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Abstract

Transformer-based pre-trained language mod-
els boost the performance of open-domain
dialogue systems. Prior works leverage
Transformer-based pre-trained language mod-
els to generate texts with desired attributes in
two general approaches: (1) gradient-based
methods: updating all latent representations
of pre-trained models with gradients from at-
tribute models; (2) weighted-decoding meth-
ods: re-ranking beam candidates from pre-
trained models with attribute functions. How-
ever, gradient-based methods lead to high com-
putation cost and can easily get overfitted on
small training sets, while weighted-decoding
methods are inherently constrained by the low-
variance high-bias pre-trained model. In this
work, we propose a novel approach to con-
trol the generation of Transformer-based pre-
trained language models: the SIDECONTROL
framework, which leverages a novel control at-
tributes loss to incorporate useful control sig-
nals, and is shown to perform well with very
limited training samples. We evaluate our pro-
posed method on two benchmark open-domain
dialogue datasets, and results show that the
SIDECONTROL framework has better control-
lability, higher generation quality and better
sample-efficiency than existing gradient-based
and weighted-decoding baselines. 1

1 Introduction

With the advance of Transformer-based pre-trained
language models (Radford et al., 2019; Raffel et al.,
2020; Brown et al., 2020; Zhang et al., 2020), many
dialogue systems (Zhang et al., 2020; Roller et al.,
2020; Shuster et al., 2020) have shown promising
performance in challenging open-domain conver-
sations with humans. However, for controlled di-
alogue generation, prior works mainly focus on
building LSTM-based class-conditional generative

1Our code implementation and data sources can
be found here: https://github.com/wyu-du/
Controlled-Dialogue-Generation.

model on specific datasets with task-specific design
on model architecture (Wen et al., 2015; Ke et al.,
2018; Chen et al., 2019; See et al., 2019) or policy
learning strategy (Kawano et al., 2019; Hsueh and
Ma, 2020; Takayama and Arase, 2020; Varshney
et al., 2021). In this work, we explore effective
method for controlled generation on Transformer-
based dialogue systems, with the goal of adding
controllability functionality into state-of-the-art
Transformer-based dialogue systems with lower
computation cost, less training data and more flexi-
ble control mechanism.

Prior works on controlled text generation for
Transformer-based pre-trained language models
can be categorized into two general approaches: (1)
gradient-based methods and (2) weighted-decoding
methods. The gradient-based methods (Dathathri
et al., 2019; Goswamy et al., 2020; Lin and Riedl,
2021) propose a plug-and-play language model
following p(x|a) ∝ p(a|x)p(x), which plugs an
attribute model p(a|x) with a pre-trained language
model p(x) to control generation. The gradients
from p(a|x) are used to guide the latent represen-
tations of pre-trained models encoding more con-
trol attribute information. The weighted-decoding
methods (Ghazvininejad et al., 2017; Baheti et al.,
2018; Holtzman et al., 2018; Yang and Klein, 2021)
modify the sampling weights with attribute func-
tions in beam search at each decoding timestep to
control generation. Essentially, the attribute func-
tions are used to re-rank the original beam candi-
dates generated by the pre-trained language models.
The main idea of both gradient-based methods and
weighted decoding methods is the flexibility: users
can design any attribute models or functions for
different controlled generation tasks and apply the
attribute model or function to any state-of-the-art
pre-trained language models for generating high
quality texts.

However, weighted decoding methods
(Ghazvininejad et al., 2017; Baheti et al., 2018;

https://github.com/wyu-du/Controlled-Dialogue-Generation
https://github.com/wyu-du/Controlled-Dialogue-Generation
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(a) SideNet for Knowledge Document Control (b) SideNet for Semantic Label Control

Figure 1: General architecture of the SIDECONTROL framework.

Holtzman et al., 2018; Yang and Klein, 2021) are
limited by the low-variance high-biased pre-trained
language models, since they do not update the
pre-trained language models. If the pre-trained
model yields commonly observed words rather
than target attribute words in the beam candidates
list, it is difficult for the attribute functions to
re-rank and find the target words during generation.
Although gradient-based methods (Dathathri et al.,
2019; Goswamy et al., 2020; Lin and Riedl, 2021)
do not have this limitation since they update
the latent representations of pre-trained models
during inference, the gradient propagation at each
decoding timestep involves heavy computation,
which results in slow response speed to users.
In addition, the controllability performance of
gradient-based methods relies on the attribute
model. If the attribute model gets overfitted on a
small training set, the gradient from this attribute
model will just lead to meaningless updates.

To build an effective and efficient controlled
open-domain dialogue system, we propose the
SIDECONTROL framework, which treats the pre-
trained lanaguage model as a feature extractor and
train light-weight side networks to encode com-
plementary information from control attributes. In
addition, we introduce a novel control attributes
loss to guide the side network during training. As
shown in Figure 1, the final output representation
is a mixture of a base representation from the pre-
trained language model and a side representation
from the side network. The mixture coefficient α
is learned during training, and is used to balance

the prior knowledge from the base network and the
task-specific control attributes signals from the side
network. From the encoding perspective, the SIDE-
CONTROL framework not only can be applied to
any pre-trained language models, but also supports
diverse format attributes control (e.g. dialogue act,
external knowledge document). From the decoding
perspective, the SIDECONTROL framework has low
computation cost, since it directly samples from its
optimized class-conditional language model p(x|a)
without additionally updating latent representations
during generation. From the sample-efficiency per-
spective, the SIDECONTROL framework achieves
good performance with a few thousand training
samples by leveraging the control loss.

We summarize the contributions of this work as
follows:

1. we propose a new controlled dialogue genera-
tion framework with novel control attributes
losses to support different forms of attributes
control (e.g. dialogue act, external knowledge
document);

2. we conduct empirical experiments to show
the sample-efficiency of the SIDECONTROL

framework, which can achieve good perfor-
mance with only 100 ∼ 1000 training sam-
ples;

3. we conduct empirical experiments to validate
that the SIDECONTROL framework has better
controllability, better text quality, and lower
decoding cost compared to gradient-based
methods and weighted-decoding methods.
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2 SideNet for Controlled Generation

Firstly, we introduce the SIDECONTROL frame-
work in subsection 2.1, which presents the general
idea of using a small side network to coordinate the
generation process based on large-scale pre-trained
language models (Zhang et al., 2020; Roller et al.,
2020; Shuster et al., 2020). Then we provide two
realizations of side networks for two types of con-
trol attributes: (1) external knowledge document in
subsection 2.2, (2) semantic label in subsection 2.3.

2.1 General Framework

Given a dialogue context which contains a fixed
number of previous utterances X = {xi}Ni=1,
where N is the total number of tokens in the
given dialogue context, and a control attribute a
which represents the desired controllable attributes,
the goal is to build a model conditioned on X
and a that can generate a response which best
approximates the ground-truth human response
Y = {yt}Tt=1:

p(Y | X,a) =
T∏
t=1

p(yt | y1:t−1,x1:N ,a)

=
T∏
t=1

p(yt | ht) (1)

where ht is the last hidden state of the generative
model at decoding timestep t.

The SIDECONTROL framework consists of a
large base network B(·) providing rich feature rep-
resentations and a small side network S(·) encod-
ing control attribute(s), as illustrated in Figure 1.
The base network B(·) can be any pre-trained lan-
guage models (Zhang et al., 2020; Roller et al.,
2020; Shuster et al., 2020). Given dialogue context
x1:N as the input to the base network, we just take
last hidden states {htb}Tt=1 for the response {yt}Tt=1

from the base network as our base representations:

h1
b , . . . ,h

T
b = B(x1:N ) (2)

The side network S(·) is a light-weight neural net-
work, which encodes the control attribute a into
base representations {htb}Tt=1:

h1
s, . . . ,h

T
s = S(a,h1

b , . . . ,h
T
b ) (3)

Finally, we keep the base representation htb fixed,
and add the side representation hts upon it to obtain

the final combined representation ht for the current
token yt:

ht = α · htb + (1− α) · hts (4)

p(yt | ht) = softmax(Wvocabht) (5)

where Wvocab is learnable parameters, and the mix-
ture coefficient α is also learned during training,
which aims to encode both useful prior knowledge
from pre-trained language models and important
attribute information from target dataset for con-
trolled generation. We provide detailed implemen-
tations for the side network S(·) and mixture coef-
ficient α in subsection 2.3 and subsection 2.2.

The main challenge in this framework is to teach
the side network S(·), such that it can provide com-
plementary information of control signals via hts
during generation, since the pre-trained language
models can already generate fluent responses. To
address this challenge, we intentionally freeze the
parameters of the base network B(·) when train-
ing the side network. Otherwise, it is essentially
training a large neural network model even deeper
than B(·). Second, we introduce the control at-
tribute loss Lcontrol, which is designed to teach the
side network explicitly encoding control signals to
improve the controllability of the model. The fi-
nal objective is a combination of class-conditional
language modelling loss Lcclm and task-specific
control attributes loss Lcontrol:

L = Lcclm + λ · Lcontrol (6)

where λ is a task-specific hyper-parameter, and de-
tailed implementations of Lcclm and Lcontrol are
described in subsection 2.2 and subsection 2.3,
Lcontrol has different implementation when con-
trolling different forms of attributes.

2.2 Knowledge Document Control
When having external knowledge documents as the
control attributes, such as persona profile (Dinan
et al., 2020), Wikipedia articles (Dinan et al., 2018),
etc., the format of control attribute is sequences of
tokens a = {ki}Ki=1, where K is the total number
of tokens in the external knowledge document. In
this case, we model the knowledge document repre-
sentation with a single-layer bi-directional LSTM:

h1
k, ...,h

K
k = BiLSTM(a) (7)

The side network is designed to align the controlled
knowledge document representation {hik}Ki=1 with
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the base representation htb at each decoding
timestep. We compute the cross-attention between
{hik}Ki=1 and htb following (Bahdanau et al., 2014):

eti = vT · tanh (Wkh
i
k +Wbh

t
b + bkb) (8)

ati = softmax(eti) (9)

ctk =

K∑
i=1

ati · hik (10)

where Wk ∈ RD×D, Wb ∈ RD×D and bkb ∈ RD
are learnable parameters. The attention at is a prob-
ability distribution over the controlled knowledge
document that tells the decoder where to look at
when generating the next word, and the context
vector ctk represents what has been read from the
controlled knowledge document representation at
decoding timestep t. The final side representation
hts incorporates the context vector ctk into the base
representation htb:

hts = tanh (Wc[c
t
k;h

t
b] + bc) (11)

where we concatenate ctk and htb, and Wc ∈
R2D×D and bc ∈ RD are learnable parameters.

Since the controlled knowledge document is dif-
ferent per utterance, we implement the mixture
coefficient α based on the side representation hts
and base representation htb at decoding timestep t:

αt = σ(Wα[h
t
s;h

t
b] + bα) (12)

ht = αt · htb + (1− αt) · hts (13)

where we concatenate hts and htb, and Wα ∈
R2D×1 and bα ∈ R are learnable parameters.

In order to encourage the decoder generating
more words from the knowledge document, we
adopt the copy mechanism from (See et al., 2017)
to formulate Lcclm:

β = σ(Wβ[c
t
k;h

t
b] + bβ) (14)

p(yt | ht) = βp(yt|ht) + (1− β)
K∑
i=1

ati(15)

Lcclm = −
T∑
t=1

log p(y∗t | ht) (16)

where we concatenate ctk and htb, and Wβ ∈
R2D×1 and bβ ∈ R are learnable parameters. ht
comes from Equation 13. y∗t is the ground-truth
word at decoding timestep t.

∑K
i=1 a

t
i is the sum-

mation of attention distribution over the knowledge
document at current decoding timestep t, which

will assign higher probability for attended knowl-
edge document words in the final word probability
distribution.

The control attributes loss for this task is used
to encourage generating more non-repetitive words
from the knowledge document. We adopt the cover-
age mechanism from (See et al., 2017) to formulate
Lcontrol:

Lcontrol =
T∑
t=1

K∑
i=1

min(ati,

t−1∑
t′=0

at
′
i ) (17)

where at
′
i is the attention weight of knowledge doc-

ument word ki at previous decoding time step t′.
Lcontrol penalizes the overlap between current at-
tention distribution and previous attention distribu-
tions, which prevents the model repeatedly attend-
ing to the same word in the knowledge document.
For more details about the copy mechanism and
coverage mechanism, please refer to the original
paper (See et al., 2017).

2.3 Semantic Label Control
When having a semantic label as the control at-
tribute, such as dialogue act (Li et al., 2017), emo-
tion (Rashkin et al., 2019), etc., we implement the
side network as a simple feed-forward neural net-
work:

hts = tanh (Wd[Waa;h
t
b] + bd) (18)

ht = α · htb + (1− α) · hts (19)

Lcclm = −
T∑
t=1

log p(y∗t | ht) (20)

where we concatenate Waa and htb, Wa ∈ R1×D

is an embedding matrix that maps the discrete label
a to a continuous representation, Wd ∈ R2D×D

and bd ∈ RD are learnable parameters. The mix-
ture coefficient α ∈ [0, 1] is a global parameter
which is learned during training, in order to en-
code both useful prior knowledge from pre-trained
language models and control signals from seman-
tic label. y∗t is the ground-truth word at decoding
timestep t.

The control attributes loss Lcontrol for this task
is used to modify the final latent representations
so that the model can generate responses with the
target control attribute. However, it is difficult to di-
rectly measure how much control attribute informa-
tion has been encoded into the side representation.
Therefore, we approximate it using a independent
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attribute classifier p(a|h1:T ). When training the
side network, we keep the attribute classifier fixed
and feed the side representations {hts}Tt=1 into the
classifier. The classifier will return a loss between
the current side representation and the target con-
trol attribute a∗, and optimizing this loss will up-
date the side representation hts towards obtaining a
higher p(a∗|h1:T ):

p(a | h1:T ) = softmax(Wclf

∑T
t=1 h

t
s

T
)(21)

Lcontrol = − log p(a∗ | h1:T ) (22)

Note that Wclf ∈ RD×K is independently learned
on the same training set based on the base repre-
sentation {htb}Tt=1, but is fixed when we update the
side network.

3 Experiments

3.1 Evaluation Methods

In this work, we focus on evaluating the controlla-
bility and text quality of different controlled gen-
eration methods. Additionally, we prefer to have
lower decoding cost and better modularity in order
to apply the proposed method into more possible
applications. Therefore, we use the following auto-
matic metrics to evaluate the performance:
Controllability2: this is our main metric. It aims
at evaluating whether the proposed method can suc-
cessfully generate the target controlling attributes.

1. For the semantic label control task, we use
the classification accuracy computed by an
independently trained BERT classifier (Devlin
et al., 2019).

2. For the knowledge document control task, we
use the cosine similarity between the word
vectors of external knowledge document and
model generated response. We use the pre-
trained GloVe embedding (Pennington et al.,
2014) to model the word vectors.

Text Quality: it aims at evaluating how well the
model learns to generate responses that match the
ground-truth references, where we use model per-
plexity (PPL) computed on the test set 3, BLEU

2We provide implementation details in Appendix A
3Note that PPLM and FUDGE do not update the gener-

ative model and are applied only during generation, which
means their model perplexity will be the same with their base
network, i.e. DialoGPT-Ori, therefore we do not report their
model perplexity in performance results.

(Papineni et al., 2002) and METEOR (Banerjee
and Lavie, 2005) to approximate it.
Decoding Cost: it evaluates the generation effi-
ciency of the proposed method. Given the same set
of 10 dialogue contexts, we compute the decoding
time per token across different methods, a faster de-
coding time indicates the method is more efficient
during generation.
Modularity: it evaluate how well the side network
can be applied to different base networks. We com-
pare model performance under two different types
of pre-trained language models: DialoGPT (Zhang
et al., 2020) and BlenderBot (Roller et al., 2020).
Ideally, we expect as good or even better perfor-
mance when switching the base network from Di-
aloGPT to BlenderBot, since BlenderBot has been
trained on larger dialogue corpus that is likely to
provide more informative base representations.

3.2 Competitive Baselines

We compare the SIDECONTROL framework with
the following competitive baselines:
DialoGPT-Ori: the original pre-trained language
model for open-domain dialogue generation, Di-
aloGPT (Zhang et al., 2020) DialoGPT is a
Transformer-based language model. It is the base-
line for all other controlled generation methods.
DialoGPT-FT: direct fine-tuning the DialoGPT on
the target dialogue dataset. It is used as a strong
baseline for evaluating the generation quality of the
generative model.
DialoGPT-PPLM: the Plug-and-Play Language
Model (PPLM) (Dathathri et al., 2019) with Di-
aloGPT as the base pre-trained language model. It
is a strong gradient-based baseline.
DialoGPT-FUDGE: the Future Discriminators for
Generation (FUDGE) (Yang and Klein, 2021) with
DialoGPT as the base pre-trained language model.
It is a strong weighted decoding baseline.
DialoGPT-SideControl: our SIDECONTROL

framework with DialoGPT as the base pre-trained
language model. It is used to validate the effec-
tiveness of our side network compared with other
controlled generation baselines.
BlenderBot-Ori: the original BlenderBot (Roller
et al., 2020), which is a Transformer-based
sequence-to-sequence model showing state-of-the-
art performance on some challenging open-domain
dialogue datasets.
BlenderBot-SideControl: our SIDECONTROL

framework with BlenderBot as the base pre-trained
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Controllability Text Quality Decoding Cost

METHOD SIMILARITY ↑ PPL ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑ TIME ↓

DialoGPT-Ori 0.6382 68.63 12.95 1.22 0.0526 0.0786 s/tok
DialoGPT-FT 0.6732 15.22 17.27 2.05 0.0675 0.0721 s/tok
DialoGPT-FUDGE 0.6684 - 10.26 0.60 0.0514 0.0510 s/tok
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646 0.5208 s/tok
DialoGPT-SideControl 0.7526 14.34 13.46 1.96 0.0988 0.0824 s/tok

BlenderBot-Ori 0.7455 90.89 9.38 0.54 0.0908 0.0384 s/tok
BlenderBot-SideControl 0.7841 14.34 10.10 1.20 0.0964 0.0608 s/tok

Table 1: Knowledge document control performances under full training set of ConvAI2, where λ = 10−5 for
Lcontrol in DialoGPT-SideControl and BlenderBot-SideControl.

Controllability Text Quality Decoding Cost

METHOD ACCURACY ↑ PPL ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑ TIME ↓

DialoGPT-Ori 0.4307 55.09 7.78 0.66 0.0333 0.0921 s/tok
DialoGPT-FT 0.4358 8.95 14.35 2.30 0.0523 0.0786 s/tok
DialoGPT-FUDGE 0.4701 - 14.40 1.59 0.0411 0.0535 s/tok
DialoGPT-PPLM 0.5994 - 14.22 1.25 0.0506 2.4171 s/tok
DialoGPT-SideControl 0.5376 12.79 16.37 1.90 0.0526 0.0990 s/tok

BlenderBot-Ori 0.4605 110.05 12.21 1.10 0.0775 0.0603 s/tok
BlenderBot-SideControl 0.6865 8.16 14.49 1.36 0.0680 0.0995 s/tok

Table 2: Semantic label control performances under full training set of DailyDialog, where λ = 105 for Lcontrol

in DialoGPT-SideControl and BlenderBot-SideControl.

language model. It is used to show the high modu-
larity of our side network.

3.3 Knowledge Document Control

In this task, given the previous dialogue context and
the external knowledge document for the current
speaker, the model will generate one utterance that
is relevant both to the context and to the knowledge
document. We provide the detailed experiment
setups in Appendix B.

Dataset. We use the ConvAI2 dataset (Dinan
et al., 2020) for the knowledge document control
task. We set the previous 4 utterances as the
dialogue context. Each utterance is linked to its
corresponding persona profile. Since the test set
of ConvAI2 has not been made public, we use the
original training set to construct our training set,
and split the first 80% original validation set as
our validation set and the remaining 20% original
validation set as our testing set. In total, we have
153,082 training samples, 38,271 validation sam-
ples and 11,590 testing samples.

Performances under Full Data. Table 1 shows
that DialoGPT+SideControl outperforms all other
baselines in controllability, which validates the ef-
fectiveness of the SIDECONTROL framework. For

Figure 2: Controllability under different number of
training examples in ConvAI2 dataset.

the quality of the generated texts, we find that both
FUDGE and PPLM perform worse than the original
pre-trained language model, while the SIDECON-
TROL shows improved quality because of the Lcclm
during training. We also notice that direct fine-
tuning gives the best performance in BLEU-1 and
BLEU-2, but worse controllability compared with
the SIDECONTROL. This is because direct fine-
tuning only focuses on optimizing the language
modelling loss, and does not take the control at-
tributes information into account. For the decod-
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ing cost, our SIDECONTROL is around 6x faster
than PPLM during generation, which shows its ef-
ficiency during inference. Finally, we find that the
performance improvement in controllability and
text quality also hold when we apply the SIDE-
CONTROL to BlenderBot, which shows the flexible
modularity of the side network.

Performances under Small Data. With the goal
of testing the sample-efficiency of the SIDECON-
TROL framework, we train all baselines under
smaller datasets, where we randomly sample 100,
1000, 5000 and 10000 training samples from the
original training set to train the model, and evaluate
the model performance using the full testing test.
Figure 2 shows the controllability performance un-
der different training sizes, and we provide detailed
text quality performance in Appendix E. We find
that SIDECONTROL only underperforms PPLM
in 100 training samples, since PPLM uses non-
parametric bag-of-words features as its attribute
model while SIDECONTROL uses a BiLSTM as
its attribute model. And 1000 training samples are
sufficient enough for SIDECONTROL to achieve
comparable performance with PPLM. In addition,
SIDECONTROL constantly achieves performance
improvement when increasing the training size.

Ablation Study. To verify the effectiveness of
the control loss Lcontrol, we conduct ablation study
by trying out different values of λ in Equation 6.
We provide partial results in Table 3 and full results
in Appendix D. When λ = 0, the model becomes
a vanilla language model and takes no information
from the side network, which leads to a low perfor-
mance in controllability. When λ 6= 0, the model
incorporates control attributes information from the
side network, which leads to an improved perfor-
mance in controllability. However, incorporating
side information will lead to a slight increase in
model perplexity.

3.4 Semantic Label Control

In this task, given the previous dialogue context and
the current dialogue act, the model will generate
one utterance that is relevant to the context and also
satisfies the current dialogue act. We provide the
detailed experiment setups in Appendix C.

Dataset. We use the DailyDialog dataset (Li
et al., 2017) for the semantic label control task.
We set the previous 5 utterances as the dialogue
context and follow the standard train/validation/test

Figure 3: Controllability under different number of
training examples in DailyDialog dataset.

splition of the original dataset to construct our gen-
eration dataset. In total, we obtain 35,781 training
samples, 3,388 validation samples and 3,123 test-
ing samples.

Performances under Full Data. Table 2 demon-
strates that SIDECONTROL has better text quality
than FUDGE and PPLM, since we explicitly op-
timize Lcclm during training. For the controllabil-
ity, PPLM achieves the best performance with a
sacrifice of inference efficiency, while SIDECON-
TROL can achieve comparable performance in con-
trollability with around 24x faster decoding time.
Finally, the performance improvements in control-
lability and text quality still hold when we switch
the base network from DialoGPT to BlenderBot,
which demonstrates that the side network is flexi-
ble to be applied to different types of pre-trained
language models. And surprisingly, BlenderBot
can even provide the state-of-the-art performance
in controllability.

Performances under Small Data. We also com-
pare across the model performance under differ-
ent training sizes following the same setup with
the knowledge document control task, and provide
detailed text quality performance in Appendix F.
Figure 3 illustrates that SIDECONTROL achieves
better controllability than PPLM when training size
is under 1000. This is because PPLM uses a data-
driven classifier as its attribute model in this task,
and its attribute model gets overfitted on the 100
training samples, which results in poor control-
lability performance. Similarly, FUDGE has the
same overfitting issue for its attribute discriminator
on these small training sets, and gets unsatisfied
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λ SIMILARITY ↑ PPL ↓
λ = 0 0.7273 14.24
λ = 10−4 0.7306 14.65
λ = 10−5 0.7526 14.34

Table 3: Ablation study of DialoGPT-SideControl
on knowledge document control, where the model
is trained under the full training set of ConvAI2, and
tested under the full testing set of ConvAI2.

λ ACCURACY ↑ PPL ↓
λ = 0 0.4950 12.37
λ = 103 0.5232 12.59
λ = 105 0.5376 12.79

Table 4: Ablation study of DialoGPT-SideControl
on semantic label control, where the model is
trained under the full training set of DailyDialog,
and tested under the full testing set of DailyDialog.

METHOD FLUENCY ↑ RELEVANCY ↑
DialoGPT-PPLM 3.832 3.188
DialoGPT-FUDGE 4.016 3.348
DialoGPT-SideControl 4.108 3.816

Table 5: Human evaluation of fluency and context
relevancy on semantic label control task.

Wins %

PPLM FUDGE SideControl
PPLM - 55.25% 57.61%
FUDGE 44.76% - 54.46%
SideControl 42.39% 45.54% -

Table 6: Human evaluation of attribute relevancy
on semantic label control task.

controllability performance. Although SIDECON-
TROL also pre-trains a classifier on the 100 training
samples to guide the update of side representation,
its final representation is a combination of base
and side representation. We believe incorporating
prior knowledge from the base representation helps
SIDECONTROL alleviates the overfitting issue on
small training set.

Ablation Study. We also try out different values
of λ to study the effect of control loss Lcontrol,
as shown in Table 4. Full ablation study results
are provided in Appendix D. When λ = 0, the
model takes no control attributes signals from the
side network during training, which results in a low
controllability performance. When λ 6= 0, the con-
trollability performance of the model is improved
but with a slight increase in model perplexity. Both
Table 3 and Table 4 verify the effectiveness of con-
trol loss Lcontrol in improving the controllability
of pre-trained language models.

Human Evaluation. To validate the good perfor-
mance of SIDECONTROL, we follow prior works
(Dathathri et al., 2019; Li et al., 2019) and deploy
a set of human evaluations to compare the text
quality and controllability between several meth-
ods. For the text quality, we ask human annotators
to evaluate the fluency and context relevancy of
the generated responses on a scale of 1-5, where a
higher score indicates better quality. For the con-
trollability, we use A/B testing following (Li et al.,
2019) and compare all model pairs (e.g. PPLM
vs. SIDECONTROL) 4. For all human evaluations,

4We show the same dialogue context, current dialog act and
two responses generated by model A and model B respectively,

we randomly sample 50 dialogue contexts, and col-
lect the corresponding model generated responses.
Human annotators are recruited using Amazon Me-
chanical Turk and each response has 5 annotations.
In total, we collect 2250 human annotations. Ta-
ble 5 shows the results of text quality evaluation,
and SIDECONTROL achieves the best fluency and
context relevancy than PPLM and FUDGE. Ta-
ble 6 shows the results of controllability evaluation,
and SIDECONTROL wins over PPLM and FUDGE
in 57% and 54% respectively. Both text quality
and controllability evaluation show that SIDECON-
TROL can generate more fluent, context-relevant
and attribute-relevant responses than PPLM and
FUDGE.

4 Related Works

There are three major categories of controllable
text generation models: class-conditional language
model (Keskar et al., 2019; Kawano et al., 2019),
plug-and-play language model (Dathathri et al.,
2019) and weighted decoding (Ghazvininejad et al.,
2017; Baheti et al., 2018; Holtzman et al., 2018;
Yang and Klein, 2021).

Class-Conditional Language Model. Class-
conditional language models train a conditional
generative model from scratch, and guide the gen-
eration with explicit control codes provided in
the training data. Keskar et al. (2019) trains a
1.63 billion-parameter Conditional Transformer
Language (CTRL) model by prepending control
codes in front of raw texts. But training the CTRL

and ask human annotators to select the response which is more
related to the current dialog act among: model A, model B,
both and neither.
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(Keskar et al., 2019) requires 140 GB of training
data, which may not be affordable for some low-
resource languages. Kawano et al. (2019) builds a
controllable neural conversation model by leverag-
ing an adversarial learning framework that alterna-
tively trains between a class-conditional language
model and a multi-class discriminator, where the
discriminator is used to help the generative model
produce responses with appropriate dialogue act.
But the control code is modelled as discrete vari-
able in this work, which limits the controllability
capacity of the dialogue model.

Plug-and-Play Language Model. Guiding gen-
eration with gradients from additional attribute
models is another popular approach. Dathathri et al.
(2019) introduce a plug-and-play language model
(PPLM) which combines the pre-trained language
model p(x) with attribute models p(a|x) to approx-
imate the contional generative model p(x|a) . At
each decoding timestep, all hidden representations
of the pre-trained language model are shifted with
gradients towards a higher p(x|a) ∝ p(a|x)p(x).
The attribute models of PPLM are either in the
form of bag-of-words or single layer classifiers,
which requires much less training data than learn-
ing a conditional generative model. The follow-
ing works (Goswamy et al., 2020; Lin and Riedl,
2021; Madotto et al., 2020) further propose more
fine-grained attribute models and generation strate-
gies for specific task, such as emotional text gen-
eration (Goswamy et al., 2020), story generation
(Lin and Riedl, 2021) and conversation generation
(Madotto et al., 2020). But since the plug-and-play
language models have to compute gradient from
attribute model and update hidden representations
at each decoding timestep, the generation process
is very time-consuming, which leads to high decod-
ing cost.

Weighted Decoding. Weighted decoding runs
a more expensive beam search where the sam-
pling probability distribution is altered by desired
control attributes, such as topic, sentiment, etc.
Ghazvininejad et al. (2017) design a set of style fea-
tures on controlling topic, sentiment, and repetitive
words, and re-compute the beam score of each to-
ken with a combination of the original beam score
and the style feature score. A recent work (Yang
and Klein, 2021) introduces a Future Discriminator
for Generation (FUDGE) that trains a binary dis-
criminator for the control attribute prediction and

re-scores the probability distribution of the original
pre-trained language model with the discriminator
prediction via Bayesian factorization. The major
limitation of weighted decoding methods is that,
if the pre-trained language model is a high-bias
estimator, which assigns low probability for de-
sired attribute words and high probability for com-
monly observed but unrelated words, re-scoring or
re-ranking such a “high-biased” distribution cannot
guarantee the generation of desired attributes.

The SIDECONTROL framework differs the above
methods as follows: (1) the side network only
requires access to last hidden states of the base
network. Both class-conditional language models
(Keskar et al., 2019) and plug-and-play language
models (Dathathri et al., 2019) require access to
every hidden states of the pre-trained language
model, which limits its application under certain
pre-trained model. (2) the side network learns a
residual on top of pre-trained language models,
which is suitable for small datasets. Directly fine-
tuning (Ziegler et al., 2019) large pre-trained lan-
guage models will cause overfitting issues on some
small datasets, and weighted-decoding methods
(Ghazvininejad et al., 2017; Yang and Klein, 2021)
only modify the final vocabulary distribution of pre-
trained models but do not learn model parameters
to better adapt to the target task.

5 Conclusions

In this work, we propose a new method for con-
trolled dialogue generation: adding a small side
network to incorporate useful control signals into
the pre-trained language models. We design control
attributes loss to teach the side network learning
useful control signals. Empirical experiments show
that our method is effective even with 100 ∼ 1000
training samples. Besides, our side network sup-
ports diverse forms of attributes control and can be
flexibly applied to any pre-trained language mod-
els, which extends its possible application to other
general controlled text generation tasks.

Acknowledgments

The authors thank the anonymous reviewers for
their useful comments and the UVa NLP group for
helpful discussions.



2184

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan.
2018. Generating more interesting responses in
neural conversation models with distributional con-
straints. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3970–3980, Brussels, Belgium. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng
Wang. 2020. PLATO: Pre-trained dialogue genera-
tion model with discrete latent variable. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 85–96, Online.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan,
and William Yang Wang. 2019. Semantically con-
ditioned dialog response generation via hierarchical
disentangled self-attention. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3696–3709, Florence,
Italy. Association for Computational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: A simple approach to controlled text generation.
CoRR, abs/1912.02164.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Emily Dinan, Varvara Logacheva, Valentin Malykh,
Alexander Miller, Kurt Shuster, Jack Urbanek,
Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan
Lowe, et al. 2020. The second conversational in-
telligence challenge (convai2). In The NeurIPS’18
Competition, pages 187–208. Springer.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48, Vancouver,
Canada. Association for Computational Linguistics.

Tushar Goswamy, Ishika Singh, Ahsan Barkati, and
Ashutosh Modi. 2020. Adapting a language model
for controlled affective text generation. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2787–2801, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1638–1649, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Cheng-Hsun Hsueh and Wei-Yun Ma. 2020. Semantic
guidance of dialogue generation with reinforcement
learning. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Di-
alogue, pages 1–9, 1st virtual meeting. Association
for Computational Linguistics.

Seiya Kawano, Koichiro Yoshino, and Satoshi Naka-
mura. 2019. Neural conversation model controllable
by given dialogue act based on adversarial learning
and label-aware objective. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 198–207, Tokyo, Japan. Associa-
tion for Computational Linguistics.

Pei Ke, Jian Guan, Minlie Huang, and Xiaoyan Zhu.
2018. Generating informative responses with con-
trolled sentence function. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1499–1508, Melbourne, Australia. Association for
Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.

https://doi.org/10.18653/v1/D18-1431
https://doi.org/10.18653/v1/D18-1431
https://doi.org/10.18653/v1/D18-1431
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.18653/v1/2020.acl-main.9
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/P19-1360
https://doi.org/10.18653/v1/P19-1360
https://doi.org/10.18653/v1/P19-1360
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/P17-4008
https://www.aclweb.org/anthology/P17-4008
https://doi.org/10.18653/v1/2020.coling-main.251
https://doi.org/10.18653/v1/2020.coling-main.251
https://doi.org/10.18653/v1/P18-1152
https://www.aclweb.org/anthology/2020.sigdial-1.1
https://www.aclweb.org/anthology/2020.sigdial-1.1
https://www.aclweb.org/anthology/2020.sigdial-1.1
https://doi.org/10.18653/v1/W19-8627
https://doi.org/10.18653/v1/W19-8627
https://doi.org/10.18653/v1/W19-8627
https://doi.org/10.18653/v1/P18-1139
https://doi.org/10.18653/v1/P18-1139


2185

CTRL: A conditional transformer language model
for controllable generation. CoRR, abs/1909.05858.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Margaret Li, Jason Weston, and Stephen Roller. 2019.
ACUTE-EVAL: improved dialogue evaluation with
optimized questions and multi-turn comparisons.
CoRR, abs/1909.03087.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manu-
ally labelled multi-turn dialogue dataset. In Proceed-
ings of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 986–995, Taipei, Taiwan. Asian Federa-
tion of Natural Language Processing.

Zhiyu Lin and Mark Riedl. 2021. Plug-and-blend:
A framework for controllable story generation with
blended control codes. CoRR, abs/2104.04039.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-play
conversational models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2422–2433, Online. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5370–5381, Florence, Italy. Association
for Computational Linguistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M Smith, et al. 2020. Recipes
for building an open-domain chatbot. arXiv preprint
arXiv:2004.13637.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Abigail See, Stephen Roller, Douwe Kiela, and Ja-
son Weston. 2019. What makes a good conver-
sation? how controllable attributes affect human
judgments. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1702–1723, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kurt Shuster, Da Ju, Stephen Roller, Emily Dinan, Y-
Lan Boureau, and Jason Weston. 2020. The di-
alogue dodecathlon: Open-domain knowledge and
image grounded conversational agents. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2453–2470,
Online. Association for Computational Linguistics.

Junya Takayama and Yuki Arase. 2020. Consistent
response generation with controlled specificity. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4418–4427, Online.
Association for Computational Linguistics.

Deeksha Varshney, Asif Ekbal, and Pushpak Bhat-
tacharyya. 2021. Modelling context emotions us-
ing multi-task learning for emotion controlled dia-
log generation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
2919–2931, Online. Association for Computational
Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
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A Automatic Metrics for Controllability
Evaluation

In this section we provide implementation details
for how we compute classification accuracy and
cosine similarity.

A.1 Dialogue Act Classifier
We train an independent dialogue act classifier to
evaluate whether the current generated response
matches its conditioning dialogue act. The input to
the evaluation dialogue act classifier is a single re-
sponse, and the output is a prediction of one of the
4 dialogues in DailyDialog, i.e. inform, questions,
directives and commissive.

We construct the training corpus following the
standard splition of original DailyDialog dataset,
and obtain 87,170 training samples, 8,069 valida-
tion samples and 7,740 testing samples. We lever-
age the BERT model to provide a sequence of word
representations and add a single-layer feed-forward
neural network to predict the dialogue act of current
sentence. We use AdamW (Loshchilov and Hutter,
2019) with learning rate 0.0001 to train this clas-
sifer. We set the batch size to 16, the total training
epoch to 10 and automatically evaluate the model
on the validation set very 5000 iterations. We save
the model checkpoint with the lowest validation
loss as the optimal model.

Figure 4: Confusion matrix of the evaluation dialogue
act classifier.

This dialogue act classifier achieves 0.79 accu-
racy on the test set. Figure 4 shows the confusion
matrix of this dialogue act classifier.

A.2 Computation of Cosine Similarity
To measure the similarity between the generated re-
sponse and the conditioning knowledge document,

we compute the cosine similarity between the word-
ing embeddings of generated response and external
knowledge document. The word embeddings are
GloVe embeddings (Pennington et al., 2014) pre-
trained on Wikipedia 2014 and Gigaword 5, which
are 100-dimension vectors and have 6 billion to-
kens 5.

We use the NLTK word tokenizer 6 to tokenize
the texts into a set of tokens, and remove stop words
based on a pre-defined stop words list in (Bao et al.,
2020). Finally, we compute the cosine similarity
between the two sets of word vectors.

B Experiment Setups for Knowledge
Document Control

We conduct all of our experiments on single
GeForce RTX 2080Ti GPU server with 11019 MB
memory.

B.1 Direct Fine-tuning

We directly update all parameters of the pre-trained
language model on the ConvAI2 training set with-
out having any side network or control attributes
loss. For the training of the pre-trained language
model, we use AdamW (Loshchilov and Hutter,
2019) with learning rate 0.0001. We set the batch
size to 2, the total training epoch to 10, and auto-
matically evaluate the model on the validation set
every 1000 iterations. We save the model check-
point which achieves lowest validation loss as the
final optimal model. For generation, we follow the
setup of FUDGE, which use top-k sampling with
k = 10.

B.2 PPLM

For the implementation of the attribute model, we
use the bag-of-words attribute model proposed in
the original paper (Dathathri et al., 2019) to encode
external knowledge document. We run the model
on the ConvAI2 dataset using the code provided
by the original paper: https://github.com/
uber-research/PPLM. We set the maximum
generation length to 50, the number of gradient
update steps to 3, the step size to 0.03, the window
length to 5, the number of generated sentences to
1, γgm = 0.99, λKL = 0.01.

5https://nlp.stanford.edu/projects/
glove/

6https://www.nltk.org/_modules/nltk/
tokenize.html

https://github.com/uber-research/PPLM
https://github.com/uber-research/PPLM
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://www.nltk.org/_modules/nltk/tokenize.html
https://www.nltk.org/_modules/nltk/tokenize.html
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B.3 FUDGE

For the implementation of the attribute model,
we use the bag-of-words attribute model pro-
posed in the original paper (Yang and Klein,
2021) to encode external knowledge document.
We run the model on the ConvAI2 dataset
using the code provided by the original pa-
per: https://github.com/yangkevin2/
naacl-2021-fudge-controlled-generation.
We set the maximum generation length to 80, the
weight on conditioning model to 4.0, consider
top 200 outputs from DialoGPT at each decoding
timestep before conditioning, and sample from
top 10 outputs from DialoGPT at each decoding
timestep.

B.4 SideControl

For the implementation of the side network, we
use a single-layer bi-LSTM which shares the same
hidden dimension with the final hidden states of
the base network. We tokenize the knowledge doc-
ument using the same tokenizer with the base net-
work, and share the same word embedding with
the base network as well. For the training of the
side network, we use AdamW (Loshchilov and
Hutter, 2019) with learning rate 0.0001. We set
the batch size to 4, the total training epoch to 10,
and automatically evaluate the model on the val-
idation set every 100 iterations. For the hyper-
parameter λ of the coverage loss in Equation 17,
we use grid search on the validation set to ob-
tain the optimal number. We search from the set
λ = {10−6, 10−5, 10−4, 10−3, 0.01, 0.1} and find
λ = 10−5 yields best performance. For generation,
we follow the setup of FUDGE, which use top-k
sampling with k = 10.

C Experiment Setups for Semantic Label
Control

We conduct all of our experiments on single
GeForce RTX 2080Ti GPU server with 11019 MB
memory.

C.1 Direct Fine-tuning

We directly update all parameters of the pre-trained
language model on the DailyDialog training set
without having any side network or control at-
tributes loss. For the training of the pre-trained
language model, we use AdamW (Loshchilov and
Hutter, 2019) with learning rate 0.0001. We set the
batch size to 2, the total training epoch to 10, and

automatically evaluate the model on the validation
set every 1000 iterations. We save the model check-
point which achieves lowest validation loss as the
final optimal model. For generation, we follow the
setup of FUDGE, which use top-k sampling with
k = 10.

C.2 PPLM
For the implementation of the attribute model, we
follow the generic discriminator implementation
in the original paper (Dathathri et al., 2019). We
run the model on the DailyDialog dataset using the
code provided by the original paper. We train a
dialogue act classifier which takes single response
as input and produces a prediction on one of the
four dialogue acts. For the training of the classifier,
we use Adam (Kingma and Ba, 2017) with learning
rate 0.0001. We set the batch size to 64, the total
training epoch to 10. For the generation of PPLM,
we set the maximum generation length to 50, the
number of gradient update steps to 10, the step
size to 0.2, the number of generated sentences to 1,
γgm = 0.95, λKL = 0.01.

C.3 FUDGE
For the implementation of the attribute model, we
follow the attribute discriminator implementation
in the original paper (Yang and Klein, 2021). We
run the model on the DailyDialog dataset using the
code provided by the original paper. We train a di-
alogue act discriminator which takes the dialogue
context and the current response as input and pro-
duces a prediction on one of the four dialogue acts.
For the training of the discriminator, we use Adam
(Kingma and Ba, 2017) with learning rate 2×10−5.
We set the batch size to 16, the total training epoch
to 10. For the generation of FUDGE, we set the
maximum generation length to 60, the weight on
conditioning model to 1.0, consider top 200 outputs
from DialoGPT at each decoding timestep before
conditioning, and sample from top 10 outputs from
DialoGPT at each decoding timestep.

C.4 SideControl
For the implementation of the side network, we use
a single-layer feed-forward neural network which
shares the same hidden dimension with the final
hidden states of the base network. Besides, we
pre-trained a dialogue act classifier to compute the
control loss in Equation 22. We emphasize that this
dialogue act classifier is different from the evalua-
tion classifier. It models the sentence representation

https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation
https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation
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from the base network, i.e. DialoGPT, and adds
a single-layer feed-forward neural network to pre-
dict the dialogue act of current response. We train
this classifier using AdamW (Loshchilov and Hut-
ter, 2019) with learning rate 0.0001 for 10 epochs.
Then, we fix this classifier and begin to train the
side network using AdamW (Loshchilov and Hut-
ter, 2019) with learning rate 0.0001 for another 10
epochs. We evaluate the model on the validation set
every 1000 iterations, and save the model check-
point which has the lowest validation loss. For
the hyper-parameter λ of the control loss in Equa-
tion 22, we use grid search on the validation set
to obtain the optimal number. We search from the
set λ = {1, 10, 100, 103, 104, 105, 106} and find
λ = 105 yields best performance on the full train-
ing set. For generation, we follow the setup of
FUDGE, which use top-k sampling with k = 10.

D Full performances of Ablation Study

We provide performance details for ablation study
in knowledge document control and semantic label
control. The full performances of ablation study in
knowledge document control is shown in Table 7.
The full performances of ablation study in semantic
label control is shown in Table 8.

E Full performances of Knowledge
Document Control under Different
Number of Training Samples

For all experiments across different number of
training samples, we take the hyper-parameter
λ = 10−5 for Lcontrol. Full performance for all
models are demonstrated in Table 9, Table 11, Ta-
ble 13 and Table 15. We also provide some gener-
ated samples from the test set for reference, demon-
strated in Table 10, Table 12, Table 14, Table 16,
Table 17.

F Full performances of Semantic Label
Control under Different Number of
Training Samples

For the semantic label control task, we find the op-
timal hyper-parameter λ for Lcontrol differs across
different number of training samples. Full perfor-
mance for all models are demonstrated in Table 18,
Table 20, Table 22 and Table 24. We also provide
some generated samples from the test set for refer-
ence, demonstrated in Table 19, Table 21, Table 23,
Table 25, Table 26.
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Controllability Text Quality

SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

λ = 0 0.7273 14.24 15.72 2.16 0.0858
λ = 10−6 0.7284 14.30 16.08 2.29 0.0800
λ = 10−5 0.7526 14.34 13.46 1.96 0.0988
λ = 10−4 0.7306 14.65 15.87 2.32 0.0846
λ = 10−3 0.7259 15.65 15.72 2.09 0.0802
λ = 10−2 0.7217 30.29 15.30 2.05 0.0803
λ = 10−1 0.7137 22481.68 15.50 2.01 0.0774

Table 7: Knowledge document control performances of DialoGPT-SideControl with different λ.

Controllability Text Quality

ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

λ = 0 0.4950 12.37 16.19 1.95 0.0534
λ = 101 0.5229 12.48 15.06 1.76 0.0525
λ = 102 0.5366 12.51 15.59 1.76 0.0517
λ = 103 0.5232 12.59 15.59 1.75 0.0512
λ = 105 0.5376 12.79 16.37 1.90 0.0526
λ = 106 0.5357 13.10 15.29 1.67 0.0485

Table 8: Semantic label control performances of DialoGPT-SideControl with different λ.

Controllability Text Quality

METHOD SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.6736 180.65 13.04 1.32 0.0503
DialoGPT-FUDGE 0.6672 - 10.33 0.56 0.0530
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646
DialoGPT-SideControl 0.6750 24.64 12.00 1.31 0.0553

Table 9: Knowledge document control performances under 100 training samples sampled from ConvAI2, where
λ = 10−5 for Lcontrol in DialoGPT-SideControl.

Dialogue Context: Persona Profile:
“hi how are you tonight ? i am relaxing in a bubble bath tonight .” “my favorite season is winter.”
“hi how are you doing that sounds great .” “i won a gold medal in the 1992 olympics.”
“it is , how old are you ? i’m 31 , feeling like i’m getting old lol.” “i love cats and have two cats.”
“not old you are still young try 50 i’m getting old .” “i’ve a hat collection of over 1000 hats.”
“lol my bones suggest other wise . do you have any animals ?” “i have a weakness for vanilla ice cream.”

Ground Truth: ”yes i like and love all animals i have two cats.”
DialoGPT-Ori: ”my dogs are my favorite, but i’m pretty fond of all dogs so i don’t have many.”
DialoGPT-FT: ”i love my three dogs. ”
DialoGPT-FUDGE: ”My bones say I’m young too, so I think we’re good there for now.”
DialoGPT-PPLM: ”I think i’m only 35, but i’ve been in a pretty good relationship so i’ve probably gotten better.”
DialoGPT-SideControl: ”!”

Table 10: Knowledge document control generation results under 100 training samples sampled from ConvAI2.

Controllability Text Quality

METHOD SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.6625 18.64 15.67 1.69 0.0628
DialoGPT-FUDGE 0.6672 - 10.33 0.56 0.0530
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646
DialoGPT-SideControl 0.6857 19.32 15.88 1.98 0.0748

Table 11: Knowledge document control performances under 1000 training samples sampled from ConvAI2, where
λ = 10−5 for Lcontrol in DialoGPT-SideControl.
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Dialogue Context: Persona Profile:
“hi how are you tonight ? i am relaxing in a bubble bath tonight .” “my favorite season is winter.”
“hi how are you doing that sounds great .” “i won a gold medal in the 1992 olympics.”
“it is , how old are you ? i’m 31 , feeling like i’m getting old lol.” “i love cats and have two cats.”
“not old you are still young try 50 i’m getting old .” “i’ve a hat collection of over 1000 hats.”
“lol my bones suggest other wise . do you have any animals ?” “i have a weakness for vanilla ice cream.”

Ground Truth: ”yes i like and love all animals i have two cats.”
DialoGPT-Ori: ”my dogs are my favorite, but i’m pretty fond of all dogs so i don’t have many.”
DialoGPT-FT: ”cats and dogs. you?”
DialoGPT-FUDGE: ”My bones say I’m young too, so I think we’re good there for now.”
DialoGPT-PPLM: ”I think i’m only 35, but i’ve been in a pretty good relationship so i’ve probably gotten better.”
DialoGPT-SideControl: ”i don’t, they don’t get to play.”

Table 12: Knowledge document control generation results under 1000 training samples sampled from ConvAI2.

Controllability Text Quality

METHOD SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.6741 24.46 15.65 1.17 0.0634
DialoGPT-FUDGE 0.6676 - 10.20 0.54 0.0528
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646
DialoGPT-SideControl 0.7016 17.30 15.76 1.99 0.0764

Table 13: Knowledge document control performances under 5000 training samples sampled from ConvAI2, where
λ = 10−5 for Lcontrol in DialoGPT-SideControl.

Dialogue Context: Persona Profile:
“hi how are you tonight ? i am relaxing in a bubble bath tonight .” “my favorite season is winter.”
“hi how are you doing that sounds great .” “i won a gold medal in the 1992 olympics.”
“it is , how old are you ? i’m 31 , feeling like i’m getting old lol.” “i love cats and have two cats.”
“not old you are still young try 50 i’m getting old .” “i’ve a hat collection of over 1000 hats.”
“lol my bones suggest other wise . do you have any animals ?” “i have a weakness for vanilla ice cream.”

Ground Truth: ”yes i like and love all animals i have two cats.”
DialoGPT-Ori: ”my dogs are my favorite, but i’m pretty fond of all dogs so i don’t have many.”
DialoGPT-FT: ”!!! i’ve 3 cats but they are all scared of me haha.”
DialoGPT-FUDGE: ”My bones say I’m young too, so I think we’re good there for now.”
DialoGPT-PPLM: ”I think i’m only 35, but i’ve been in a pretty good relationship so i’ve probably gotten better.”
DialoGPT-SideControl: ”i do. i love them. what do you do for fun? goldfish?”

Table 14: Knowledge document control generation results under 5000 training samples sampled from ConvAI2.

Controllability Text Quality

METHOD SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.6666 17.78 14.86 1.56 0.0657
DialoGPT-FUDGE 0.6684 - 10.21 0.58 0.0529
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646
DialoGPT-SideControl 0.7096 16.98 15.49 1.91 0.0774

Table 15: Knowledge document control performances under 10000 training samples sampled from ConvAI2,
where λ = 10−5 for Lcontrol in DialoGPT-SideControl.
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Dialogue Context: Persona Profile:
“hi how are you tonight ? i am relaxing in a bubble bath tonight .” “my favorite season is winter.”
“hi how are you doing that sounds great .” “i won a gold medal in the 1992 olympics.”
“it is , how old are you ? i’m 31 , feeling like i’m getting old lol.” “i love cats and have two cats.”
“not old you are still young try 50 i’m getting old .” “i’ve a hat collection of over 1000 hats.”
“lol my bones suggest other wise . do you have any animals ?” “i have a weakness for vanilla ice cream.”

Ground Truth: ”yes i like and love all animals i have two cats.”
DialoGPT-Ori: ”my dogs are my favorite, but i’m pretty fond of all dogs so i don’t have many.”
DialoGPT-FT: ”i have a dog! what do you do for work?”
DialoGPT-FUDGE: ”My bones say I’m young too, so I think we’re good there for now.”
DialoGPT-PPLM: ”I think i’m only 35, but i’ve been in a pretty good relationship so i’ve probably gotten better.”
DialoGPT-SideControl: ”i’ve a pet cat named monkey.”

Table 16: Knowledge document control generation results under 10000 training samples sampled from ConvAI2.

Dialogue Context: Persona Profile:
“hi how are you tonight ? i am relaxing in a bubble bath tonight .” “my favorite season is winter.”
“hi how are you doing that sounds great .” “i won a gold medal in the 1992 olympics.”
“it is , how old are you ? i’m 31 , feeling like i’m getting old lol.” “i love cats and have two cats.”
“not old you are still young try 50 i’m getting old .” “i’ve a hat collection of over 1000 hats.”
“lol my bones suggest other wise . do you have any animals ?” “i have a weakness for vanilla ice cream.”

Ground Truth: ”yes i like and love all animals i have two cats.”
DialoGPT-Ori: ”my dogs are my favorite, but i’m pretty fond of all dogs so i don’t have many.”
DialoGPT-FT: ”my dogs and cats are old as well.”
DialoGPT-FUDGE: ”.”
DialoGPT-PPLM: ”I think i’m only 35, but i’ve been in a pretty good relationship so i’ve probably gotten better.”
DialoGPT-SideControl: ”! i do not, i love animals. i don’t know how to have pets, i’m too busy. i have two cats. they are
my best friend.”

Table 17: Knowledge document control generation results under full training samples from ConvAI2.

Controllability Text Quality

METHOD ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.4009 70.74 9.31 0.76 0.0364
DialoGPT-FUDGE 0.4723 - 14.59 1.59 0.0424
DialoGPT-PPLM 0.4470 - 11.11 0.57 0.0382
DialoGPT-SideControl 0.4736 30.33 11.17 0.77 0.0379

Table 18: Semantic label control performances under 100 training samples sampled from DailyDialog, where
λ = 1 for Lcontrol in DialoGPT-SideControl.

Dialogue Context: Dialogue Act:
“Well , have you ever heard of Oulong tea and compressed tea ?” “directive”
“Oh , yeah . Oulong tea is good for one’s health . isn’t it ?”
“You surely know a lot about Chinese tea.”
“Sure , I like drinking tea at teahouses.”
“Oh , so do I.”

Ground Truth: ”Why don’t we go for one now ?”
DialoGPT-Ori: ”I’m sure.”
DialoGPT-FT: ”yes. I have a large appetite. I like eating. I like cooking. I like shopping. I like to go to the markets. ”
DialoGPT-FUDGE: ”I’m not sure if you’re being serious or not, but I’m pretty sure that’s not what he’s saying.”
DialoGPT-PPLM: ”I know that tea from somewhere, so it must be Chinese.”
DialoGPT-SideControl: ”You know your way, I can’t be sure.”

Table 19: Semantic label control generation results under 100 training samples sampled from DailyDialog.
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Controllability Text Quality

METHOD ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.3980 17.74 11.47 0.99 0.0428
DialoGPT-FUDGE 0.4745 - 14.58 1.61 0.0424
DialoGPT-PPLM 0.4947 - 11.35 0.75 0.0401
DialoGPT-SideControl 0.5418 18.74 14.38 1.38 0.0472

Table 20: Semantic label control performances under 1000 training samples sampled from DailyDialog, where
λ = 103 for Lcontrol in DialoGPT-SideControl.

Dialogue Context: Dialogue Act:
“Well , have you ever heard of Oulong tea and compressed tea ?” “directive”
“Oh , yeah . Oulong tea is good for one’s health . isn’t it ?”
“You surely know a lot about Chinese tea.”
“Sure , I like drinking tea at teahouses.”
“Oh , so do I.”

Ground Truth: ”Why don’t we go for one now ?”
DialoGPT-Ori: ”I’m sure.”
DialoGPT-FT: ”But do you like Chinese tea better than American tea?”
DialoGPT-FUDGE: ”I’m not sure if you’re being serious or not, but I’m pretty sure that’s not what he’s saying.”
DialoGPT-PPLM: ”I think it’s the Chinese version that’s for me”
DialoGPT-SideControl: ”You are the second person to make my point!”

Table 21: Semantic label control generation results under 1000 training samples sampled from DailyDialog.

Controllability Text Quality

METHOD ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.4284 15.41 14.51 1.4 9 0.0517
DialoGPT-FUDGE 0.4726 - 14.63 1.62 0.0420
DialoGPT-PPLM 0.5597 - 11.03 0.62 0.0360
DialoGPT-SideControl 0.5443 15.38 14.17 1.55 0.0448

Table 22: Semantic label control performances under 5000 training samples sampled from DailyDialog, where
λ = 104 for Lcontrol in DialoGPT-SideControl.

Dialogue Context: Dialogue Act:
“Well , have you ever heard of Oulong tea and compressed tea ?” “directive”
“Oh , yeah . Oulong tea is good for one’s health . isn’t it ?”
“You surely know a lot about Chinese tea.”
“Sure , I like drinking tea at teahouses.”
“Oh , so do I.”

Ground Truth: ”Why don’t we go for one now ?”
DialoGPT-Ori: ”I’m sure.”
DialoGPT-FT: ”you like the Chinese traditional silk?”
DialoGPT-FUDGE: ”I’m not sure if you’re being serious or not, but I’m pretty sure that’s not what he’s saying.”
DialoGPT-PPLM: ”It’s not tea if you mix tea and tea together”
DialoGPT-SideControl: ”That’s right. We should go to a tea party.”

Table 23: Semantic label control generation results under 5000 training samples sampled from DailyDialog.

Controllability Text Quality

METHOD ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-FT 0.3702 14.59 8.18 0.98 0.0480
DialoGPT-FUDGE 0.4726 - 14.52 1.59 0.0421
DialoGPT-PPLM 0.5853 - 11.27 0.61 0.0385
DialoGPT-SideControl 0.5309 14.36 15.33 1.61 0.0478

Table 24: Semantic label control performances under 10000 training samples sampled from DailyDialog, where
λ = 104 for Lcontrol in DialoGPT-SideControl.
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Dialogue Context: Dialogue Act:
“Well , have you ever heard of Oulong tea and compressed tea ?” “directive”
“Oh , yeah . Oulong tea is good for one’s health . isn’t it ?”
“You surely know a lot about Chinese tea.”
“Sure , I like drinking tea at teahouses.”
“Oh , so do I.”

Ground Truth: ”Why don’t we go for one now ?”
DialoGPT-Ori: ”I’m sure.”
DialoGPT-FT: ”I’m looking forward to tea together. Have you heard the news about that Chinese new food?”
DialoGPT-FUDGE: ”I’m not sure if you’re being serious or not, but I’m pretty sure that’s not what he’s saying.”
DialoGPT-PPLM: ”It’s an excellent way to clean yourself.”
DialoGPT-SideControl: ”You should.”

Table 25: Semantic label control generation results under 10000 training samples sampled from DailyDialog.

Dialogue Context: Dialogue Act:
“Well , have you ever heard of Oulong tea and compressed tea ?” “directive”
“Oh , yeah . Oulong tea is good for one’s health . isn’t it ?”
“You surely know a lot about Chinese tea.”
“Sure , I like drinking tea at teahouses.”
“Oh , so do I.”

Ground Truth: ”Why don’t we go for one now ?”
DialoGPT-Ori: ”I’m sure.”
DialoGPT-FT: ”well, what kind of tea do you like?”
DialoGPT-FUDGE: ”I’m not sure if you’re being serious or not, but I’m pretty sure that’s not what he’s saying.”
DialoGPT-PPLM: ”I know, but it’s just tea.”
DialoGPT-SideControl: ”I’m not in the mood to go.”

Table 26: Semantic label control generation results under full training samples from DailyDialog.


