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Abstract

Recently, sponsored search has become one
of the most lucrative channels for market-
ing. As the fundamental basis of sponsored
search, relevance modeling has attracted in-
creasing attention due to the tremendous prac-
tical value. Most existing methods solely rely
on the query-keyword pairs. However, key-
words are usually short texts with scarce se-
mantic information, which may not precisely
reflect the underlying advertising intents. In
this paper, we investigate the novel prob-
lem of advertiser-aware relevance modeling,
which leverages the advertisers’ information to
bridge the gap between the search intents and
advertising purposes. Our motivation lies in
incorporating the unsupervised bidding behav-
iors as the complementary graphs to learn de-
sirable advertiser representations. We further
propose a Bidding-Graph augmented Triple-
based Relevance model BGTR with three tow-
ers to deeply fuse the bidding graphs and se-
mantic textual data. Empirically, we evalu-
ate the BGTR model over a large industry
dataset, and the experimental results consis-
tently demonstrate its superiority.

1 Introduction

Large commercial search engines typically provide
organic web results in response to user queries and
then supplement with sponsored ads. Advertisers
can bid on keywords so that their ads show up when
people are looking for exactly the kind of things
they sell. As the fundamental component of spon-
sored search systems, relevance model measures
the semantic closeness between an input query and
a candidate keyword, which is capable of improv-
ing the user experience and driving revenue for the
advertisers (Ling et al., 2017).

Existing relevance models can be roughly catego-
rized into two sets: one-tower and two-tower struc-
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Query Keyword Advertiser Label
apple pie merchant apple pie target.com  Good
apple pie merchant apple pie delish.com Bad

amazon.com Good
petco.com Bad

salt water fish
salt water fish

salt water fishing
salt water fishing

Table 1: Two pairs of representative examples to show
same query-keyword pair may have different relevance
meanings given different advertisers.

tures. One-tower structure learns the joint embed-
ding of the concatenated query-keyword text, while
the two-tower structure generates the query embed-
ding and keyword embedding separately. The core
components are query/keyword encoders, which
are implemented as the powerful Natural Language
Understanding (NLU) models to capture the seman-
tic correlations inside the query-keyword pairs.

Although SOTA relevance models achieve im-
pressive performance on the off-line evaluation, the
complaints from advertisers are constantly emerg-
ing on the on-line industry platform. Based on
the complaints collected by a popular commercial
search engine, we found that the main reason lies
in that the bid keywords may not precisely reflect
the advertising purposes. To attract more interests
and traffics from the search engine, advertisers may
bid the shorten or unstructured texts as the key-
words. Table 1 shows two pairs of representative
examples. Within the first example, two adver-
tisers “target.com” and “delish.com” both bid the
keyword “apple pie”. Given an input query “apple
pie merchant”, relevance models select keyword
“apple pie” based on the semantic closeness and dis-
play ads from these two advertisers on the search
result page. However, “delish.com” is a recipe
website providing cooking guides instead of selling
foods, leading to the mismatch between the search
intent and advertising purpose. Similar issue hap-
pens in the second example as petco.com, a pet
store, which does not sell the fishing tools. Same
query-keyword pairs may have different relevance
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Figure 1: The illustration of the bidding graphs.

meanings given different advertisers. Thus, it is
crucial to explore the information of advertisers to
better understand the underlying advertising pur-
pose and bridge the gap between the search and
advertising intents.

Different from traditional relevance models
which solely rely on the query-keyword pairs, in
this paper we investigate the novel problem of
triple-based (i.e., query-keyword-advertiser) rel-
evance modeling. Two critical challenges need to
be addressed. Firstly, existing approaches usually
learn the keyword representations by encoding the
semantic text, which obtain identical embeddings
for the same keywords. However, as discussed
above, same keywords may have different mean-
ings given different advertisers (e.g., keyword “ap-
ple pie” bid by “delish.com” is more similar to
“apple pie recipe”). Hence, the keyword represen-
tations should be advertiser-aware. Secondly, how
to learn the desirable representations for the adver-
tisers is not straight-forward. Information from the
domain URL is too obscure to indicate the intrinsic
features of the advertisers (e.g., it is troublesome
to interpret the URL “indeed.com ” as a job seek-
ing website literally). The homepages are full of
various HTML elements and commodities, and ex-
tracting useful information from such noisy data is
non-trivial. External knowledge graph (e.g., Free-
base) may also not be a good solution as many
small businesses are not included, leading to the
comparatively lower coverage rate.

In this paper, we propose to leverage the bidding
behaviors of advertisers to learn the quality repre-
sentations beyond the semantic texts. As shown
in the left part of Figure 1, orders are placed by
advertisers to the search engine, which contain a
set of keywords belonging to the same category.
Three components (advertisers, orders and key-

words) can naturally form two types of bidding
graphs: the co-order graph and the ad-keyword
graph. For each advertiser, we construct a homo-
geneous co-order graph, in which nodes are the
keywords bid by this advertiser and the edges de-
note the co-order relationships. These co-order
graphs facilitate the learning of advertiser-aware
keyword representations. For example, as shown
in Figure 1, with the co-order keywords “apple pie
menu” and “pie recipe”, we can understand the
keyword “apple pie” bid by “delish.com” refers
to recipes. The ad-keyword graph is a bipartite
graph contains two types of nodes: advertisers
and keywords, in which nodes are connected by
the bidding behaviors. Our insight lies in the phe-
nomenon of homophily as advertisers with similar
bid keywords are also tend to be similar, which
can be leveraged to learn quality advertiser repre-
sentation with high converge rate. Based on these
observations, we further propose a Bidding-Graph
augmented Triple-based Relevance model BGTR,
which includes three towers: the query encoder,
the keyword encoder and the advertiser encoder.
BGTR model is capable of deeply fusing the se-
mantic textual information and the bidding graphs.
Experimental results on the large industry dataset
demonstrate that our proposal can effectively im-
prove the performance of relevance modeling.

We summarize the main contributions of this
paper as follows.

* We study the novel problem of advertiser-
aware relevance modeling, which is a criti-
cal challenge in the industry area but rarely
explored yet.

* We propose to leverage the bidding graphs
as complementary to enrich the semantic in-
formation. A triple-based model BGTR is
proposed to effectively fuse textual data and
bidding graphs.

* Extensively, we evaluate our proposed model
on a large industry dataset. Experimental re-
sults demonstrate the superior performance of
the proposed BGTR model.

2 Problem Definition

In this section, we will formally define the stud-
ied problem. Different from traditional query-
keyword based methods, here we introduce the
definition of “advertiser” to form up the triple:
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Figure 2: The framework of BGTR model.

Z = {< gqi,ki,a; >}, in which ¢; denotes the
input query, k; denotes the keyword and a; is an
advertiser who bid the keyword k;. For each adver-
tiser a;, its corresponding co-order graph is de-
fined as O; = {K;,E;}, in which K; denotes
the set of keywords bid by a;. E; € NK:lx/Kil
is the adjacency matrix, which includes the co-
order relationships between different keywords.
The ad-keyword graph is defined as a bipartite
graph: G = {A,K,E}, in which A and K de-
note the whole set of advertisers and keywords,
respectively. E € NIAIXIK| i the adjacency ma-
trix, which includes the bidding signals between
advertisers and keywords. We aim to learn a clas-
sifier f: (¢, ki, a;) — {0, 1} by fusing the ground
truth set and the bidding graphs O; and G.

3 Methodology

3.1 Framework

Figure 2 exhibits the framework of the proposed
BGTR model, which is an extension of the two-
tower models (e.g., C-DSSM (Gao et al., 2015)
and TwinBERT (Lu et al., 2020)). The embed-
dings of query, keyword and advertiser are learned
separately. As there exist millions of candidate
keywords and advertisers, it is impracticable to
use a single text encoder (e.g., BERT) to com-
pute the similarity between a search query and
each keyword-advertiser pair one-by-one (Lu et al.,
2020). Hence, the triple-tower structure is a fea-
sible choice for online serving as we could pre-
compute the keyword and advertiser representa-
tions in advance. When a query comes, we can

easily generate its embedding and calculate the
similarities between the input query embedding
and cached representations of keywords and adver-
tisers.

3.2 Query Encoder

Query encoder aims to learn the quality represen-
tation for the input query g; to capture the search
intents accurately. Because queries are input by
the search engine users and irrelevant to the bid-
ding behaviors, query encoder solely relies on the
semantic texts inside the input query, which can
be implemented as any layer-wise text encoding
models. Here we select the powerful BERT model
as the query encoder. The input query is first tok-
enized using the BERT WordPiece tokenizer (Wu
et al., 2016). For each token within the input se-
quence, the initial embedding is acquired with the
summation of its token embedding and positional
embedding. Then, these initial embeddings are fed
into the transformer encoder layers to obtain a se-
quence of embedding vectors corresponding to the
tokens in the input query. Finally, we take the final
hidden vector of [CLS] token as the final query
representation following TwinBERT model.

3.3 Adpvertiser-aware Keyword Encoder

Traditional keyword encoders learn the represen-
tations solely rely on the text of the input key-
word k;. However, keywords are usually quite
short with scarce semantic information, which are
insufficient to precisely depict the advertising in-
tents. Besides, the keyword representations should
be advertiser-aware as discussed in the introduc-
tion section. Given the input tuple < ¢;, k;, a; >,
we propose to incorporate the co-order graph O;
of advertiser a; as complementary information to
learn quality advertiser-aware representation for
the keyword k;. On the one hand, keywords within
the same order placed by an advertiser tend to
depict the similar advertising intents, which can
provide more abundant semantic information com-
pared with a single sentence. On the other hand,
given advertisers with different backgrounds, the
co-order neighbors of the same keyword also tend
to be different. Leveraging such advertiser-specific
information can learn distinct representations for
the same keyword bid by different advertisers.
Graph Neural Networks (GNNs) (Velickovié
et al., 2017; Hamilton et al., 2017) are widely ap-
plied on graph structural data with promising per-
formance. In most GNN models, the node features
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Figure 3: The illustration of a single layer in advertiser-
aware keyword encoder.

are pre-trained and fixed in the training phase. Re-
cently, several approaches are proposed to co-train
both text encoders and GNN parameters to bet-
ter fuse the textual data and graph topology (Zhu
et al., 2021; Zhang et al., 2020; Li et al., 2021;
Yang et al., 2021). Text in each node is firstly en-
coded into the a textual embedding vector through
a multiple-layer NLU model, and then the textual
embeddings of neighbor nodes are aggregated into
the center node following the guidance of topology
connections. This cascaded workflow is essentially
a loosely coupled framework as the node can not
make reference to its neighborhood while encoding
its own textual feature, leading to the inferior node
representations.

Here we aim to deeply fuse the semantics inside
the keyword with its co-order neighborhood. Our
insight lies in that in the text-encoding layers, each
token can not only attend to other tokens within
the center node, but also attend to tokens in its
neighbors. We propose to utilize the embedding
of a special token as the intermediate to efficiently
pass messages between center node and its neigh-
bors. Given the input keyword k; and its neighbor
set kn;, the texts are tokenized using the BERT
WordPiece tokenizer (Wu et al., 2016). After that,
a [CLS] token is padded in the front of tokens in
each sentence, whose embedding is viewed as the
representation of the belonging sentence. As shown
in Figure 3, each layer in the adaptive keyword en-
coder includes two components: intra-node passing
and inter-node passing.

3.3.1 Inter-Node Passing

Inter-node passing aims to convey information
among nodes through the co-order relations. Nota-

tion mg-) denotes the embedding of the j-th token

in the ¢-th node in the layer /. Index ¢ is set to O for
the center node and 5 = ¢ means this is the embed-
ding of [CLS] token. In the /-th layer, [CLS] token
embeddings mgi_l) of all the nodes are firstly col-
lected and gathered together as an inter-node matrix
MY € RVHDxdn in which N is the number
of neighbors and dj, denotes the dimension of latent
embedding. Then, the multi-head graph attention
is employed on the matrix M. to exchange in-
formation between [CLS] embeddings of different
nodes. For an arbitrary attention head, inter-node
passing is defined as:

MUY = softmax
Vv,

Q&l_l)Kg_l)T>

where

QY — Mgfl)ngl),

K- = M((:z—1)wgl<;1), )
-1 -1 -1

vy —mwily,

in which matrices Wg;l), W%Zl),wgzl) €
R *dn denote the trainable variables. The inter-
node message passing allows the reciprocal inter-
change among the co-order keywords, which en-
sures the topological information is properly en-

coded into the generated [CLS] embeddings.

3.3.2 Intra-Node Passing

Then the topology-preserving [CLS] embeddings

' in the generated matrix MEH) are dis-

c
patched to the corresponding nodes. For the
(=1

node ¢, we can obtain a matrix M;

[mz('f;l)7 mzﬁ(l]*l)7 . 7m§£;1)]T e RO+Dxdn py
combining the topology augmented [CLS] embed-
ding rhl(ifl)
mg-_l). Then, similar to the inter-node passing,
we also employ the multi-head attentions on this

matrix as follows:

and the textual token embeddings

(I=1) g (=) T
M = softmax QK vy,
7 \/ﬁ 1
(3)
where
QI — M(l_l)Wg_l)
KD pp-Ow oy @
-1 ~e(l—1) xp (1-1
vty loy
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in which matrices Wg_l), W%_l) , Wg_l) S
R *dn denote the trainable variables in the I-th
layer. A straight-forward strategy is to concatenate
the texts from all the nodes as a long sentence, and
then feed it into the BERT model. Such a long sen-
tence will lead to the low efficiency of the BERT
encoders. Also it is intractable to distinguish the
tokens from the center node or its neighbors. In
the intra-node passing phase, each textual token
will attend to the topology-preserving [CLS] token,
which means the semantic information from other
nodes is also incorporated indirectly. In addition,
[CLS] token also collects information from the tex-
tual tokens within the same node, which can be
used in the inter-node passing phase of next layer.

Multiple layers of inter-node passing and intra-
node passing are alternately deployed. The [CLS]
embedding of the input keyword in the last layer
is outputted as the final representation. Assume
each node has s tokens and there exist £ nodes. The
attended field sizes of inter-node passing and intra-
node passing are ¢ and s + 1 respectively, which
is significantly less than the directly concatenating
approach (each token will attend to (¢ x (s + 1))
tokens). This intermediate based structure ensures
the adaptive keyword encoder not only can deeply
fuse the textual information and co-order graph,
but also can maintain the model efficiency.

3.4 Disentangled Advertiser Encoder

In this subsection, we will introduce the details of
the advertiser encoder. Different from the straight-
forward approaches like URL, homepage or ex-
ternal knowledge graph, the ad-keyword graph G
is introduced to learn the desirable advertiser rep-
resentations. The bipartite graph G contains two
types of nodes (advertisers and keywords) and the
bidding relationships among the nodes. Our moti-
vation is that advertisers with similar bid keywords
are also tend to be similar. As a single advertiser
may bid thousands of keywords, this bidding graph
can be very huge. It is infeasible to co-train the
advertiser encoder along with other two towers.
Here we propose to learn the advertiser embed-
dings based on the unsupervised link prediction
task, and then view them as trainable embeddings
in the downstream relevance modeling task.
Existing GNN models use weighted aggregation
of neighborhood information as the enrichment to
the center node. In the ad-keyword graph, adver-
tisers may bid various keywords due to the great

diversity of advertising intents. The bidding in-
teractions are latently generated from highly so-
phisticated intent factors. Learning embeddings
that reveal and disentangle these latent intent fac-
tors can enhance the expressiveness. Firstly, we
formally define the disentangled representations.
Assume there exist 7' latent factors, we expect
that the learned embeddings of advertisers and
keywords are composed of 7T' independent com-
ponents: h, = [241,242, - ,2q7| and hy =
(2k1,2k2, - ,2k,7]. Each component measures
the correlation between the ¢-th aspect of the ad-
vertiser or keyword and the ¢-th latent factor. As
the advertiser embeddings are the learning targets,
next we will introduce the learning details of h,,.
The feature vector of advertisers are randomly
initialized as v,. For the keywords, we utilize the
efficient convolutional neural network (CNN) to
learn the textual embedding v as BERT is too
expensive to handle such a large number of short
texts. Given an advertiser a along with one of her
bid keywords k, we first use a projection matrix
‘W, to map these feature vectors into the ¢-th factor
related subspace:
50 _ o(W{v,)
“E lo(WeTva)ll2
Slg()z _ g (W;r Vk)
T e (WeTvi)ll2

&)

in which the superscript 0 denotes the 0-th layer
and o is the activation function.

After that, in the [-th layer, we need to uncover
the the probability p, . ; that the advertiser a bids
the keyword k due to the ¢-th factor, which is de-
fined as follows:

(ORINO)

0 = exXp(Sqt Spy) ©)
a,k,t
Sy exp(sy) ' si)

Then, information from all the keywords k; bid
by the advertiser a will be weighted aggregated to
provide subspace-specific complementary:

l l l
(+1) S‘(I; + Zkz pl(l,)kmtsl(fi),t

a,t - l l [
188 + 55, 2, 12

(7

This single disentangled layer can be stacked to
capture the high-order topology information. The
outputs from the top layer are viewed as the final
representations:

Zag =Sy )
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Finally, we use the dot product to measure whether
an advertiser will bid a keyword:

Yo = h, hy, )

The unsupervised training objective function
should encourage nearby nodes to have similar rep-
resentations, while enforcing that the representa-
tions of disparate nodes are highly distinct:

Loe = —log(o(h, hy)) — log(o(~h, hy))
(10)
in which £ is the keyword bid by the advertiser a
and k is the negative samples which are topological
far from a. The learned advertiser representations
will be fed into the matching layer and updated by
the relevance modeling loss.

3.5 Matching layer

Embeddings learned from above three towers are
fed into the matching layer to get the final classifi-
cation outputs. Here we implement the matching
layer as a multi-layer perceptron (MLP) following
previous works (Lu et al., 2020; Zhu et al., 2021;
Lietal., 2016).

3.6 Objective Function

The output vector from the matching layer is de-
noted as y’ € R'*2, which contains the predicted
probabilities of the input tuple is relevant or not.
Cross-entropy is selected as the loss function as
follows:

L= Z cross(y,y’),

z€L

(1)
cross(y,y’) = — Z yilog(ys).

4 Experiments

In this section, we extensively evaluate the pro-
posed BGTR model over an industry dataset. In
section 4.1, we present the statistics of the dataset
and training details. Then we go through several
SOTA baseline models in section 4.2. Section 4.3
exhibits the overall performance of BGTR and base-
line models. Section 4.4 conducts two ablation
studies to investigate the effectiveness of different
GNN aggregation strategies and the disentangled
advertiser encoder part. Finally, we study the per-
formance sensitivities of BGTR on the neighbor
sampling strategies and the neighbor numbers.

Positive Negative All
Training 90,536 43,405 133,941
Validation 11,162 5,566 16,728
Test 10,366 4,928 15,294

Table 2: Statistics of the relevance modeling dataset.

4.1 Dataset and Training Details

The proposed BGTR model is extensively evalu-
ated on a real-world industry dataset. Compared
with the query-keyword pairs, it is more difficult
to manually label the query-keyword-advertiser tu-
ples as the annotators should be familiar with the
background of advertisers. Thus, we adopt a two-
stage annotating pipeline. In the first stage, each
training sample will be labeled by 10 junior an-
notators. If the positive and negative scores are
similar, the sample will be further labeled by 5 se-
nior annotators. Finally, we achieve a dataset with
165,963 samples. As far as we know, this is the first
triple-based dataset for relevance modeling, which
is also much larger than the publicly available pair-
based datasets (e.g., 32,000 for ESR! and 30,000
for MSLR ?). As shown in Table 2, one can clearly
see that this dataset is highly imbalanced. Thus, we
select ROC-AUC score as the metric, which mea-
sures the size of area under the Receiver Operating
Characteristic curve.

For the experimental settings, we use “Bert-base-
uncased” in the huggingface® as the pre-trained
BERT model. We save the checkpoints with best
validation performance and then report their results
on the test set. The number of training epochs is
set to 10, and the size of minimal training batch is
set to 64. Learning rate is set to le-5. In order to
avoid the overfitting, we add the L2 regularization
with the coefficient as 0.001. Model training is
conducted on a Nvidia V100 GPU.

4.2 Baseline Models

We select several state-of-the-art methods as the
baseline models in our experiments. These mod-
els can be divided into three categories: semantic-
based models, naive GNNs and hybrid models.

Semantic-based models only capture semantic
similarity inside the query-keyword pair without
considering bidding graphs:

"https://data.world/crowdflower/ecommerce-search-
relevance

“https://www.microsoft.com/en-us/research/project/mslr/
3https://github.com/huggingface/transformers/
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Model ROC-AUC Aggregation strategy  with AE~ w/o AE
GAT 0.722 LSTM 0.801 0.799
GraphSAGE-Mean 0.721 Mean-pooling 0.801 0.799
GraphSAGE-LSTM 0.727 Self-attention 0.802 0.800
C_,DSSM 0.773 Table 4: Ablation studies on the aggregation strat-
_TmeERT 0.796 egy and advertiser encoder (AE). The presented perfor-
TwinBERT + URL 0.795 mance metric is ROC-AUC.
TextGNN 0.797
BGTR 0.801 e TextGNN (Zhu et al., 2021) fuses the text and

Table 3: Experimental results of different relevance
models.

e C-DSSM (Shen et al., 2014a) is a la-
tent semantic model that incorporates a
convolutional-pooling structure over word se-
quences to learn representations for queries
and keywords.

e TwinBERT (Lu et al., 2020) is a two-tower
BERT-based model.

e TwinBERT + URL directly concatenates the
URL of advertiser and the text of the input
keyword, and then feeds the combined sen-
tence into the keyword-tower.

For the adaptive keyword encoder, we introduce
several popular GNN models to evaluate the effec-
tiveness of the proposed tightly coupled framework.
GNN models aggregate the pre-learned represen-
tations of co-order keywords as the final keyword
embedding. We select the following two popular
GNN models:

* GraphSAGE (Hamilton et al., 2017) aggre-
gates the information over sampled neighbors
and combines the aggregated information and
center node’s information together to generate
the node representations.

¢ GAT (Velickovié et al., 2017) introduces the
multi-head attention mechanism to assign dif-
ferent neighbors with different weights in ag-
gregation phase.

Hybrid models are capable of enjoying the mer-
its from both semantic data and graph topology, in
which BERT models and GNN models are jointly
optimized under a loosely-coupled framework.

graph information with a node-level aggrega-
tor. The keyword representation is first en-
coded by the BERT model, then combined
together with the neighbor representations
through a GAT model.

4.3 Experimental Results

Table 3 presents the ROC-AUC scores of the base-
line models along with the proposed BGTR model.
We repeat the training process three times and re-
port the average ROC-AUC scores.

From the results, one can clearly see that the
naive GNN models perform the worst. It may be
due to the node textual features are pre-learned and
fixed in the training phase, leading to the limited
expression capacity. For the semantic-based two-
tower models, TwinBERT outperforms C-DSSM
by nearly 2%. This is reasonable as pre-trained
models can provide a good starting point for the
downstream tasks that leads to much better per-
formance. It is worth noting that the performance
of TwinBERT + URL slightly drops as the texts
in the URLs are usually very obscure, which may
introduce noises into the model training. TextGNN
model outperforms semantic-based models, which
verifies the effectiveness of the bidding graphs. Our
proposed BGTR model outperforms the best base-
line model (TextGNN) by more that 0.4% as it can
effectively extract the valuable information of ad-
vertisers from the bidding graphs and tightly fuse
the graph topology with the semantic texts.

4.4 Ablation Study

Here we perform the ablation study to measure the
importance of different components in the proposed
model. Specifically, we study the effectiveness of
advertiser encoder and different aggregation strate-
gies in the inter-node passing process. Table 4
presents the results of ablation studies.
Aggregation Strategy. In the inter-node pass-
ing component of advertiser-aware keyword en-
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coder, we select the multi-head self-attention as
the aggregation strategy to fuse the neighborhood.
However, it is worthwhile to learn the performance
of other types of aggregation strategies. Here
we compare self-attention with mean-pooling and
LSTM used in GraphSAGE (Hamilton et al., 2017).
Results in Table 4 demonstrate that the proposed
framework is quite stable to different aggrega-
tion strategies, in which self-aggregation method
slightly outperforms others.

Advertiser Encoder. Here we aim to prove the
effectiveness of advertiser encoder. As shown in
Table 4, the performance of all models drop slightly
without the disentangled advertiser encoder. This
is due to the advertiser encoder can effectively fuse
the bidding behaviors into the representations, lead-
ing to the better understanding of the advertiser-
specific search intents.

4.5 Neighbor Sampling Analysis

Here we study the performance sensitivity of neigh-
bor sampling from two aspects: sampling strat-
egy and the number of neighbors. For the sam-
pling strategy, we select the ANN (Approximate
Nearest Neighbor) sampling and random sampling.
ANN sampling samples the most similar co-order
keywords based on their semantic closeness while
random sampling simply randomly samples neigh-
bors from co-order keyword set. The number of
neighbor nodes is set to [2,4,6,8,10] to evaluate
the model performance with different neighbors.
Figure 4 presents the results. One can clearly see
that with the increases of neighbor count, the per-
formance keeps increasing. This is reasonable as
more neighbors will bring abundant contextual in-
formation as complementary, yielding better model
performance. ANN performs better than random
sampling as ANN neighbors are more literately
similar to the center keyword, while random neigh-
bors may be unrelated keywords and may bring
noises to the final keyword representation.

5 Related Work

In this section, we will briefly summarize the re-
lated works of relevance modeling in sponsored
search. Traditional methods like LSA (Salakhutdi-
nov and Hinton, 2009), LDA (Blei et al., 2012) and
Bi-Lingual Topic Models (Gao et al., 2011) seek to
mapping sentences to low-dimensional continuous
vectors using shallow language representation mod-
els. Then the similarity can be calculated on this

0.801

0.800

AUC

0.799

ROC:

0.798

0.797

2 3 4 5 6

7 8 9 10
Sample numbers

Figure 4: Neighbor sampling analysis

latent space. In recent years, with the success of
deep learning in NLP area, deep semantic models,
especially the siamese structure models is adopted
in a range of works (Shen et al., 2014c,b; Hu et al.,
2015; Tai et al., 2015; Gao et al., 2017; Li et al.,
2017). Gao et al. (Gao et al., 2017) presents a deep
semantic similarity model for recommending target
documents to be of interest to a user based on a
source document that she is reading with special
convolutional-pooling structure. Some interaction-
based structure (Wan et al., 2015; Yin et al., 2015;
Yang et al., 2018) are also proven to be useful in
relevance modeling. Yang et al. (Yang et al., 2018)
propose an attention-based neural matching model
with value-shared weighting scheme for combining
different matching signals. Guo et.al. (Guo et al.,
2016) employs a joint deep architecture at the query
term level for relevance matching to bridge the gap
between semantic matching and relevance match-
ing. Mitra et al. (Mitra et al., 2017) propose a
document ranking model composed of two sepa-
rate deep networks that that matches the query and
the document on separate representations. Bai et al.
(Bai et al., 2018) propose query n-gram embedding
to improve the modeling of query-ad relevance. Gr-
bovic et al. (Grbovic and Cheng, 2018) propose
a real-time personalization in search ranking and
similar listing recommendations using listing and
user embedding techniques. Huang et al. (Huang
et al., 2020) design a unified embedding frame-
work to model semantic embeddings for person-
alized search with various tricks including ANN
parameter tuning and full-stack optimization.

6 Conclusion

In this paper, we thoroughly study the novel prob-
lem of advertiser-aware relevance modeling . The
bidding behaviors of advertiser are incorporated
to provide complementary information beyond the
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semantic texts. We propose a triple-tower based
model BGTR to deeply fuse the bidding graphs and
the semantic information. Our proposal is exten-
sively evaluated over an industry dataset, and the
results demonstrate the superiority of the BGTR
model.
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