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Abstract

Scripts – prototypical event sequences describ-
ing everyday activities – have been shown to
help understand narratives by providing ex-
pectations, resolving ambiguity, and filling in
unstated information. However, to date they
have proved hard to author or extract from
text. In this work, we demonstrate for the
first time that pre-trained neural language mod-
els can be finetuned to generate high-quality
scripts, at varying levels of granularity, for a
wide range of everyday scenarios (e.g., bake
a cake). To do this, we collect a large (6.4k)
crowdsourced partially ordered scripts (named
proScript), that is substantially larger than
prior datasets, and develop models that gen-
erate scripts by combining language genera-
tion and graph structure prediction. We define
two complementary tasks: (i) edge prediction:
given a scenario and unordered events, orga-
nize the events into a valid (possibly partial-
order) script, and (ii) script generation: given
only a scenario, generate events and organize
them into a (possibly partial-order) script. Our
experiments show that our models perform
well (e.g., F1=75.7 on task (i)), illustrating a
new approach to overcoming previous barriers
to script collection. We also show that there is
still significant room for improvement toward
human level performance. Together, our tasks,
dataset, and models offer a new research direc-
tion for learning script knowledge.

1 Introduction

Scripts (Schank and Abelson, 1975) represent struc-
tured commonsense knowledge about prototypi-
cal events in everyday situations/scenarios such as
bake a cake (Figure 1). However, while scripts
have been shown to help understand narratives by
providing expectations, resolving ambiguity, and
filling in unstated information (Chambers and Ju-
rafsky, 2008; Modi et al., 2017, inter alia), they
have proved hard to author or extract from text,
with only small script databases available (Regneri

find the cake recipe

gather the ingredients

turn on the oven
mix the ingredients

put the cake batter in the oven

bake for the right amount of time

take the cake out of the oven

Scenario: bake a cake

Figure 1: We collected 6.4k of partially ordered scripts
(proScript) and developed models that take a sce-
nario (e.g., bake a cake) as the input and generate
a (possibly partial-order) script. In proScript, an
event (node) requires that all the precedent events and
paths are happened/executed in advance.

et al., 2010; Chambers, 2017; Ostermann, 2020).
In this work, we show for the first time that

pre-trained neural language models (LMs) can be
adapted to generate high-quality scripts, including
appropriately partial ordering events where a spe-
cific temporal ordering is required only when it is
necessary. LMs have previously been shown to
successfully generate stories (Rashkin et al., 2020),
summaries (Lewis et al., 2020), and commonsense
facts (Bosselut et al., 2019; Hwang et al., 2020).
Here we investigate their application to script gen-
eration. First, we collect large amount (6.4k) of
partially ordered script from crowdsourcing with
a similar but simplified collection method (Ciosici
et al., 2021). We call the dataset as proScript
(PaRtial Order SCRIPT), and this is substantially
larger and more diverse than prior (crowdsourced)
dataset such as DeScript (Regneri et al., 2010) that
has 40 scripts. In proScript, all the events/paths
need to be happened/executed (cf. AND arcs in
AND/OR graphs), whereas prior work on scripts
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do not distinct core and optional/alternative events
explicitly. Additionally, temporal duration of each
event is annotated (e.g., take the cake out of the
oven typically takes one minute in the bake a cake
script), which will potentially link script knowledge
with temporal reasoning in future work.1

Second, with the collected data, we introduce
two complementary tasks: script edge prediction
and entire script generation. In the edge predic-
tion task, given a scenario and unordered interme-
diate events, models must organize the events as
a valid partial-order script. On the other hand, the
script generation task is to generate intermediate
events and the partial-order of those events for a
given scenario. This task requires both natural lan-
guage generation (for nodes) and graph structure
prediction (for edges).

Finally, based on our proposed dataset, we de-
velop models for both edge prediction and entire
script generation tasks. As Chambers (2017) has
revealed that models trained and evaluated on miss-
ing events prediction (i.e., narrative cloze) are in-
sufficient to assess script knowledge, our evalua-
tion scheme evaluate the entire script. We compare
the models against baselines, and show that our
models outperform the baselines for both the edge
prediction and the script generation tasks. Nonethe-
less, there is a significant room for improvement
toward human-level performance – e.g., for edge
prediction, the best model achieves 75.71 of F1
score while human achieves 89.28, and for script
generation, the best model obtains a graph edit dis-
tance of 4.97 (i.e., number of human edits), while
human-created scripts achieve 2.98 on average.
Our contributions are thus:

• A new dataset (proScript) of crowd-
sourced scripts that is substantially larger than
prior (manually crafted) datasets

• Two complementary task definitions against
proScript

• Two new models for these task, providing the
first demonstration that generative models can
be successfully applied, although it is still sig-
nificantly below human levels.

2 Related Work

Script as narrative chain Mooney and DeJong
(1985) and Chambers and Jurafsky (2008, in-
ter alia) have investigated automatically inducing

1The dataset and code are available at https://
proscript.allenai.org/

scripts from (unstructured) corpus. In particular,
Chambers and Jurafsky (2008) introduced scripts
as narrative chain, where verbs with the partici-
pants information (e.g., (claimed, subj), and (ac-
cused, obj) ) named narrative events are partially
ordered according to causal and temporal relations.
They also introduced narrative cloze task, where a
model is expected to predict one removed narrative
event, given all the other narrative events, while
our proposed task requires to generate scripts as
a partial-order graph for a given scenario. The
“script as narrative chain” approach has been ac-
tively studied (Jans et al., 2012; Modi and Titov,
2014; Pichotta and Mooney, 2014; Rudinger et al.,
2015; Granroth-Wilding and Clark, 2016; Weber
et al., 2018; Belyy and Van Durme, 2020), but
it has its drawbacks. First, the source corpora is
mainly from a news domain rather than everyday
scenarios, and induced narrative chains contain
a number of non-script events such as reporting
verbs (Mostafazadeh et al., 2016; Chambers, 2017).
Second, events are highly abstracted as tuples of
verb and the dependency (subj or obj) (Ostermann,
2020). Third, the evaluation scheme for the nar-
rative cloze task is insufficient to evaluate script
knowledge (Chambers, 2017).

Script as paraphrase sets Script as paraphrase
sets (Regneri et al., 2010; Modi et al., 2016; Wan-
zare et al., 2016) is more recent approach to gather
script knowledge, where crowd workers are asked
to write down a sequence of events for a given ev-
eryday scenario (e.g., bake a cake) and the collected
sequences (called event sequence description) are
aligned with paraphrased events being clustered.
The collected (partially ordered) scripts cover wide
variety of everyday situations compared to narra-
tive chains (news domain), but one shortcoming
of this approach is the scalability; it is not easy
to scale because of the cost for manual data col-
lection (Chambers, 2017; Ostermann, 2020). In
fact, Modi et al. (2016) crowdsourced 1000 sto-
ries that cover only 10 scripts, and similarly Reg-
neri et al. (2010) end up with collecting 40 scripts.
The limited amount of data hinders learning script
knowledge by models. Furthermore, they provide
no evaluation metric on the dataset for assessing
model’s script knowledge.

Story generation and tracking state changes
Neural models have been demonstrated to success-
fully generate stories (Kiddon et al., 2016; Peng
et al., 2018; Zhai et al., 2019; Rashkin et al., 2020)

https://proscript.allenai.org/
https://proscript.allenai.org/
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as well as tracking state changes in procedural
texts (Henaff et al., 2017; Bosselut et al., 2018;
Dalvi et al., 2018; Tandon et al., 2020). Our work
is related in terms of generating higher-level agenda
(or plot) of a story and understanding latent pre-
conditions and effects between events. However, a
main difference between these studies and scripts is
that story generation and state change tracking ex-
plicitly generate and/or predict character’s mental
states and entity’s physical attributes (e.g., temper-
ature), whereas scripts focuses on essential core
events (Chambers, 2017) in partial order.

3 Definitions

proScript We define proScript as a di-
rected acyclic graph (DAG), G(V,E) with a given
scenario (s), where V is a set of essential events
{v1, ...vi, ...v|V |} and E is a set of temporal or-
dering constraints between events {eij} which
means that the events vi must precede the event
vj (vi ≺ vj).2 DAGs effectively encode the partial-
ordering of core events–crucial for representing
events which can be performed in any order. For
example, in a bake a cake scenario, one can “gather
the ingredients” and “turn on the oven” in any order
(Figure 1). We emphasize that scripts should not
include non-core events such as discourse related
events (e.g., reporting verbs) as Chambers (2017)
proposed. In proScript, we also exclude alter-
native events in a proScript DAG. For exam-
ple, in a bake a cake scenario, “get ingredients”
and “buy ingredients” are alternative events with
each other because either one is only necessary in
the scenario. By excluding alternative events, we
can resolve ambiguity of the edges in partial order
structure as temporal relations or alternative paths.
Regneri et al. (2010) and Modi et al. (2016) do not
discriminate this ambiguity.3

With the definition, we introduce proScript
task in two complementary settings: script edge
prediction and entire script generation.

Edge Prediction The script edge prediction task
is to predict a set of partial-ordered edges (E) of
the script G(V,E), given a scenario and a set of
unordered intermediate events v ∈ V .

2Technically, proScript is a transitive reduction of a
DAG. In short, transitive reduction of G does not have any
short cut edges between nodes. In proScript, we add a
single root node (vr) and scenario (s) as a unique leaf node.

3We focus on events and the partial-ordering for the pro-
tagonist (Chambers and Jurafsky, 2008), and leave the identi-
fication of other participants for future work.

Preliminary Question:
How long will it take for this scenario?

1.5

Main Question 1:
Describe 5 to 7 essential steps and each time duration.

……

Suppose a scenario where someone wants to “bake a cake”.

second(s)
minute(s)
hour(s)
day(s)
month(s)
year(s)

find the cake recipe 10

second(s)
minute(s)
hour(s)
day(s)
month(s)
year(s)

gather the ingredients 15

second(s)
minute(s)
hour(s)
day(s)
month(s)
year(s)

turn on the oven 2

second(s)
minute(s)
hour(s)
day(s)
month(s)
year(s)

……

Main Question 2:
Create a flowchart of the steps (possibly in partial order, where 
temporal ordering is required only when it is necessary.)

gather the ingredients

turn on the oven

find the cake recipe

mix the ingredients

put the cake batter in the oven

bake for the right amount of time

take the cake out of the oven

Figure 2: Annotation procedure for proScript data
collection.

Script Generation The script generation task is
to predict a partial order script G(V,E), but only
the scenario is given. Models are additionally ex-
pected to generate events (V ) in natural language.

4 Datasets

Source of Scenarios We collected scenarios
from DeScript (Wanzare et al., 2016), Vir-
tualHome (Puig et al., 2018), and ROCSto-
ries (Mostafazadeh et al., 2016). DeScript consists
of 40 daily scenarios (e.g., making coffee) and we
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use all of them. VirtualHome is constructed to
learn activities interactively in a household in a
3D simulated world. It has 233 indoor tasks (e.g.,
turn on light) and we include them as scenarios.
Since these two datasets have only small amount
of scenarios, we additionally extracted phrases for
scenarios from ROCStoreis (Mostafazadeh et al.,
2016), by manually curating patterns with want(ed)
to ... (e.g., go to Hawaii), need(ed) to ... (e.g, get
a haircut) and look(ing) to (e.g, buy a television).
The scenarios we collected from ROCStories in-
clude both high-level long-term ones (e.g., open a
small business) and fine-grained short-term ones
(e.g., sign into an email account).

Crowdsourcing proScript For the collected
scenarios, we crowdsource the corresponding
proScript on the Amazon Mechanical Turk.
Our crowdsourcing procedure (Figure 2) is sim-
ilar but simplified method to (Ciosici et al., 2021).
First, given a scenario (e.g., bake a cake), each
crowdworker is required to describe five to seven
core events that they are essential for the sce-
nario (Chambers, 2017) with the estimated time
it takes to complete each event.4 In the second
question, crowdworkers confirm the set of steps
and they are asked to create a flowchart (DAG)
by connecting the steps possibly in partial order.
When crowdworkers make a submission, valida-
tion function is executed to check if the created
flowchart is a valid (transitive reduction of) DAG
that does not contain a cycle/loop and any short cut
edge.

Due to the complex nature of this crowdsourc-
ing procedure, it is crucial to maintain the qual-
ity. To filter out noisy scripts and resolve conflicts,
two different workers are asked to sort the same
set of events in partial order (i.e., the same as the
second question described above),5 and we filter
out scripts (DAGs) that have low agreement.6 To
collect proScript with both micro and macro-
scopic scenarios, we iteratively picked events in
the DAGs and use them as an additional source of

4We set the number around 5-7 to balance the cognitive
load on the crowdworkers and to stay within budget. We
found this number to be a good balance given the spectrum of
granularity in our dataset.

5In our crowdsourcing tasks, we maintained a pay rate of
12$/hr or higher. For example, crowd workers were paid $0.8
for the script creation and $0.4 for the validation.

6Technically, we compute F1 scores between the DAGs
(§5.3) and set a threshold to filter out. Our cutoff F1 is 65,
which we arrived at based on manual analysis. We keep the
script with the highest F1 (break ties by a random coin toss).

buy some new 
clothes (1 hour)

go to bathroom (5 mins)

sign into email 
account (1 min)

replace a closet door (1 day)

find a new job
(1 month)

open a small business (1 year)
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Figure 3: Normalized histogram of time duration in
proScript dataset. We see the dataset contains
scripts with various time granularity.

finer-grained scenarios. For example, turn on the
oven is a new fine-grained scenario derived from
bake a cake.

Dataset Statistics In total, we collected 6,414
valid scripts that include 311,502 pairs of events,
and we split the proScript into training (3,252
scenarios), development (1,085), and test set
(2,077). The training and development sets con-
sist of scenarios collected from ROCStories, and
the test set consists of those from ROCStories, De-
Script, and VirtualHome. This helps us evaluate in-
and out-of-domain performance.

train dev test (in) test (out)

source ROC ROC ROC DeScript
VirtualHome

scenarios 3,252 1,085 1,106 971

The average number of events in proScript
scenarios is 5.45 and the maximum degrees of
DAGs in the training set are distributed as follows:
2,198 scripts (67.6%) for degree 1, 915 scripts
(28.1%) for degree 2, 108 scripts (3.3%) for de-
gree 3, 31 scripts (0.9%) for degree 4 and above.

Figure 3 shows the normalized histogram of the
typical time to take for each script in proScript
dataset. Most of the scripts take between a minute
and an hour (e.g., “go to bathroom”, “buy some
new clothes”), while there are a reasonable amount
of high-level long-term scripts (e.g., “find a new
job”, “open a small business”).

5 proScript Edge Prediction

5.1 Models
For the proScript edge prediction task (§3), we
implement a two-step approach baseline (pairwise
model) and compare it with our proposed end-to-
end neural method (proScriptedge-pred).

Pairwise Model We implement a two-step base-
line where we train a binary classifier to predict the
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Input: unordered events
and scenario (bake a cake)

Step0: turn on the oven;
Step1: bake for the right 
           amount of time;
Step2: mix the ingredients;
Step3: find the cake recipe;
Step4: gather the ingredients;
Step5: put the cake batter 
           in the oven;
Step6: take the cake out of 
           the oven;

Step3 --> Step4; 
Step3 --> Step5;
Step4 --> Step2; 
Step2 --> Step4;
Step4 --> Step0; 
Step0 --> Step3;
Step3 --> Step6;

Output: Edges
(in DOT language)

=

3

4
0

5

2

1

6

G

Figure 4: Example of input and output for the
proScriptedge-pred model. The input is a flattened se-
quence of events, and the output is a flattened sequence
of edges of the (predicted) partial-order script in DOT
language (Gansner et al., 1993).

precedence between pairs of events, followed by
building a partial order script G by aggregating the
predicted relations across all pairs of events.

Formally, the classifier takes a pair of events (vi,
vj) and predicts the precedence eij – i.e. the event
vi precedes (≺) vj .

eij = p(vi ≺ vj |vi, vj) (1)

Scores by the classifier are used as weights to
create an adjacency matrix of G which is then auto-
matically converted into a partial-order script with
heuristics – when G contains a cycle, we iteratively
remove edges by choosing the one with minimum
weight until we get a valid DAG.

proScriptedge-pred We propose an end-to-end
neural model, which takes all the (unordered)
events (v) and the scenario (s) as the input (x)
and predicts the edges (E) in a partial-order script
(G) at one time. To represent E in a linear for-
mat (y), we use DOT, a graph description lan-
guage (Gansner et al., 1993) as shown in Figure 4.7

By flattening the nodes and edges of G, we ap-
ply neural encoder-decoder models. Formally, flat-
tened unordered events and scenario as x are em-
bedded as continuous representation (emb(x)) by
the encoder, then the decoder will generate tokens
(y) as follows:

p(y1, . . . , yN |x1, . . . , xM ) = (2)
N∏

n=1

p(yn|emb(x1, . . . , xM ), y1, . . . , yn−1).

Compared to the pairwise model, the
proScriptedge-pred model uses information
from all the events jointly to build partial-order
script with a broader context.

7Madaan and Yang (2020) have previously shown that
finetuned LMs can generate valid DOT language.

5.2 Evaluation Metrics
Given Ĝ(V, Ê) as a predicted (partial order) script
and G(V,E) as the correct (oracle) script, the F1
score is defined as follows:

Precision =
|E&Ê|
|E|

, Recall =
|E&Ê|
|Ê|

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
.

For evaluating human performance, we show ran-
domly shuffled steps to crowdworkers and ask them
to create a partial-order script. We compute the F1-
score of the script with the reference script.

5.3 Experiments
Setup For the binary classifier (pairwise model),
we use two variants of the Transformer (Vaswani
et al., 2017): RoBERTa-large (Liu et al., 2019) and
T5-11B (Raffel et al., 2020).

When training (i.e., fine-tuning) RoBERTa,8

we use a grid-search for choosing the best hyper-
parameters from the best performed model on the
development set: epochs {1, 2, 3}, learning rate
{1e-5, 1e-6, 1e-7}, batch size {16, 24, 32}. For
training the T5 model as the pairwise model, we
followed a default set of hyper-parameters that are
recommended in Raffel et al. (2020).9

For the proScriptedge-pred model, we use the
T5 with different model sizes (Large and 11B) and
training sizes (100, 1k, and all 3.2k) to see how
these factors affect the performance.10 We fol-
lowed a default set of hyper-parameters for the
T5 models.

Results The results are shown in Table 1. We
find that the pairwise and proScriptedge-pred
models significantly outperform the random base-
line where the edges are randomly assigned. The
proScriptedge-pred T5-11B model outperforms
the pairwise T5-11B model. This indicates that
the proScriptedge-pred model benefits from a
larger context from the input to predict edges
more accurately, although there is still a signifi-
cant room for improvement toward human-level
performance.11 Regarding the difference between

8We used the implementation from Huggingface Trans-
formers (Wolf et al., 2019).

9https://github.com/google-research/
text-to-text-transfer-transformer

10We also used BART (Lewis et al., 2020) and GPT2 (Rad-
ford et al., 2019) as the baselines, but we found that both failed
to generate canonical DOT language.

11We find that 99% of the outputs from proScriptedge-pred
are valid DOT language.

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
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dev test (all) test (in domain) test (out domain)
Models F1 P R F1 P R F1 P R F1 P R
random 21.30 21.08 21.72 21.03 21.00 21.26 20.57 20.52 20.84 21.32 21.27 21.58
Pairwise (RoB) 65.75 67.05 64.71 61.29 62.85 60.06 63.25 64.97 61.89 59.06 60.44 57.98
Pairwise (T5) 70.96 71.93 69.76 67.64 69.44 66.18 69.50 71.41 67.96 65.51 67.20 64.16
proScr(11B-100) 56.05 56.58 55.75 52.26 52.91 51.89 54.98 55.67 54.59 49.16 49.76 48.83
proScr(11B-1k) 65.98 66.49 65.71 60.55 61.24 60.15 64.64 65.40 64.20 55.89 56.51 55.54
proScr(L-all) 66.25 66.89 65.83 63.64 64.22 63.27 65.76 66.38 65.35 61.23 61.76 60.91
proScr(11B-all) 78.20 78.48 78.14 75.71 75.93 75.72 77.75 78.03 77.71 73.37 73.54 73.46
Human 89.32 89.60 89.21 89.28 89.91 88.86 90.04 90.54 89.74 88.71 89.44 88.18

Table 1: Results for proScript edge prediction task. In this table, proScript refers to proScriptedge-pred.
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Figure 5: Model performance by pairwise (T5-11B),
proScriptedge-pred (T5-11B) and human according to
the maximum degree of the script (DAG).

in and out of domain, we find that the in-domain
performance is higher than the out-of-domain per-
formance, whereas human performance is robust
regardless of the domain difference. We also see
that the training set (100, 1k, all) and model sizes
(Large, 11B) significantly affect the performance
of proScriptedge-pred.

Figure 5 shows the performance of the pair-
wise (T5-11B) model, proScriptedge-pred (T5-
11B) and human according to the (maximum) de-
gree of the script DAGs. We find that scripts
with higher degree are more difficult to predict
for both proScriptedge-pred and pairwise mod-
els, whereas human shows smaller decrease for
predicting higher-degree scripts.

6 proScript Generation

6.1 Models
proScriptgen The proScript generation
task combines natural language generation (i.e.
generating events in natural language) with graph
structure prediction over the generated events (i.e.
organizing the events into a DAG). Our approach
(proScriptgen) is to formulate it as an end-to-
end problem, similar to the proScriptedge-pred
for the proScript edge prediction task (§5.1).

Input: scenario and # of events
 formatted as natural language question

You want to bake a cake. 
How can you do this in 7 steps?

Output: events and edges
(in DOT language)

=

0

1
3

4

2

5

6

G

Step0: find the cake recipe;
Step1: gather the ingredients;
Step2: mix the ingredients;
… omitted …
Step5: bake for the right 
           amount of time;
Step6: take the cake out of 
           the oven;
Step0 --> Step1; 
Step0 --> Step3;
… omitted …
Step5 --> Step6;

Figure 6: Example of input and output for
proScriptgen. The input is a scenario and number
of events to generate in natural text format, and the out-
put is a sequence of events and edges of the script.

Given a scenario (s) and the number of events to
generate in the script, proScriptgen generates
events and edges for the partial-order script (G)
in DOT language (Figure 6). Formally, we use
the same encoder-decoder framework (eq.2) except
that a scenario and number of steps to generate are
described in natural text as x and the decoder is
expected to generate both events and the edges (as
y) in the script jointly.

Transfer learning from WikiHow data Trans-
fer learning often helps improve the performance
when it is (pre-)trained on a similar task (Peters
et al., 2018; Devlin et al., 2019). As additional
resource for pre-training proScriptgen, we use
procedural texts extracted from WikiHow,12 which
contains 130k instances of a sequence of essen-
tial steps for a given topic in various categories
(e.g., health, finance, hobbies, etc.). It is impor-
tant to note that all the procedures in WikiHow
are formatted as sequences rather than a partial-
order, and therefore the model is biased towards
generating sequences. We refer to this approach as
proScriptgen-transfer.

Pipeline approach An alternative approach
is to use proScriptgen followed by the

12https://www.wikihow.com/

https://www.wikihow.com/
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proScriptedge-pred model. The approach re-
lies on proScriptgen to generate a set of
events but allows to fix the predicted edges via
the proScriptedge-pred model. We refer to
this approach as proScriptgen-pipe, and study
whether it can improve the performance over
proScriptgen.

6.2 Evaluation Metrics

Chambers (2017) emphasizes the importance of
human annotation for evaluating script knowledge.
However, human evaluation for the proScript
generation task is challenging because it involves
natural text generation and graph structure predic-
tion. As in the text generation tasks such as ma-
chine translation and text summarization, there are
several possible correct answers. Therefore, we
use two complementary evaluation metrics for the
proScript generation task: (i) graph edit dis-
tance, and (ii) pairwise comparison. These are the
absolute and relative measures of performance, re-
spectively. Graph edit distance (Abu-Aisheh et al.,
2015) computes the distance between two graphs.
Formally, given two graphs G1 and G2,

GED(G1, G2) = min

G1

d1,...,dk−−−−−→G2

k∑
i=1

cost(di) (3)

where d1, . . . , dk is a list of graph edit operations
from G1 to G2. The operations include deletion, in-
sertion, and replacement for vertex and edge. Each
operation has its cost and we set the cost to be 1 for
all the operations in our evaluation for simplicity.
We use an averaged graph edit distance between
a model-generated script and the revised scripts
by two human annotators. For evaluating human
performance, a crowdworker writes a partial-order
script, given a scenario. Then, similarly to the
model evaluation, two human annotators are asked
to revise the partial-order script, and we take the
average of the two graph edit distances.

The graph edit distance is indicative of the qual-
ity of the generated scripts; higher-quality scripts
must have smaller graph edit distances to the gold-
standard (i.e. they require a smaller number of
human revisions).

For the relative measure, we employ pairwise
human judgments where we ask annotators to com-
pare a pair of scripts generated by proScriptgen
with those from the other approaches.

Pipeline-dev

Transfer-dev

Human-dev

Pipeline-test

Transfer-test

Human-test

20.3

30.6

55.3

25.2

28.7

54.0

56.6

45.6

22.7

56.6

44.4

32.7

23.1

23.8

22.0

18.2

26.9

13.3

better than proScript equal worse

Figure 7: Pairwise judgments (%) between
proScriptgen and the other approaches.

6.3 Experiments

Setup For our proScriptgen, we use T5-11B.
Similarly to the proScriptedge-pred, we follow
the default set of hyper-parameters recommended
in (Raffel et al., 2020). For proScriptgen-transfer,
we pre-train the proScriptgen with the 130k
procedures, and finetune it on the proScript
dataset. For the proScriptgen-pipe, we first ob-
tain the actions generated by proScriptgen (ig-
noring the edges), and use the set of events as in-
put for proScriptedge-pred, which is trained (see
§5.3) to predict the edges.

As defined in §3, we use graph edit distance and
pairwise judgments to evaluate the quality of the
generated scripts. For computing graph edit dis-
tances, we select 500 scripts (250 for dev and test
sets) and ask crowdworkers to revise the generated
scripts as necessary (e.g., add/delete/replace the
events and the edges). We use the revised scripts
as gold-standard. Each script is revised by two an-
notators, and we compute the average of the graph
edit distances.

In pairwise judgments, we compare the scripts
generated by proScriptgen with those from the
other approaches. We randomly select 150 pairs,
and ask three crowdworkers to judge whether
the script generated by proScriptgen is better,
worse, or equal to the other (i.e. transfer, pipeline,
or human). We use majority vote to decide the final
pairwise human judgment between the two scripts.

Results The pairwise judgment result is shown
in Figure 7. We see that the pipeline and
transfer models show slight preference over the
proScriptgen (except pipeline-dev), although
the difference is not large. We also see that
the transfer model constantly have more prefer-
ence over the proScriptgen than the pipeline
model in both dev and test sets. Regarding the
pairwise comparison with human-created plans,
proScriptgen still has a significant room for im-
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Split Models Graph Edit Dist V-Del V-Ins V-Rep E-Del E-Ins E-Rep
proScriptgen 4.73 0.426 0.192 0.581 1.558 1.308 0.671

dev proScriptgen-transfer 4.79 0.337 0.195 0.679 1.491 1.281 0.775
proScriptgen-pipe 4.88 0.397 0.159 0.560 1.705 1.407 0.661
Human 2.78 0.155 0.161 0.144 1.123 1.011 0.199

proScriptgen 4.97 0.581 0.142 0.656 1.668 1.184 0.709
test proScriptgen-transfer 5.38 0.438 0.213 0.775 1.713 1.402 0.835

proScriptgen-pipe 5.41 0.594 0.143 0.671 1.880 1.292 0.787
Human 2.98 0.168 0.149 0.130 1.276 1.074 0.189

proScriptgen 4.57 0.513 0.158 0.633 1.471 1.108 0.687
test (in domain) proScriptgen-transfer 5.03 0.339 0.299 0.649 1.575 1.496 0.677

proScriptgen-pipe 5.10 0.561 0.147 0.630 1.765 1.217 0.744
Human 3.03 0.168 0.211 0.154 1.223 1.091 0.206

proScriptgen 5.43 0.659 0.124 0.681 1.894 1.270 0.735
test (out domain) proScriptgen-transfer 5.76 0.549 0.115 0.916 1.867 1.296 1.013

proScriptgen-pipe 5.81 0.659 0.116 0.795 1.961 1.267 0.941
Human 2.91 0.170 0.074 0.102 1.340 1.054 0.170

Table 2: Results for proScript generation task (dev, test, in-domain test and out-of-domain test set). We
measure the average graph edit distance between generated script and the two human revisions (lower the better).
We also show the average number of each graph edit operation ({Delete, Insert, Replace} × {Vertex, Edge}).
Random (edge) baseline shows 11.06 edit distance for the dev set and 10.95 for the test set.
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Figure 8: Histograms of graph edit distance (in dev
set). The number of scripts (y-axis) according to the
(binned) graph edit distance (x-axis).

provement toward human level.
Table 2 shows the average graph edit distance be-

tween the generated script and the human revisions.
We find that neither transfer nor pipeline help to im-
prove the graph edit distance over proScriptgen,
indicating that proScriptgen is already a strong
baseline (see examples in Appendix). The rea-
son of no improvement by the transfer approach
may be because WikiHow consists of sequences
rather than partially ordered steps. No improve-
ment by the pipeline approach indicates that the
proScriptgen can directly generate valid script
in both events and edges. Further studies for im-
provements are needed for future work.

Graph edit distance (Table 2) is absolute eval-
uation, and it objectively treats each graph edit

equally. Pairwise comparison (Figure 7) is relative
evaluation comparing generated scripts with the
script quality/goodness being considered by human
annotators. These two metrics produce slightly dif-
ferent results but this is not strictly a contradiction,
as they are measuring different things.

In terms of the edit types, many of the edits
are edge-related, suggesting that proScriptgen
and the variants are all good at generating events
but struggles with ordering them. Regarding in-
and out-of domains in the test sets, we observe
that proScriptgen and the variants have slightly
better performance for in-domain scripts than out-
of domain, while human created scripts are not
affected by domains. These findings are consistent
with the result in the edge prediction task (§5.3).

Figure 8 shows a histogram of the graph edit
distance. It is evident that human created scripts
are corrected less often than scripts generate
by proScriptgen, whereas the scripts from
proScriptgen and the variants often have a large
number of edits (e.g., 4 or more). It is interesting
to see that fewer number of scripts have 1 to 3 edits
(except scripts created by human). The reason is
because one simple revision tends to yield multiple
graph edits (e.g., one node insertion yields multiple
edge insertions).

Error Analysis We performed manual error anal-
ysis for the scripts generated by each model. We se-
lected 40 random scripts that have non-zero graph
edit distance and classified the human revisions into
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Revision types generated script (subgraph) revised script (subgraph)
missing event wait for the plane → exit the plane wait for the plane → get on the plane → exit the

plane
incorrect order get off the car → drive to the zoo drive to the zoo → get off the car
irrelevant or re-
dundant event

put clothes in dryer → place clothes into dryer →
dry clothes

put clothes in dryer → dry clothes

order ambiguity
by context

get a visa → ... → get off the plane → trip to a
foreign country

get off the plane → get a visa (on arrival) → trip
to a foreign country

granularity of
events

get out of the bed → go to the kitchen get out of the bed → open the bedroom door → go
to the kitchen

paraphrased move into new apartment move to a new apartment

Table 3: Examples for each revision type.

Revision types proScript Transfer Pipeline Human
(edge) incorrect order 15.79 21.62 24.32 10.00

crucial errors (node) missing event 5.26 2.70 2.70 0.00
(node) irrelevant/redundant event 10.53 13.51 2.70 0.00
(edge) order ambiguity by context 31.58 32.43 40.54 33.33

minor revisions (node) granularity of events 31.58 24.32 21.62 26.67
(node) paraphrased event 0.00 0.00 5.41 6.67

wrong revisions 5.26 5.41 2.70 23.33

Table 4: Revision type distribution (%) by each model.

7 types: (1) incorrect order of events, (2) missing
event, (3) irrelevant/redundant event, (4) order am-
biguity by context, (5) granularity of (core) events,
(6) paraphrased event, and (7) wrong human revi-
sion/correction (examples are shown in Table 3).
Approximately, the first three error types indicate
that the script has crucial errors, the next three
types are trivial/minor revisions where both gen-
erated and revised scripts are plausible. The last
type of revision is the one where the revised script
is wrong (or worse).

Table 4 shows the statistics of each error type.
We see that edge-related revisions are more fre-
quent than node-related revisions. The generated
nodes are of a high quality (among all revisions by
human, 10.53% of them are related to irrelevant
or redundant nodes), and the majority of revisions
are minor modifications. This is consistent with
the results in graph edit distance. Overall, we find
that minor revisions are more frequent than cru-
cial errors, indicating that proScriptgen and the
variants generates reasonably good scripts. In con-
trast, crucial errors are quite rare in human created
scripts, indicating a significant room for future in-
novation.

7 Conclusions

We show for the first time that pre-trained neural
language models can be adapted to generate partial
order scripts. We collect 6,400 partially ordered
script from crowdsourcing (proScript), which
is substantially larger than prior manually crafted

datasets. With the proScript dataset, we intro-
duced two complementary task and models, which
combine language generation and graph structure
prediction, providing the first demonstration that
generative models can be successfully applied to
script generation, although it is still below human
performance. We believe that proScript dataset
and models would advance future work on vari-
ous NLP tasks such as story generation, machine
comprehension, temporal reasoning, and high-level
planning.
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A Appendix

A.1 Reproducibility
For training RoBERTa-large as a pairwise model,
we use Quadro RTX 8000 (48GB memory), which
takes around 4.5 hours to train a model. RoBERTa-
large consists of 355M parameters with 24 lay-
ers, 1,024 of hidden embedding size, and 16 of
the attention heads. T5-large model has 770M pa-
rameters with 24-layers, 1024-hidden-state, 4096
feed-forward hidden-state, and 16 attention heads.
T5-11B models has 11B parameters with 24-layers,
1024-hidden-state, 65,536 feed-forward hidden-
state, 128 attention heads. We use TPU (v3-8) on
google cloud platform. It takes 3 hours in average
to train a edge prediction model, and 5 hours for
plan generation models.

A.2 Plans generated by proScriptgen

We show some example scripts generated by
proScriptgen in Figure 9. In each example,
proScriptgen which takes scenario and the num-
ber of steps as the input (e.g., play the organ, in 5
steps) and generates a script DAG.

Scenario: play the organ

Scenario: audition for a musical

Scenario: drink a glass of milk

Figure 9: Example scripts generated proScriptgen.


