 1.00E-04 64 1.00E-04

Table 6: The settings of hyper-parameters of two-stage workflow.

Rand_1 Rand_2 Rand_4 Rand_6
Rand_2 p <0.001 (-0.835) - - -
Rand_4 p <0.001 (-0.472) p <0.001 (0.363) - -
Rand_6 p <0.001 (-0.480) p <0.001 (0.355) p = 0.706 (-0.008) -
Rand_8 p <0.001 (-0.556) p <0.001 (0.279) p <0.001 (-0.084) p <0.001 (-0.076)
Col1_2 p <0.001 (-0.659) p <0.001 (0.176) p <0.001 (-0.187) p <0.001 (-0.179)
Col1_4 p <0.001 (-0.793) p <0.001 (0.043) p <0.001 (-0.320) p <0.001 (-0.313)
Col1_6 p <0.001 (-0.706) p <0.001 (0.128) p <0.001 (-0.234) p <0.001 (-0.227)
Col1_8 p <0.001 (-0.651) p <0.001 (0.184) p <0.001 (-0.179) p <0.001 (-0.172)
Col2_2 p <0.001 (-0.549) p <0.001 (0.286) p <0.001 (-0.076) p <0.001 (-0.069)
Col2_4 p <0.001 (-0.363) p <0.001 (0.472) p <0.001 (0.109) p <0.001 (0.116)
Col2_6 p <0.001 (-0.280) p <0.001 (0.555) p <0.001 (0.192) p <0.001 (0.200)
Col2_8 p <0.001 (-1.701) p <0.001 (-0.866) p <0.001 (-1.230) p <0.001 (-1.222)

Table 7: Statistical significance calculated by Randomized Tukey HSD tests after 1,000 simulations. P-value and
effect size. (Part 1)

Rand_8 Col1_2 Col1_4 Col1_6
Col1_2 p <0.001 (-0.103) - - -
Col1_4 p <0.001 (-0.236) p <0.001 (-0.134) - -
Col1_6 p <0.001 (-0.150) p <0.001 (-0.048) p <0.001 (0.086) -
Col1_8 p <0.001 (-0.095) p = 0.759 (0.007) p <0.001 (0.141) p <0.001 (0.055)
Col2_2 p = 0.716 (0.008) p <0.001 (0.110) p <0.001 (0.244) p <0.001 (0.158)
Col2_4 p <0.001 (0.193) p <0.001 (0.295) p <0.001 (0.429) p <0.001 (0.342)
Col2_6 p <0.001 (0.276) p <0.001 (0.379) p <0.001 (0.513) p <0.001 (0.427)
Col2_8 p <0.001 (-1.146) p <0.001 (-1.043) p <0.001 (-0.909) p <0.001 (-0.995)

Table 8: Statistical significance calculated by Randomized Tukey HSD tests after 1,000 simulations. P-value and
effect size. (Part 2)

Col2_2 Col2_4 Col2_6
Col2_4 p <0.001 (0.185) - -
Col2_6 p <0.001 (0.269) p <0.001 (0.084) -
Col2_8 p <0.001 (-1.153) p <0.001 (-1.338) p <0.001 (-1.422)

Table 9: Statistical significance calculated by Randomized Tukey HSD tests after 1,000 simulations. P-value and
effect size. (Part 3)


