
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2269–2279
November 7–11, 2021. ©2021 Association for Computational Linguistics

2269

Generate & Rank: A Multi-task Framework
for Math Word Problems

Jianhao Shen1† , Yichun Yin2, Lin Li3, Lifeng Shang2,
Xin Jiang2, Ming Zhang1*, Qun Liu2

1Department of Computer Science, School of EECS, Peking University
2Huawei Noah’s Ark Lab

3Huawei HiSilicon
{jhshen, mzhang_cs}@pku.edu.cn

{yinyichun, lilin29, shang.lifeng, jiang.xin, qun.liu}@huawei.com

Abstract

Math word problem (MWP) is a challenging
and critical task in natural language process-
ing. Many recent studies formalize MWP as a
generation task and have adopted sequence-to-
sequence models to transform problem descrip-
tions to mathematical expressions. However,
mathematical expressions are prone to minor
mistakes while the generation objective does
not explicitly handle such mistakes. To address
this limitation, we devise a new ranking task
for MWP and propose Generate & Rank, a
multi-task framework based on a generative
pre-trained language model. By joint train-
ing with generation and ranking, the model
learns from its own mistakes and is able to
distinguish between correct and incorrect ex-
pressions. Meanwhile, we perform tree-based
disturbance specially designed for MWP and an
online update to boost the ranker. We demon-
strate the effectiveness of our proposed method
on the benchmark and the results show that
our method consistently outperforms baselines
in all datasets. Particularly, in the classical
Math23k, our method is 7% (78.4%→ 85.4%)
higher than the state-of-the-art1.

1 Introduction

Solving math word problems (MWP) (Bobrow,
1964) is an important and fundamental task in nat-
ural language processing (NLP), which requires to
provide a solution expression given a mathematical
problem description, as illustrated in Table 1. Many
recent studies formalize MWP as a generation task
and commonly adopt LSTM-based sequence-to-
sequence (Seq2Seq) models (Wang et al., 2017,
2018b; Xie and Sun, 2019), where problem texts
are source sequences, mathematical expressions are
target sequences and the model learns the mapping

† This work is done when Jianhao Shen is an intern at
Huawei Noah’s Ark Lab

*Corresponding author
1Code could be found at https://github.com/

huawei-noah/noah-research

Original MWP
Problem A project is completed in 25 days by 12

workers. If it takes 20 days to complete,
how many workers will it take?

Solution 25 * 12 / 20
Number-mapped MWP

Problem A project is completed in NUM0 days by
NUM1 workers. If it takes NUM2 days to
complete, how many workers will it take?

Solution NUM0 * NUM1 / NUM2

Table 1: An example of MWP, where numbers are usu-
ally mapped to special tokens, such as Num0/1/2.

from source texts to target expressions. These stud-
ies have proposed numerous advanced techniques
to improve the MWP solver, but their performance
is still unsatisfactory yet.

We argue that it is not sufficient to model MWP
as only a generation task, because there is a sig-
nificant difference between mathematical expres-
sions and natural language sequences: one minor
mistake in a mathematical expression will change
the whole semantic thus lead to a wrong answer,
whereas natural language is more robust to such
minor mistakes. The objective function of the gen-
eration task is to maximize generation likelihood
on ground-truth expressions, which does not have
an explicit strategy to make the model learn to
distinguish between ground-truth and expressions
that have minor mistakes. In addition, previous
works (Liu et al., 2019a; Xie and Sun, 2019; Zhang
et al., 2020) find that the performance of generation
models degrades fast as the expression gets longer.

To handle the above problems, we propose Gen-
erate & Rank, a multi-task framework for MWP,
which introduces a new ranker to explicitly distin-
guish between correct and incorrect expressions.
Specifically, our framework includes two modules:
a generator and a ranker. The former is designed
to generate candidate expressions given a prob-
lem text and the latter aims to rank the candidate

https://github.com/huawei-noah/noah-research
https://github.com/huawei-noah/noah-research

2270

expressions. They are built based on an encoder-
decoder model and are jointly trained with genera-
tion loss and ranking loss. In this work, we build
our model based on BART (Lewis et al., 2020),
a widely used pre-trained language model that
achieves SOTA performance on various sequence-
to-sequence tasks (Ahmad et al., 2021; Liu et al.,
2020). During multi-task training, expressions pro-
duced by the generator are used to construct an
expression bank and train the ranker, in which
way the model can learn from its own mistakes.
To construct more informative candidates for the
ranker, we specially design tree-based disturbance
for MWP. We also introduce an online update mech-
anism to generate a new set of candidate expres-
sions at each training epoch. The overall train-
ing procedure is in an iterative manner, in which
the ranker and generator continue to enhance each
other.

To evaluate the effectiveness of the proposed
model, we conduct extensive experiments on the
datasets of Math23K (Wang et al., 2017) and
MAWPS (Koncel-Kedziorski et al., 2016). The
results show that our model outperforms typical
baselines. Particularly, we obtain an improvement
of 7% in the Math23K dataset that is extensively
studied. Moreover, we do ablation study and model
analysis, which shows that (1) joint training im-
proves the performance of the generator and ranker
over separate training; (2) both strategies of con-
structing candidate expressions and online updating
are important to the success of the ranker. We also
find that with the ranker, our model achieves a large
improvement in generation of long expressions.

The contributions of our work are two-fold: (1)
We propose Generate & Rank, a new multi-task
framework to train a pre-trained language model
for math word problem solving. To construct infor-
mative candidate expressions for the ranker, we pro-
pose two effective generation methods and also in-
troduce an online update strategy. (2) Experiments
show that our proposed model consistently outper-
forms the state-of-the-art models and achieves a
significant improvement on the Math23K dataset.

2 Preliminaries

2.1 Math Word Problem

A math word problem P is a sequence of word to-
kens and numeric values, which typically describes
a partial quantitative state of a world and some up-
dates or relationships among quantities, then asks a

question about an unknown quantity. The solution
S to the question is a mathematical expression that
consists of math operators and numbers. In solving
a math word problem, we usually do not care about
the specific number of a quantity, so the numbers
in problems and solution expressions are mapped
to special tokens NUM#i according to their orders
in the problem text. Table 1 gives an example of an
original math word problem and the corresponding
number-mapped problem.

2.2 BART
BART is a widely-used pre-trained language model.
It follows a standard encoder-decoder structure us-
ing Transformer layers (Vaswani et al., 2017) and
is pre-trained with text denoising tasks. The pre-
trained BART can be fine-tuned for tasks of se-
quence classification and generation.

Transformer-based Encoder-Decoder. BART
uses an encoder-decoder structure that is the
mainstream architecture for sequence-to-sequence
tasks. The encoder adopts the bidirectional self-
attention to map an input sequence of tokens P =
(x1, x2, . . . , xn) to a sequence of continuous rep-
resentations R = (r1, r2, . . . , rn). The BART en-
coder is composed of multiple Transformer layers,
each consists of a multi-head self-attention (MHA)
module and a fully connected feed-forward (FFN)
module. We denote the mapping function of the
BART encoder as follows:

(r1, r2, . . . , rn) = BARTEnc(x1, x2, . . . , xn)
(1)

The BART decoder also consists of multiple
Transformer layers. Besides MHA and FFN mod-
ules, the decoder layer adds another multi-head
attention over the output of the encoder. The de-
coder takes in one token si at a time, and gives an
output state based on the output of the encoder and
previous tokens in the decoder input. This output
state is then fed into a linear transformation fol-
lowed by a softmax function to get the predicted
next-token probabilities. This one-step decoding
process is denoted as follows:

P (∗) = softmax(diW + b) (2)

di = BARTDec(R; s0, s1, . . . , si−1), (3)

where s0 is a special [bos] token indicating the
start of decoding, and R is the output of encoder.

BART Pre-training. BART is pre-trained by the
tasks of recovering a corrupted document to orig-

2271

Task #1: Generating

Expression Ground-truthEn/Decoder Shared BART

Ranker

Task #2: Ranking

Generating Loss Ranking Loss
Expression

Expression

Expression

Generate

Candidates

Expression
Bank

Encoder

Problem
Problem

Disturb

Decoder

Score

DecoderEncoder

Multi-task Training

Expression Online Updating

Expression

+

Figure 1: Our proposed Generate & Rank framework for BART-based MWP solver. The model consists of a
generator and a ranker. They share BART encoder and decoder, and are jointly trained with generating loss and
ranking loss. We construct an expression bank for training the ranker with expressions produced by the generator
and ones obtained by tree-based disturbance. The expression bank is updated every epoch so that the model can
constantly learn from new informative examples.

inal one. The input to BART is corrupted in two
ways: (1) a number of text spans are replaced with a
single [MASK] token; (2) sentences in a document
are shuffled in a random order. The objective of
BART pre-training is to minimize the cross-entropy
loss between the decoder’s generation probabilities
and the ground-truth of original document.

3 Methodology

We propose Generate & Rank, a BART-based multi-
task framework for math word problems. Our
model consists of a generator and a ranker, which
share a BART model and are jointly trained with a
generating task and ranking task. The objective of
generating is to generate expressions given a math
word problem. We also add a ranking task so that
the model can select a correct expression from a
set of candidates. We construct an expression bank
to provide training examples for the ranker. Figure
1 shows our proposed framework and we introduce
details for each task and the whole framework in
the following sections.

3.1 Multi-task Training
Task #1: Generating. We first formulate the math
word problem as a sequence-to-sequence task, in
which BART is trained to generate solution ex-
pressions given a math word problem. Follow-
ing the fine-tuning strategy of BART (Lewis et al.,
2020), we take problem text, a sequence of tokens

P = (x1, x2, . . . , xn), as input to BART encoder,
and minimize negative log-likelihood of the solu-
tion expression S = (s1, s2, . . . , sm),

JGEN =
1

|D|
∑

(P,S)∈D

− log Pr(S|P), (4)

where the conditional probability is decomposed in
an auto-regressive way as:

Pr(S|P) =
m∏
i=1

Pr(si|P, Sj<i) (5)

Pr(∗|P, Sj<i) = softmax(diW + b) (6)

di = BARTDec(R;Sj<i) (7)

R = BARTEnc(P). (8)

Additionally, we add two special tokens s1 =[bos]
and sm =[eos] to indicate the start and end sym-
bols of decoding sequences.

Task #2: Ranking. Through generating, we obtain
many candidate solution expressions. To decide
which expression is a correct solution to the prob-
lem, we propose a ranking task which is essentially
a task of sequence pair classification. Given pairs
of problems and candidate expressions, the ranker
chooses the expression with highest ranking score
as the final solution to the problem. Specifically,
we add an MLP classifier on top of the final layer
hidden state of the last decoder token. The last

2272

decoder token is always a special [eos] token and
its corresponding hidden state can attend to all to-
ken representations of problem text and expression.
Same as the generation task, we feed the problem
text into the encoder and expression into the de-
coder, obtaining sequence representations. The last
decoder representation is then taken as input to the
classifier for ranking score prediction:

Pr(·|P, S) = softmax(d′
m+1) (9)

d′
m+1 = tanh(dm+1W1 + b1)W2 + b2

(10)

dm+1 = BARTDec(R;S), (11)

where R is the output of the encoder, S is the
expression token sequence, dm+1 is the decoder
representation of the last token, and W1|2 and b1|2
are trainable parameters. The training objective
of the ranker is cross-entropy between classifier
output and correct labels,

JRANK =− 1

|D+ ∪ D−|

[∑
(P,S)∈D+

log Pr(1|P, S)

+
∑

(P,S)∈D−

log Pr(0|P, S)
]

(12)
where D+ and D− are sets of positive and nega-
tive examples, respectively. We introduce how to
generate negative examples in the next section.

Optimization Objective. We train the model on
the joint loss of two tasks together:

J = JGEN + JRANK. (13)

and the two modules share BART parameters.

3.2 Expression Bank
By definition, any expression that does not equal
the ground-truth can serve as a negative example,
but we cannot use all of them due to limited com-
putational resources. To train the ranker efficiently,
we use two different strategies, namely model-
based generation and tree-based disturbance, to
construct an expression bank for ranker training.

Model-based Generation. The first strategy is
to produce new expressions with the generator.
Specifically, given a problem, we use beam search
with the generator to produce top-K expressions.
Each expression is labeled as positive or negative
depending on whether its calculation result equals
the result of ground-truth.

Tree-based Disturbance. Our second way to con-
struct new expressions is adding disturbance to
ground-truth expressions. We design four kinds of
disturbances which are illustrated in Figure 2. The
ground-truth expression is first transformed to an
abstract syntax tree (AST) (Liu et al., 2019a). Then
we disturb tree nodes or sub-structures to produce
new expressions in four ways: a) Expand. A leaf
node is expanded into a sub-tree with a new oper-
ation and a number. b) Edit. A node is randomly
changed to another while keeping the expression
valid (i.e., a number node will be changed to an-
other number, and an operator node to another op-
erator). c) Delete. Delete a leaf node and replace
its father with its sibling node. d) Swap. Swap the
left and right children of an operation node.

We use the above methods to construct the ex-
pression bank. Since new expressions may also
be correct (for example, swapping two operands
of addition or multiplication), we compare the nu-
merical results of newly obtained expressions with
that of the ground-truth, and add them to positive
or negative samples depending on the comparison.
Then both positive and negative pairs are sampled
from this expression bank for the multi-task train-
ing. In order to make the model learn with more
informative examples, we do an online update for
expression bank, which means that we use new ex-
pressions obtained by model-based generation and
tree-based disturbance at each training epoch.

/

+

+

NUM1 / (NUM2 + NUM3)

(NUM1 + NUM3) / (NUM2 + NUM3)

(a) Expand

NUM1 / (NUM2 - NUM3)

(b) Edit

NUM1 / NUM3

(c) Delete

(NUM2 + NUM3) / NUM1

(d) Swap

Ground-truth NUM1

NUM2 NUM3

/

+
NUM2 NUM3NUM3NUM1

/

-NUM1

NUM2 NUM3

/

NUM1 NUM3

/

+ NUM1

NUM2 NUM3

Figure 2: Overview of tree-based disturbance.

2273

Algorithm 1 Training Algorithm
Input: MWP Dataset D = {(P, S)}
Parameter: Pre-trained BART encoder and de-
coder parameters θe and θd, random initialized
ranker θv, beam size K, epoch number M

1: // Fine-tune the generator
2: for epoch = 1 to M do
3: Fine-tuning BART encoder θe and decoder

θd on D with generation loss Eq. (4).
4: end for
5: // Construct expression bank
6: D+ ← D, D− ← {}
7: for (P, S) ∈ D do
8: Generate top-K expressions {S̄i} for prob-

lem P with beam search
9: Get new expressions {S̄′

i} by adding tree-
based disturbance to S

10: {S̄i} ← {S̄i} ∪ {S̄′
i}

11: for S̄ ∈ {S̄i} do
12: if result of S̄ equals result of S then
13: D+ ← D+ ∪ {(P, S̄)}
14: else
15: D− ← D− ∪ {(P, S̄)}
16: end if
17: end for
18: end for
19: // Joint training
20: for epoch = 1 to M do
21: Train θe, θd, θv w.r.t. the joint loss Eq.(13)

on D+ and D−

22: Repeat lines 6-18 to reconstruct expression
bank

23: end for

3.3 Training Procedure

The training procedure includes multi-task train-
ing and expression online updating. We first fine-
tune the pre-trained BART for the generation task
(JGEN in Eq. 4). After that, we use the fine-tuned
BART and tree-based disturbance to generate ex-
pressions as the training samples for the ranker.
Then we do the joint training of generation and
ranking. This process is performed in an itera-
tive manner and the two modules (i.e., generator
and ranker) continue to enhance each other. Mean-
while, training examples for ranking are updated
after each epoch. We summarize the overall train-
ing procedure in Algorithm 1.

3.4 Model Inference

We perform a two-stage model inference, namely
generation and ranking. Specifically, given a new
problem text sequence P , we first pass it to the
encoder to get the problem representation R. Then
we perform the beam search to generate top-K ex-
pressions. These generated expressions are used as
candidate solutions for the ranker. All expressions
are passed to the ranker and that with the highest
score is selected as the final result.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct the experiments on two
commonly-used datasets: Math23K (Wang et al.,
2017) and MAWPS (Koncel-Kedziorski et al.,
2016). Math23K is a large-scale Chinese dataset
that contains 23,162 math word problems and their
corresponding expression solutions. MAWPS is a
English dataset containing 2,373 problems. All the
problems are one-unknown-variable linear prob-
lems and can be solved with a single expression.

Baselines. We compare our model with the follow-
ing baselines including the state-of-the-art models:
DNS (Wang et al., 2017) uses a vanilla Seq2Seq
model to generate expressions. Math-EN (Wang
et al., 2018b) uses the equation normalization to
avoid equation duplication problem. T-RNN (Wang
et al., 2019b) applies recursive neural networks
to model the tree structures of expressions. S-
Aligned (Chiang and Chen, 2019) tracks the se-
mantic meanings of operands with a stack during
decoding. Group-ATT (Li et al., 2019) leverages
the attention mechanism to enrich problem repre-
sentation. Both AST-Dec (Liu et al., 2019a) and
GTS (Xie and Sun, 2019) develop a tree-based de-
coder to generate expressions. Graph2Tree (Zhang
et al., 2020) proposes to build a quantity cell graph
and a comparison graph to better capture the quan-
tity relationships of the problem. Multi-E/D (Shen
and Jin, 2020) is an ensemble model which com-
bines multiple encoders and decoders.

Implementation Details. We use the PyTorch2

implementations and pre-trained language models
provided by the Transformers library3. Since the
Math23K dataset is a Chinese dataset and officially
released BART is only for English, we switch to

2https://pytorch.org/
3https://github.com/huggingface/

transformers

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

2274

mBART25 (Liu et al., 2020), which is a multilin-
gual BART for 25 languages including Chinese.
For the MAWPS dataset, we also use mBART25.
We optimize our model with AdamW (Loshchilov
and Hutter, 2019). The training hyperparameters
are set as follows. We set the batch size to 128, the
learning rate to 5e-5 and the warm-up ratio to 0.1.
The weight decay is set to 0.01. The number of
epochs M for fine-tuning and multi-task training
are set to 50. We set beam size K to 10 in beam
search and expression bank size to 20 unless oth-
erwise stated. All experiments are carried out on
NVIDIA Tesla V100. We use 8 GPUs for training
and 1 for testing. For our proposed framework, the
training time is 1.5 hours for one epoch and testing
time is 15 minutes for the whole test set.

Evaluation Metric. Both MAWPS and Math23K
are evaluated with a metric of “solution accuracy”,
that is, the expression is considered as correct if it
induces the same number as the ground-truth. For
the Math23K dataset, some baselines are evaluated
using the public available test set while others use
the results of 5-fold cross-validation. We report our
results on both settings. For the MAWPS dataset,
models are evaluated with 5-fold cross-validation.

4.2 Results and Analysis

Evaluation results of our model and baselines are
summarized in Table 2. We observe that: (1) di-
rect fine-tuning of mBART already outperforms the
state-of-the-art models on Math23K, which shows
the powerful generation ability of mBART. (2)
on MAWPS, mBART outperforms most Seq2Seq
baselines but is worse than GTS and Graph2Tree.
These two models leverage tree structure of expres-
sions during decoding which is critical for math
word problem solving. We believe that pre-trained
language models would achieve a better perfor-
mance if combined with structure information, and
we leave it as a future work4. (3) Generate &
Rank framework further improves mBART and
achieves new state-of-the-art results. In particu-
lar, Generate & Rank outperforms mBART base-
lines by more than 4% in all the evaluation set-
tings and also outperforms the previous best mod-
els by 7% on Math23K†, 7.4% on 5-fold cross-
validation Math23K‡. The improvement over pre-
trained mBART demonstrates the effectiveness of

4One may think that the sequence decoder might not al-
ways generate valid expressions. However, we check all ex-
pressions generated by mBART and find that 99.9% are valid.

our multi-task training framework.

Model Math23K† Math23K‡ MAWPS‡

DNS - 58.1 59.5
Math-EN 66.7 - 69.2
T-RNN 66.9 - 66.8
S-Aligned - 65.8 -
Group-ATT 69.5 66.9 76.1
AST-Dec 69.0 - -
GTS 75.6 74.3 82.6
Graph2Tree 77.4 75.5 83.7
Multi-E/D 78.4 76.9 -
mBART 80.8 80.0 80.1
Generate & Rank 85.4 84.3 84.0

Table 2: Solution accuracy on MAWPS and Math23K.
† refers to the result of test set and ‡ denotes the result
of 5-fold cross-validation. “-” means that the results are
not reported in the original papers.

4.3 Ablation Study and Model Analysis
To better understand our model, we further con-
duct ablation study on Math23K to show how the
proposed components affect performance.

4.3.1 Effect of Joint Training
To investigate the effect of joint training, we intro-
duce the baseline of two-stage training (i.e., w/o
Joint), which means we first train the generator,
then train the ranker, and the modules are trained
independently. We also study the effect of joint
training on generation and perform comparison be-
tween mBART and our generator (i.e., w/o Ranker).
The results are listed in Table 3. We can see that the
joint training brings 2.2% improvement compared
with the two-stage training and 2.6% for the gen-
erator compared with the mBART trained alone,
suggesting that the joint training of generator and
ranker benefits each other. Besides, the joint train-
ing is more space efficient since we only need to
save one unified model rather than two.

Model Acc
Generate & Rank 85.4
w/o Joint 83.2
w/o Ranker 83.4
w/o both (mBART) 80.8

Table 3: Effect of joint training.

4.3.2 Effect of Expression Bank Strategy
We investigate the effect of different strategies to
construct the expression bank. Here we choose a
random sampling strategy as our baseline, where

2275

the set of expressions that appeared in the training
data is sampled as the expression bank. We eval-
uate different strategies with and without online
updating and summarize the results in Table 4.

Strategy Online w/o Online
Random Sample 75.2 69.7
Model 84.2 83.2
Model+Tree 85.4 83.1

Table 4: Accuracy for different expression bank strate-
gies. The expression bank size is 20 for all settings.

We can see that our strategies outperform the
random sampling strategy. Since the ground-truth
can not be accessed during model inference, we
cannot use the tree-based disturbance to generate
candidate expressions as in the training phase. This
discrepancy between training and inference leads to
poor performance if we only use tree-based distur-
bance to construct the expression bank. However,
combining the tree-based disturbance and model-
based generation strategies, we can obtain better re-
sults than the only model-based generation, which
gives evidence that the tree-based disturbance con-
tains some informative examples that the generator
does not cover and it is possible to improve the per-
formance based on the human knowledge of math
expression.

We can also see that strategies have a perfor-
mance drop without online updating. We conjec-
ture that without online updating the ranker may
tend to memorize existing negative expressions
thus generalize poorly on new problems. As for
strategies with model-based generation, there is an-
other possible reason: the generator keeps updating
during multi-task training, so the previously gener-
ated expressions are no longer good samples of the
current model, and newly generated expressions are
more informative. To summarize, both strategies
of constructing the expressions bank and online
updating play an important role in the success of
the ranker.

4.3.3 Impact of Expression Bank Size
We further analyze the impact of expression bank
size on the ranker and results are shown in Figure 3.
If the model-based generation is used, performance
reaches the best at expression bank size 20. This
suggests that the expression bank size should not
be too small nor too large. One possible reason
may be that the generated expressions cannot cover

#Op Pro AST-Dec G2T mBART Generate & Rank
1 17.3 82.7 85.5 90.2 90.8 (+0.6)
2 52.2 74.5 83.7 88.1 90.2 (+2.1)
3 19.1 59.9 71.7 71.2 79.1 (+7.9)
4 6.6 42.4 51.5 53.0 63.6 (+10.6)
5 3.4 44.1 38.2 41.2 58.8 (+17.6)
6 0.9 55.6 55.6 55.6 88.8 (+33.2)

Table 5: Accuracy for increasing length of expressions.
#Op is the number of operations in expressions. Pro
denotes proportion of expressions with different lengths.

possible mistakes when the expression bank is too
small, and when the expression bank is too large,
low-quality expressions may be generated and hin-
der ranker training. Tree-based disturbance has a
similar trend and the best bank size is 10.

Figure 3: Accuracy with different expression bank sizes
from 5 to 30.

4.3.4 Model Analysis
In Table 5, we list how the model accuracy changes
with respect to the number of operations in expres-
sions. We do not discuss the case of 6 operators
since it has too few examples and high variance.
For expressions less than 6 operators, all models
perform worse when the expression gets longer.
This is as expected since longer expressions re-
quire more steps of reasoning and have less data to
train. In addition, we also observe that Generate
& Rank training has larger improvement over fine-
tuned mBART on longer expressions. This implies
that our model is more suitable to handle complex
problems and expressions.

Following Liu et al. (2019a), we also examine
the performance of our model in different domains.
The domain of each problem is defined by whether
it contains any keywords of this domain and we

2276

use the same keyword list as Liu et al. (2019a).
Table 6 shows the results. We observe the similar
pattern that the fine-tuned mBART has limitations
in geometry which requires external knowledge
such as formulas for the circumference and area of
a circle. Interestingly, our proposed model mainly
improves on these domains. This suggests that the
ranking task may be a better choice to learn and
use mathematical knowledge than generating.

Domain Pro mBART Generate & Rank
Distance & Speed 11.8 83.9 83.9
Tracing 2.7 85.2 85.2
Engineering 5.8 86.2 87.9
Interval 0.6 66.7 66.7
Circle Geometry 1.9 73.7 78.9
Plane Geometry 1.2 75.0 83.3
Profit 1.1 72.7 72.7
Solid Geometry 1.6 81.3 87.5
Interest Rate 0.9 100.0 100.0
Production 0.4 100.0 100.0

Table 6: Accuracy for different problem domains. Pro
denotes the proportion of each domain in the test data.
Note that the sum of proportion is not 100% since there
are problems not belonging to any specified domain.

5 Related Work

5.1 Math Word Problem

Rule-based methods. Early approaches on math
word problems mainly craft rules and templates
for pattern matching (Bobrow, 1964; Slagle, 1965;
Fletcher, 1985; Bakman, 2007). These methods
rely heavily on manual design and can only solve a
limited scope of problems.

Parsing-based methods. Later on, researchers
use statistical methods to solve MWP and achieve
a great performance improvement. One line of
research focuses on semantic parsing, which lever-
ages traditional machine learning techniques to
identify entities, quantities, and operators from the
problem text. Roy et al. (2015) proposes three
types of classifiers to identify different elements of
problems. ARIS (Hosseini et al., 2014) splits the
problem into fragments and updates a logic tem-
plate named state by verb categorization. Other
works (Sundaram and Khemani, 2015; Mitra and
Baral, 2016; Liang et al., 2016) follow a similar
process with different templates and annotations.

Two-stage methods. Another research line first
obtains an expression template then maps numbers
to the template slots. Kushman et al. (2014) train

a classifier to select from a set of pre-defined tem-
plates. Roy and Roth (2015) propose to construct
candidate expressions in a bottom-up manner and
train a global scoring function to guide the beam
search process. ALGES (Koncel-Kedziorski et al.,
2015) converts the process of searching valid ex-
pressions to an integer linear programming prob-
lem and adopts a different scoring function. Unit-
Dep (Roy and Roth, 2017) proposes Unit Depen-
dency Graph to enhance the scoring function.

Deep learning methods. Recently, deep learning
models have become prevailing methods for math
word problems. DNS (Wang et al., 2017) is the
first to apply vanilla RNN-based models to MWP.
Math-EN (Wang et al., 2018b) introduces equation
normalization and compares three Seq2Seq mod-
els on MWP solving. Group-ATT (Li et al., 2019)
uses multi-head attention to capture different as-
pects of features. Some works also leverage tree
structures and graph information to improve per-
formance (Wang et al., 2019b; Chiang and Chen,
2019; Liu et al., 2019a; Xie and Sun, 2019; Zhang
et al., 2020). Shen and Jin (2020) propose a model
of multi-encoders and multi-decoders.

5.2 Pre-trained Language Model

Pre-trained language models have obtained state-
of-the-art results in many NLP benchmarks (Wang
et al., 2018a, 2019a). These models are usually
based on Transformer layers (Vaswani et al., 2017)
and trained on large corpus with self-supervised
tasks. According to their architectures, pre-trained
language models can be categorized into three
types: encoder-only, decoder-only and encoder-
decoder models. BERT (Devlin et al., 2019) is an
encoder-only model which firstly proposes masked
token prediction and next sentence prediction to
train a language representation model. Follow-
ing this, many other models are proposed like
RoBERTa (Liu et al., 2019b) and SpanBERT (Joshi
et al., 2020). Decoder-only models are typically
auto-regressive models trained to estimate the prob-
ability distribution of a text corpus, including
GPT2 (Radford et al., 2019), GPT3 (Brown et al.,
2020) and XLNet (Yang et al., 2019). Encoder-
decoder models like BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020) use the encoder-decoder ar-
chitecture and are trained on sequence-to-sequence
tasks such as text denoising and translation.

2277

6 Conclusion and Future Work

We propose Generate & Rank, a new multi-task
framework for math word problems. Specifically,
our model has a generator and a ranker which en-
hance each other with joint training. We also use
tree-based disturbance and online update to further
improve the performance. The experimental results
on the benchmark show that our work consistently
outperforms baselines in all datasets. In future
work, we will explore the generation and ranking
framework to other tasks like summarization and
translation.

Acknowledgements

This paper is partially supported by National Key
Research and Development Program of China with
Grant No. 2018AAA0101900/2018AAA0101902
as well as the National Natural Science Foundation
of China (NSFC Grant No. 62106008 and No.
61772039).

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2021. Unified pre-training for
program understanding and generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics.

Yefim Bakman. 2007. Robust Understanding
of Word Problems with Extraneous Information.
arXiv:math/0701393.

Daniel G. Bobrow. 1964. Natural Language Input for a
Computer Problem Solving System.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs].

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-Aligned Equation Generation
for Solving and Reasoning Math Word Problems.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2656–2668.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Charles R. Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, & Comput-
ers, 17(5):565–571.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to Solve
Arithmetic Word Problems with Verb Categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association
for Computational Linguistics, 8(0):64–77.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing Algebraic Word Problems into Equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A Math Word Problem Repository. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to Automatically
Solve Algebra Word Problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling Intra-
Relation in Math Word Problems with Different Func-
tional Multi-Head Attentions. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6162–6167.

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang,
Chung-Min Li, Shen-Yu Miao, and Keh-Yih Su. 2016.

http://arxiv.org/abs/math/0701393
http://arxiv.org/abs/math/0701393
https://dspace.mit.edu/handle/1721.1/6903
https://dspace.mit.edu/handle/1721.1/6903
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3758/BF03207654
https://doi.org/10.3758/BF03207654
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619

2278

A tag-based statistical English math word problem
solver with understanding, reasoning and explana-
tion. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI’16, pages 4254–4255.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured Decoding for
Solving Math Word Problems. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual Denoising
Pre-training for Neural Machine Translation. Trans-
actions of the Association for Computational Linguis-
tics, 8(0):726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Arindam Mitra and Chitta Baral. 2016. Learning To
Use Formulas To Solve Simple Arithmetic Problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144–2153.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research,
21(140):1–67.

Subhro Roy and Dan Roth. 2015. Solving General
Arithmetic Word Problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752.

Subhro Roy and Dan Roth. 2017. Unit Dependency
Graph and Its Application to Arithmetic Word Prob-
lem Solving. Proceedings of the AAAI Conference
on Artificial Intelligence, 31(1).

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about Quantities in Natural Language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

Yibin Shen and Cheqing Jin. 2020. Solving Math Word
Problems with Multi-Encoders and Multi-Decoders.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2924–2934.

James R. Slagle. 1965. Experiments with a deductive
question-answering program. Communications of
the ACM, 8(12):792–798.

Sowmya S Sundaram and Deepak Khemani. 2015. Nat-
ural Language Processing for Solving Simple Word
Problems. In Proceedings of the 12th International
Conference on Natural Language Processing, pages
394–402.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, pages
3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018b. Translating a Math Word
Problem to a Expression Tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing
Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. 2019b. Template-Based Math Word Problem
Solvers with Recursive Neural Networks. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
33(01):7144–7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854.

Zhipeng Xie and Shichao Sun. 2019. A Goal-Driven
Tree-Structured Neural Model for Math Word Prob-
lems. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence,
pages 5299–5305.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.

https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://transacl.org/ojs/index.php/tacl/article/view/2107
https://transacl.org/ojs/index.php/tacl/article/view/2107
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/P16-1202
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://ojs.aaai.org/index.php/AAAI/article/view/10959
https://ojs.aaai.org/index.php/AAAI/article/view/10959
https://ojs.aaai.org/index.php/AAAI/article/view/10959
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.1145/365691.365960
https://doi.org/10.1145/365691.365960
https://www.aclweb.org/anthology/W15-5955
https://www.aclweb.org/anthology/W15-5955
https://www.aclweb.org/anthology/W15-5955
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736

2279

Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 5754–
5764.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
Tree Learning for Solving Math Word Problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937.

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

