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Abstract

Executing natural language instructions in a
physically grounded domain requires a model
that understands both spatial concepts such as
left_of and above, and the compositional lan-
guage used to identify landmarks and articu-
late instructions relative to them. In this pa-
per, we study instruction understanding in the
blocks world domain. Given an initial arrange-
ment of blocks and a natural language instruc-
tion, the system executes the instruction by ma-
nipulating selected blocks. The highly compo-
sitional instructions are composed of atomic
components and understanding these compo-
nents is a necessary step to executing the in-
struction. We show that while end-to-end train-
ing (supervised only by the correct block loca-
tion) fails to address the challenges of this task
and performs poorly on instructions involving
a single atomic component, knowledge-free
auxiliary signals can be used to significantly
improve performance by providing supervi-
sion for the instruction’s components. Specifi-
cally, we generate signals that aim at helping
the model gradually understand components
of the compositional instructions, as well as
those that help it better understand spatial con-
cepts, and show their benefit to the overall
task for two datasets and two state-of-the-art
(SOTA) models, especially when the training
data is limited—which is usual in such tasks.

1 Introduction

One of the hallmarks of artificial intelligence is
designing robots that can understand and execute
natural language instructions in a grounded domain
(Winograd, 1972) . There is a strong need for this
technology in several applications (Branavan et al.,
2009; Tellex et al., 2011; Chen and Mooney, 2011),
where the robot needs to ground relevant parts of
the instruction to the environment. Blocks World
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Figure 1: Task: Given a configuration of blocks and an
instruction, predict the source block and target location.
Note the multiple spatial concepts and compositional
nature of the instruction. Our proposed approach cor-
rectly identifies the source block while the SOTA (Tan
and Bansal, 2018) model fails on this example.

is a popular platform to study instruction under-
standing in physically grounded environments and
presents several key reasoning challenges (Wino-
grad, 1972; Narayan-Chen et al., 2019; Jayannavar
et al., 2020; Bisk et al., 2016; Mehta and Gold-
wasser, 2019; Tan and Bansal, 2018; Misra et al.,
2017; Bisk et al., 2018). In Bisk et al. (2016), the
environment consists of a number of blocks placed
on a board. The robot receives an instruction and
the current block configuration as input and has to
execute the instruction by manipulating appropri-
ate blocks. There are two scenarios: the easier one
where blocks have labels and the more challenging
one in which the blocks are unlabeled, thus neces-
sitating the use of involved referential expressions.
In the labeled dataset, the blocks have names: move
the nvidia block to the right of the hp block, mak-
ing grounding easier. However, as shown in Fig. 1,
instructions in the unlabeled dataset are highly com-
plex, involving multiple spatial concepts and a high
degree of compositionality. To identify the block
to be moved (source block) one needs to ground
the block nearest (to) the left hand corner and un-
derstand the above and right spatial concepts. Sim-
ilarly, identifying where the block is to be moved
to (target location) requires grounding the block
below the centermost block and understanding the

http://cogcomp.org/page/publication_view/951


2077

spatial concepts below and right. In this paper we
ask a fundamental question: do models trained on
small data-sets for a grounded task, really learn
compositional reasoning or do they merely over-fit
to a particular data-set ? We show that existing
models trained in an end to end manner to predict
source block and target coordinates, given the in-
struction and current configuration of blocks, fail
to generalize to simple instructions. Existing ap-
proaches do not address the compositionality of
these instructions nor deal directly with the com-
plex spatial concepts. In this paper, we attempt
to bridge this gap by augmenting the end-to-end
training in a knowledge-free way, with (i) data aug-
mentation and (ii) task augmentation, to improve
performance on the standard test set. Further, we
show in Sec 3.1, while existing models perform
poorly on the generated atomic instructions, our
approach removes this vulnerability.

In (i) we use a few simple templates to auto-
matically generate examples that focus on a single
spatial concept. Then, we pre-train the model on
this synthetic data before training on the more com-
plex, original training data. This approach is an
instance of Curriculum Learning (Bengio et al.,
2009) where the difficulty of an instance is related
to the number of spatial concepts it contains. In (ii),
we create auxiliary tasks which are coarser than the
location prediction task (e.g. quadrant prediction)
and train the model on these tasks jointly with the
main task (Thung and Wee, 2018). The auxiliary
tasks help teach the model spatial concepts by pro-
viding explicit supervision for these components
in the instruction. We supervise the auxiliary tasks
in an alternate fashion with the main task to train
the model. We emphasize that both our proposed
solutions require no additional supervision. We
observe that compositional data augmentation and
the auxiliary tasks improve generalization on the
synthetic test data and on the standard test data.
Our method is evaluated on different datasets (la-
beled blocks and unlabeled blocks) and on different
models (Bisk et al., 2016; Tan and Bansal, 2018).

2 Augmenting End-to-End Training

Given the current configuration ((x, y, z) locations
of a maximum of 20 blocks) and an instruction, the
model has to move the corresponding block. This
has two sub-tasks—(1) Source Prediction: predict
the block to be moved and (2) Target Prediction:
predict the location the source block is to be moved

Figure 2: Network architecture with auxiliary tasks.
Offset, reference are fully connected (FC) layers. De-
tails of the shared backbone is in (Bisk et al., 2016).

to. Figure 2 shows the model architecture we build
using a baseline model for eg: (Bisk et al., 2016) as
the backbone. We also experiment with the state-
of-the-art model from Tan and Bansal (2018). Im-
portantly, Bisk et al. (2016) treats both source and
target sub-tasks as regression problems while, Tan
and Bansal (2018) treats the source sub-task as a
classification problem and the target as regression.

2.1 Data-Augmentation

Most of the instructions involve several spatial re-
lations and a high degree of compositionality. Our
data augmentation strategy is designed to (i) teach
the model the individual spatial concepts which
form components of such compositional instruc-
tions. (ii) test if existing models do reasoning by
evaluating them on the simpler, generated instruc-
tions. We later show this data augmentation strat-
egy benefits both performance on the standard test
set and on the generated test-sets. We use multiple
surface forms for action words and spatial concepts
(eg: right, east) based on a small set of common
substitutions in the training data 1. For the challeng-
ing unlabeled blocks case, the data augmentation
templates cover the following categories (Table 1):
(a) Fixed-Target (T) vs Fixed-Source (S): For T-
augmentation, the target location is kept fixed (e.g.
the center of the board) and for S-augmentation,
the source is kept fixed (e.g. the center block).
(b) Absolute (A) vs Relative (R) spatial concepts:
For the A-augmentation, we teach the model to
identify concepts like top right corner, which de-
pends on the board (fixed) but not on the config-
uration of the blocks. For R-augmentation, we
teach the model to identify concepts like rightmost,

1The data augmentation templates are described in Ap-
pendix A.
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which depends on the configuration of other blocks.
For the Labeled blocks case, we only use one tem-
plate category that teaches the model relative spa-
tial relations between the named blocks. The gener-
ated data is used to pre-train both the models from
Bisk et al. (2016) and Tan and Bansal (2018).

Template Example Sentence
TA Move the northwest corner block to the center.
TR Move the leftmost block to the center.
SA Move the center block to the top left corner.
SR Move the center block two spaces to the left.
Labeled Move the BMW block above the Shell block.

Table 1: Templates used for data augmentation. TA,
TR, SA, SR corresponds to a combination of the Fixed-
Target/-Source with Absolute/Relative augmentation.

2.2 Auxiliary Tasks

We now describe auxiliary tasks which provide
explicit signals to the model regarding the com-
ponents of a complex instruction. For instance,
providing feedback regarding the quadrant of the
board in which the source block lies in, helps the
model learn concepts like northeast corner.

Backbone Model: In principle, any model for this
task can be used as the backbone with auxiliary
branches added. In Fig. 2 we show the model from
Bisk et al. (2016) modified for our setting. The hid-
den state of the LSTM and world state are shared
with the auxiliary task branches (described below).
The experiments are conducted on the source and
target prediction sub-tasks separately. The main
branch is trained with mean squared loss. The aux-
iliary branches use the cross-entropy loss. During
the training stage, we alternate among the main pre-
diction branch and the two auxiliary branches.2 At
test time, we only keep the main task branch. For
Bisk et al. (2016), evaluation is done in terms of the
mean block-distance: euclidean distance between
the ground truth and model prediction, normalized
by the block length, and using accuracy for Tan
and Bansal (2018).

Quadrant Auxiliary Task: Aims at teaching the
model absolute spatial concepts like top right cor-
ner. The model is made to predict the answer to
Which quadrant does the source/target belong to?
and is provided feedback as the top left/ top right/
bottom left/ bottom right quadrant.

2We use the Adam Optimizer (Kingma and Ba, 2014) with
a learning rate of 0.001 and 0.0001 for the main and auxiliary
branches respectively. We also experimented with multi-task
training with a weighted loss on the 3 tasks which gave similar
performance gains but takes longer to train.

Model
Source Target

BD RI% BD RI%
BU
BU+ Aux.
BU+Aux.+ Aug.
BL
BL+Aux.
BL+Aux.+Aug.

3.47
3.21
3.11
0.19
0.18
0.17

—
7.49
10.37

—
5.26
10.53

3.70
3.44
3.37
1.05
0.99
0.97

—
7.03
8.92
—

5.71
7.62

Table 2: Ablation study of our augmentation approach
against the baselines (unlabeled: BU, labeled: BL),
trained on the full data. Aux. denotes auxiliary tasks
and Aug. denotes data augmentation. BD denotes
mean block-distance (defined in Sec. 2.2) and lower
is better. RI denotes the relative improvement (in per-
centage) of each entry over the corresponding baseline
performance (BU,BL) (Bisk et al., 2016). In the labeled
scenario, the gains are small (since BL is a strong base-
line in this easy task) but are statistically significant.

The hidden state is concatenated with the world
state and then passed through a fully-connected
layer to solve the four-class classification problem.
Training on this auxiliary task jointly with the main
task enables the model to learn absolute spatial
concepts, such as, southeast.

Anchor Auxiliary Task: Aims at teaching the
model relative spatial concepts like leftmost. The
model predicts the answer to Is block #i on the
top/bottom/left/right of the source (or target)? with
True or False for each of the four directions top/
bottom/ left/ right. The hidden state and the world
state are passed through a fully-connected layer for
an output of size 20 × 4. For each block that is
present on the grid, the model outputs 1 or 0 for
each of the 4 directions based on its relative posi-
tion to the source/target. Training on this auxiliary
task jointly with the main task can help the model
learn relative spatial concepts. For instance, for the
instruction Move the leftmost block ..., the model
learns that all blocks are to the right of the source
block from the received feedback. Both auxiliary
tasks are created from the main task by a determin-
istic function of the world and the target/source
location, and requires no extra supervision.

3 Experiments

Here we present empirical evidence that shows the
role of (1) pre-training with simpler instructions.
(2) joint training with auxiliary tasks. We use the
data sets from (Bisk et al., 2016): the un-labeled
blocks data set has 2493 training and 720 test ex-
amples and the labeled blocks data set has 11871
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Figure 3: Our proposed augmentation helps the Tan
and Bansal (2018) model converge faster to a higher
source accuracy on the test set, giving 8.65% rel. gain.

training and 3177 test examples. We randomly
batch the data across the different board configu-
rations, with a batch-size of 9 3. The experiments
are conducted on the source and target prediction
sub-tasks separately. We compare the benefits of
data augmentation, task augmentation and a com-
bination of both for each baseline model (BU and
BL) (Bisk et al., 2016) in Table 2. In Figure 3, we
also show the benefits of our proposed augmenta-
tion scheme on the SOTA model (Tan and Bansal,
2018), where the source sub-task is evaluated with
classification accuracy. We pre-train the model
with 2000 generated instructions for both data sets.
In the unlabeled case, for source prediction, we use
TA and TR templates while, for target prediction
we use SA and SR templates (in equal proportion).
We also use one-hot encodings for the instruction
words following prior work (Bisk et al., 2016).4

Figure 4 shows the benefits of our approach for
different sizes of training data. The performances
are averaged over 5 runs. In both Table 2 and Fig.
4, we observe that we always consistently outper-
form the baseline for both source and target pre-
diction. In particular, data augmentation and task
augmentation bring independent benefits and when
combined, yield the best results. The benefit of our
approach is more pronounced for less training data.

3.1 Understanding why augmentation helps

Here we show evidence of why data and task
augmentation improve the overall performance of
the model, focusing on TA and SA augmentation

3This yields better performance than the configuration-
wise batching in Bisk et al. (2016).

4Pretrained Language Embeddings: We also tried to
initialize the LSTM-RNN with pre-trained BERT embeddings
and BERT embeddings fine-tuned on the blocks world instruc-
tions. We did not observe any improvement on task perfor-
mances probably because BERT has not been pre-trained on
sentences from any similar spatially involved domain.

Figure 4: Ablation study of our augmentation approach
against the baseline (BU) for different percentages of
training data. BU is the model trained on the un-
labeled blocks data (Bisk et al., 2016) with our batching
scheme. The percentage above the green bar shows the
relative improvement w.r.t. the dark blue (baseline) bar.

Model
Source Target

BD RI% BD RI%
BU
BU+ Q
BU+ Q+ Aug.

3.12
2.80
2.76

—
10.26
11.54

3.59
3.48
3.35

—
3.06
6.69

Table 3: Ablated gains for mean block distance (BD)
on the diagnostic subset. BU: baseline model, Q: quad-
rant auxiliary task, Aug denotes the corresponding data
augmentation: TA for Source, SA for Target.

and the quadrant auxiliary task for the un-labeled
blocks dataset. We compare the baseline model
(BU), baseline model with the quadrant task branch
(BU+Q) and baseline model with the quadrant task
branch and pre-trained with the corresponding aug-
mentation (BU+Q+Aug.): TA augmentation for
Source and SA for Target sub-task. All models
are trained on the entire real training data. We first
show that auxiliary tasks not only help improve
standard test performance (Table 2) but also perfor-
mance on the generated synthetic instructions. On
a diagnostic test set of 1000 TA instructions, the
baseline model BU obtains 3.10 mean B.D. while
BU+Q obtains 2.89. We further create a diagnostic-
subset of the test set by filtering examples that
refer to the source/target block using a closed set
of quadrant location keywords, e.g.: northeast.5

Table 3 shows the results on this subset. As an ex-
ample, for identifying the source location in “The
bottom left box moves to the northeast ...", (BU),
(BU+Q) and (BU+Q+TA) have prediction errors of
6.42, 1.45 and 1.08 respectively. Similarly, for tar-
get prediction, (B+Q+SA) has a prediction error

5The full set of keywords is described in Appendix A.



2080

of 2.12 versus the baseline error of 5.20 on “The
block closest to the northwest corner of the table
should be near the southwest corner of the table ...".
On the diagnostic subset, augmentation improves
the source accuracy of the Tan and Bansal (2018)
model by 5.73%; Fig. 1 shows an example. These
experiments confirm that quadrant task and TA/SA
augmentation helps when instructions contain key-
words that indicate quadrant information.

4 Conclusion

We showed the benefits of data and task augmenta-
tion for instruction understanding on two datasets
and two existing models for this task, improving
their shortcomings on simple examples.

Acknowledgments

This work was supported by Contracts W911NF-
15-1-0461 and FA8750-19-2-0201 with the US
Defense Advanced Research Projects Agency
(DARPA), the Army Research Office under Grant
Number W911NF-20-1-0080, and by ONR Con-
tract N00014-19-1-2620. The views and conclu-
sions contained in this document are those of the
authors and should not be interpreted as represent-
ing the official policies, either expressed or implied,
of the Department of Defense or the U.S. Govern-
ment.

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Yonatan Bisk, Kevin J Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning interpretable spatial opera-
tions in a rich 3d blocks world. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761.

Satchuthananthavale RK Branavan, Harr Chen, Luke S
Zettlemoyer, and Regina Barzilay. 2009. Reinforce-
ment learning for mapping instructions to actions.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 1-Volume 1, pages 82–90. As-
sociation for Computational Linguistics.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia
Hockenmaier. 2020. Learning to execute instruc-
tions in a minecraft dialogue. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2589–2602.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikhil Mehta and Dan Goldwasser. 2019. Improving
natural language interaction with robots using ad-
vice. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1962–1967.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. arXiv preprint
arXiv:1704.08795.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415.

Hao Tan and Mohit Bansal. 2018. Source-target in-
ference models for spatial instruction understanding.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In Twenty-fifth AAAI confer-
ence on artificial intelligence.

Kim-Han Thung and Chong-Yaw Wee. 2018. A brief
review on multi-task learning. Multimedia Tools
and Applications, 77(22):29705–29725.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive psychology, 3(1):1–191.

A Appendix

A.1 Data Augmentation
• List of actions: move, place, reposition

• Mapping of concepts to words:

1. top-most: topmost, highest, top-most, top
most, uppermost, upper most

2. bottom-most: bottommost, lowest,
bottom-most, bottom most, lowermost,
lower most
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3. left-most : far left, farthest left, left most,
left-most, leftmost

4. right-most : far right, farthest right, right
most, right-most, rightmost

5. center : center, middle, center of the
board, middle of the board

6. top-right-corner : northeast corner,
northeastern, upper right corner, north
east corner, top right corner, upper right
corner, upper right hand corner

7. top-left-corner : northwest corner, north-
western, upper left corner, north west
corner, top left corner, upper left corner,
upper left hand corner

8. bottom-right-corner : southeast corner,
southeastern, lower right corner, south
east corner, bottom right corner, lower
right corner, lower right hand corner

9. bottom-left-corner : southwest corner,
southwestern, lower left corner, south
west corner, bottom left corner, lower
left corner, lower left hand corner

• For the quantification of spaces we allow
1, 2, 3, 4.

• For the possible directions we allow :
north/up, south/down, west/left, east/right,
northeast, northwest, southeast, southwest

• For the TA augmentation we use:
[action] the × random(6, 7, 8, 9) +
block to the [center]

• For TR augmentation we use:
[action] the × random(1, 2, 3, 4) +
block to the [center]

• For the SA augmentation we use:
[action]× the center block to the×
random(6, 7, 8, 9)

• For the SR augmentation we use:
[action] × the center block ×
[1, 2, 3, 4] spaces× [directions]

• Here random denotes a random choice of the
corresponding numbered mappings of con-
cepts to words.

• We place 10 blocks on the board randomly
and the remaining 10 block coordinates are
set to (−1,−1,−1) in accordance with (Bisk
et al., 2016).

A.2 Quadrant Subset Filters
The following keywords are used for filtering the
test-set:
Top Left / Upper Left / Northwest / Back Left
Top Right / Upper Right / Northeast
Bottom Left / Lower Left / Southwest / Front Left
Bottom Right / Lower Right / Southeast


