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Abstract

Multi-party dialogue machine reading compre-
hension (MRC) brings tremendous challenge
since it involves multiple speakers at one di-
alogue, resulting in intricate speaker informa-
tion flows and noisy dialogue contexts. To
alleviate such difficulties, previous models fo-
cus on how to incorporate these information
using complex graph-based modules and ad-
ditional manually labeled data, which is usu-
ally rare in real scenarios. In this paper, we
design two labour-free self- and pseudo-self-
supervised prediction tasks on speaker and
key-utterance to implicitly model the speaker
information flows, and capture salient clues in
a long dialogue. Experimental results on two
benchmark datasets have justified the effective-
ness of our method over competitive baselines
and current state-of-the-art models.

1 Introduction

Dialogue machine reading comprehension (MRC,
Hermann et al., 2015) aims to teach machines to un-
derstand dialogue contexts so that solves multiple
downstream tasks (Yang and Choi, 2019; Li et al.,
2020; Lowe et al., 2015; Wu et al., 2017; Zhang
et al., 2018). In this paper, we focus on question
answering (QA) over dialogue, which tests the ca-
pability of a model to understand a dialogue by
asking it questions with respect to the dialogue con-
text. QA over dialogue is of more challenge than
QA over plain text (Rajpurkar et al., 2016; Reddy
etal., 2019; Yang and Choi, 2019) owing to the fact
that conversations are full of informal, colloquial
expressions and discontinuous semantics. Among
this, multi-party dialogue brings even more tremen-
dous challenge compared to two-party dialogue
(Sun et al., 2019; Cui et al., 2020) since it involves
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[
U,: [Rachel Green: No.]
Uj: [Phoebe Buffay: Tell him, tell him!]
[
[
[

U,: [Monica Geller: Just... Please tell him.]
Us
U: [Chandler Bing: Tell me what?]

U,: [Monica Geller: Look at you, you won't
even look at him.]

Ug: [Chandler Bing: Oh, come on tell me. I
could use _another reason_ why women won t
look at me.]

U,y: [Rachel Green: All right, all right. Last
night, I had dream that, uh, you and I, were...]
U, : [Phoebe Buftay: Dating on this table.]
Uj;: [Chandler Bing: Wow!]

Q,: Who was with Rachel in her dream?
Ay: Chandler Bing

Q,: Where did Rachel and Chandler date?
A,: On this table
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Figure 1: Right part: A dialogue and its corresponding
questions from FriendsQA, whose answers are marked
with wavy lines. Left part: The speaker information
flows of this dialogue.

multiple speakers at one dialogue, resulting in com-
plicated discourse structure (Li et al., 2020) and
intricate speaker information flows. Besides this,
Zhang et al. (2021) also pointed that for long dia-
logue contexts, not all utterances contribute to the
final answer prediction since a lot of them are noisy
and carry no useful information.

To illustrate the challenge of multi-party dia-
logue MRC, we extract a dialogue example from
FriendsQA dataset (Yang and Choi, 2019) which is
shown in Figure 1. This single dialogue involves
four different speakers with intricate speaker infor-
mation flows. The arrows here represent the direc-
tion of information flows, from senders to receivers.
Let us consider the reasoning process of Qi: a
model should first notice that it is Rachel who had
a dream and locate Ug, then solve the coreference
resolution problem that [ refers to Rachel and you
refers to Chandler. This coreference knowledge
must be obtained by considering the information



flow from Ug to Ug, which means Rachel speaks

to Chandler. Qs follows a similar process, a model

should be aware of that Uy is a continuation of Ug
and solves the above coreference resolution prob-
lem as well.

To tackle the aforementioned obstacles, we de-
sign a self-supervised speaker prediction task to
implicitly model the speaker information flows,
and a pseudo-self-supervised key-utterance predic-
tion task to capture salient utterances in a long
and noisy dialogue. In detail, the self-supervised
speaker prediction task guides a carefully designed
Speaker Information Decoupling Block (SIDB, in-
troduced in Section 3.4) to decouple speaker-aware
information, and the key-utterance prediction task
guides a Key-utterance Information Decoupling
Block (KIDB, introduced in Section 3.3) to decou-
ple key-utterance-aware information. We finally
fuse these two kinds of information and make final
span prediction to get the answer of a question.

To sum up, the main contributions of our method
are three folds:

* We design a novel self-supervised speaker pre-
diction task to better capture the indispensable
speaker information flows in multi-party dia-
logue. Compared to previous models, our method
requires no additional manually labeled data
which is usually rare in real scenarios.

* We design a novel key-utterance prediction task
to capture key-utterance information in a long
dialogue context and filter noisy utterances.

» Experimental results on two benchmark datasets
show that our model outperforms strong base-
lines by a large margin, and reaches comparable
results to the current state-of-the-art models even
under the condition that they utilized additional
labeled data.

2 Related work

2.1 Pre-trained Language Models

Recently, pre-trained language models (PrLMs),
like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2019), XLNet
(Yang et al., 2019) and ELECTRA (Clark et al.,
2020), have reached remarkable achievements in
learning universal natural language representations
by pre-training large language models on mas-
sive general corpus and fine-tuning them on down-
stream tasks (Socher et al., 2013; Wang et al., 2018;
Wang et al., 2019; Lai et al., 2017). We argue that
the self-attention mechanism (Vaswani et al., 2017)

in PrLMs is in essence a variant of Graph Attention
Network (GAT, Velickovi¢ et al., 2017), which has
an intrinsic capability of exchanging information.
Compared to vanilla GAT, a Transformer block
consisting of residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016) is more
stable in training. Hence, it is chosen as the basic
architecture of our SIDB (Section 3.4) and KIDB
(Section 3.3) instead of vanilla GAT.

2.2 Multi-party Dialogue Modeling

There are several previous works that study multi-
party dialogue modeling on different downstream
tasks such as response selection and dialogue emo-
tion recognition. Hu et al. (2019) utilize the re-
sponse to (@) labels and a Graph Neural Network
(GNN) to explicitly model the speaker information
flows. Wang et al. (2020) design a pre-training
task named Topic Prediction to equip PrLMs with
the ability of tracking parallel topics in a multi-
party dialogue. Jia et al. (2020) make use of an
additional labeled dataset to train a dependency
parser, then utilize the dependency parser to dis-
entangle parallel threads in multi-party dialogues.
Ghosal et al. (2019) propose a window-based het-
erogeneous Graph Convolutional Network (GCN)
to model the emotion flow in multi-party dialogues.

2.3 Speaker Information Incorporation

In dialogue MRC, speaker information plays a sig-
nificant role in comprehending the dialogue con-
text. In the latest studies, Liu et al. (2021) pro-
pose a Mask-based Decoupling-Fusing Network
(MDEFN) to decouple speaker information from
dialogue contexts, by adding inter-speaker and
intra-speaker masks to the self-attention blocks of
Transformer layers. However, their approach is
restricted to two-party dialogue since they have to
specify the sender and receiver roles of each ut-
terance. Gu et al. (2020) propose Speaker-Aware
BERT (SA-BERT) to capture speaker information
by adding speaker embedding at token represen-
tation stage of the Transformer architecture, then
pre-train the model using next sentence prediction
(NSP) and masked language model (MLM) losses.
Nonetheless, their speaker embedding lacks of well-
designed pre-training task to refine, resulting in
inadequate speaker-specific information. Differ-
ent from previous models, our model is suitable
for the more challenging multi-party dialogue and
is equipped with carefully-designed task to better
capture the speaker information.



3 Methodology

In this part, we will formulate our task and present
our proposed model as shown in Figure 2. There
are four main parts in our model, a shared Trans-
former encoder, a key-utterance information de-
coupling block, a speaker information decoupling
block and a final fusion-prediction layer. In the fol-
lowing sections, we will introduce these modules
in detail.

3.1 Task Formulation

Let C = {Uy,Us,...,Un} be a dialogue context
with N utterances. Each utterance U; = {S;, W;}
consists of a speaker S; specified by a name and a
sequence of words W; speaker S; utters. W; can be
denoted as a /;-length sequence {w;1, wig, ..., Wi, }.
Let a question corresponds to the dialogue context
be Q = {q1,42,...,q1}, where L is the length of
the question and each ¢; is a token of the question.
Given C and Q, a dialogue MRC model is required
to find an answer a for the question, which is re-
stricted to be a continuous span of the dialogue
context. In some datasets, a can be an empty string
indicating that there is no answer to the question
according to the dialogue context.

3.2 Shared Transformer Encoder

To fully utilize the powerful representational ability
of PrLMs, we employ a pack and separate method
as Zhang et al. (2021), which is supposed to take
advantage of the deep Transformer blocks to make
the context and question better interacted with each
other. We first pack the context and question as a
joint input to feed into the Transformer blocks and
separate them according to the position for further
interaction.

Given the dialogue context C and a correspond-
ing question @, we pack them to form a sequence:
X ={[CLS]Q[SEP]S;:U[SEP]. .. Sn:Ux [SEP]},
where [CLS] and [SEP] are two special tokens
and each S;:Uj pair is the name and utterance of
a speaker separated by a colon. This sequence X
is then fed into L,; — L layers of Transformer
blocks to gain its contextualized representation
E € R7*4 where .J is the length of the sequence
after tokenized by Byte-Pair Encoding (BPE) tok-
enizer (Sennrich et al., 2016) and d is the hidden
dimension of the Transformer block. Here L;; is
the total number of Transformer layers specified
by the type of the PrLM, L is a hyper-parameter
which means the number of decoupling layers.

3.3 Key-utterance Information Decoupling
Block

Given the contextualized representation E from
Section 3.2, follow Zhang et al. (2021), we gather
the representation of [SEP] tokens from E as the
representation of each utterance in the dialogue
context. These representations are used to initial-
ize N utterance nodes Ey = {E,, € R3Y,
and a question node E, € R as illustrated in
the middle-upper part of Figure 2. The representa-
tions of normal tokens are gathered as token nodes
Er = {E;, € R%}"™ | where n is the number
of normal tokens in the dialogue context. Then,
another L layers of multi-head self-attention Trans-
former blocks are used to exchange information
inter- and intra- the three types of nodes:

QK™
Attn(Q, K, V) = softmax
(@K V) “

head; = Attn(EWS, EW/, EW))
MultiHead(E) = [heady, ..., head,]W©

)%
ey

Here W2 e R¥xda, WK c RIxd WV ¢
Rixdv O ¢ Rhdvxd are matrices with train-
able weights, h is the number of attention heads
and [; ] denotes the concatenation operation.

After stacking L layers of multi-head self-
attention: MultiHead([Ey; Eq; E]) to fully ex-
change information between these nodes, we get
a question representation Hy € R4, the utterance
representations Hyy = {H,,, € R4} |, and the
token representations Hy = {Hy, € RI}™ ;.

H, is then paired with each H,,; to conduct
the key-utterance prediction task. In detail, we
use a heuristic matching mechanism proposed by
(Mou et al., 2016) to calculate the matching score
of the question representation and utterance rep-
resentation. Here we define a matching function
Match(X,Y ,activ), where X, Y € R™N, as
follows:

G=[X;Y;X-Y;XoY]e RN

2
P = activ(a’ G) e RV ®)

Here ® denotes element-wise multiplication and
a € R is a vector with trainable weights. The
activ is an activation function to get a probabil-
ity distribution according to the downstream loss
function, which can be chosen from so ftmax and
stgmoid. In span-based dialogue MRC datasets,
we set the pseudo-self-supervised key-utterance
target based on the position of the answer span.
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Figure 2: The overview of our model, which contains a shared Transformer encoder, a key-utterance information
decoupling block, a speaker information decoupling block and a fusion-prediction layer. In speaker information de-
coupling block, the bi-directional arrow means that the information flows from and to both sides, the unidirectional
arrow means that the information only flows from start nodes to end nodes.

We name it pseudo-self-supervised since it is gen-
erated from the original span labels, but requires
no additional labeled data. Specifically, we set
ptar9et — j where i is the index of the utterance
that contains the answer span. Then we calculate
the key-utterance distribution by:

Hq = {Hg}, € R™Y

3)
Pged = Match(Hy, Hq, softmax)

PgTEd € RY is later expanded to the length of

token nodes to get Py and  Rn which will be
put forward to filter noisy utterances in the fusion-
prediction layer (introduce in Section 3.5). We
adopt cross-entropy loss to compute the loss of this
task:

EU _ _log(Plj}red[ptargetD (4)

The gradient of Ly will flow backwards to refine
the representations of the utterance nodes so that
they can decouple key-utterance-aware information
from the original representations. After the inter-
action between token nodes and utterance nodes,
the token nodes will gather key-utterance-aware in-
formation from the utterance nodes. Therefore, we
denote the token representations as key-utterance-
aware: Hy = Hr € R¥", which will be for-
warded to the fusion-prediction layer described in
Section 3.5.

3.4 Speaker Information Decoupling Block

This part is the core of our model, which con-
tributes to modeling the complex speaker infor-

mation flows. In this section, we first introduce
the self-supervised speaker prediction task we
proposed, then depict the decoupling process of
speaker information.

3.4.1 Self-supervised Speaker Prediction

As defined in Section 3.1, we have a dialogue con-
text C = {Uj, Uy, ..., Un} where each utterance
U; = {Si, W;} consists of a speaker .S; specified by
a name. We randomly choose an myy, utterance and
mask its speaker name. Then for every (U;, U,)
pair where ¢ # m, the model should determine
whether they are uttered by the same speaker, that
is to say, whether .S; = S,.

We figure this task a relatively difficult one since
it requires the model to have a thorough under-
standing of the speaker information flows and solve
problems such as coreference resolution. Figure 3
is an example of the self-supervised speaker pre-
diction task, where the speaker of the utterance in
gray is masked. We human can determine that the
masked speaker should be Emily Waltham by con-
sidering that Ross and Monica is persuading Emily
to attend the wedding by showing her the wedding
place, and when Monica and Emily reaches there,
it should be Emily who is surprised to say "Oh My
God'". However, it is not that easy for machines to
capture these information flows.

3.4.2 Speaker Information Decoupling

To fully utilize the interactive feature of self-
attention mechanism (Vaswani et al., 2017) and
the powerful representational ability of PrLMs, we



(Scene: Ross _and Emily's planned wedding\
place, Monica is dragging Emily in.
Emily Waltham: Monica, why have you
brought me here of all places?!
Monica Geller: You'll see.
Emily Waltham: [ tell you, this wedding is
not going to happen.
Scene: At that Ross plugs in some Christmas
lights to light the place up.
[Masked]: Oh My God!
Ross Geller: Okay? But - but imagine a lot
more lights, okay? And - and flowers, and
candles...
Monica Geller: And the musicians, look, they
can_go over here, okay? And the chairs can
face this way, and... You go.
Ross Geller: If you don't love this, we'll do it
in_any other place at any other time. Really,

it's fine, whatever you want.
Emily Waltham: /t’s perfect.

NG j

Figure 3: An example of the speaker prediction task,
which involves three speakers. Scene here is a narrative
description which introduces some additional informa-
tion about the scene.

also use Transformer blocks to capture the inter-
active speaker information flows and fulfill this
difficult task.

We first detach E from the computational graph
to get E9€, then as what we do in Section 3.3,
the representation of [SEP] tokens are gathered
from E% to initialize N — 1 unmasked speaker
nodes Eg = {Es, € R} ;! and a masked
speaker node E,_ € R The representation
of normal tokens are gathered as token nodes
Er = {Ey, € R%}"_,. Then, we add attention
mask to the token nodes corresponding to the se-
lected speaker name before they are forwarded into
the speaker information decoupling block, as illus-
trated in the middle-lower part of Figure 2. The rea-
sons why we use this detach-mask strategy are as
follows. First, we mask the selected speaker before
the speaker information decoupling block instead
of at the very beginning before the encoder since
it is better to let the utterance decoupling block
see all the speaker names. Based on this point, we
detach E from the computational graph and add
attention mask to avoid target leakage. If we use a
normal forward instead, the encoder would simply
attend to the speaker names, which would hurt per-
formance (discuss in detail in Section 5.3). Besides,
this strategy also helps the model better decouple
the key-utterance-aware and speaker-aware infor-

mation from the original representations.
In detail, the mask strategy is similar as Liu et al.
(2021). We modify Eq. (1) to:

T

QK
Attn(Q, K, V, M) = softmax
( ) ( NP

head; = Attn(EWZ-Q, EW[S, EWY M)

MultiHead(E, M) = [heady, . . ., head;|W©°
%)
Let the start index and end index of the masked
speaker tokens be ms and m., to make the selected
speaker name unseen to other nodes, the attention
mask is obtained as follows:

+ M)V

—o00, ifj € [mg, me]

Msli, j] :{ 0, otherwise ©

By adding this mask, other nodes will not attend
to the masked token nodes, thus preventing target
leakage. On the mean time, the speaker nodes will
have to collect clues from other nodes through deep
interaction to make prediction, which implicitly
models the complex speaker information flows.

After stacking L layers of masked multi-head
self-attention: MultiHead([ Es; Fs,,,; E1], Mg]),
we get a masked speaker representation H,, , €
R?, the normal speaker representation Hg =
{Hs, € R¥Y', and the token representation
Hr = {Hti € Rd}?:l'

H,,_, is then paired with each Hy, to conduct
the self-supervised speaker prediction task. We
also adopt the matching function defined in Eq. (2):

Hy = {Hsm ii_ll e Rdx(Nfl)

@)
Pgre‘i = Match(Hg, Hpy, sigmoid)

For convenience and without loss of generality, we
make m = N which means we mask the speaker
of the Ny, utterance, in the following description.
We construct the self-supervised target by:

pgtizrget :{ (1)7

Then binary cross entropy loss is applied here to
compute the loss of this task:

if S; == Sy
otherwise

(®)

1 N-1
Lo—— tqrget %lo T’ed
s NoT 2 (Ps; 9(ps ) ©
+ (1= plm9et) x log (1 — pkred))

The gradient of Lg will flow backwards to re-
fine the representations of speaker nodes so that



they can decouple speaker-aware information from
the original representations. After the interac-
tion between token nodes and speaker nodes, the
token nodes will gather speaker-aware informa-
tion from the speaker nodes. Therefore, we de-
note the token representations as speaker-aware:
Hj = Hr € R4*" which will be forwarded to
the fusion-prediction layer described in next sec-
tion.

3.5 Fusion-Prediction Layer

Given the key-utterance-aware token representation
H{,ﬁ and the speaker-aware token representations
H3., we first fuse these two kinds of decoupled
representation using the following transformation:

H§#' = [Hy; Hy; Hy — Hy; Hy © Hy)
HJ, = Tanh(W/ H#t) € R
(10
where W/ € R4*44 is a linear transformation ma-
trix with trainable weights and Tanh is a non-linear
activation function.

Then we compute the start and end distributions
over the tokens by:

d
startH’_J[c“) © Péxpom

Pend = SOftmaX(wanHf{_‘) 0) Péwpand

P4t = softmax(w’,

(In

where wg;q,+ and we,,q are vectors of size R4 with
trainable weights, Py;” and is defined on Section
3.3 and © is element-wise multiplication.

Given the ground truth label of answer span [as, a|,
cross entropy loss is adopted to train our model:

ESE - _(1Og<Pstart [as]) +10g(Pend[ae])) (12)

If the dataset contains unanswerable question,
the representation of H% at [C'LS] position x is
used to predict whether a question is answerable or
not:

Pa = sigmoid(w” Hi[z] +b)  (13)

where w” and b are vectors of size R¢ with train-
able weights.

Given the ground truth of answerability ¢, €
{0, 1}, binary cross entropy is applied to compute
the answerable loss:

La=—((1—1ta)*log(1— pa)
+tq x log(pa))

The final loss is the summation of the above
losses:

(14)

L=Ly+Ls+ Lsp (+L4) (15)

4 Experiments

4.1 Benchmark Datasets

We adopt FriendsQA (Yang and Choi, 2019) and
Molweni (Li et al., 2020), two span-based extrac-
tive dialogue MRC datasets, as the benchmarks.
Molweni is derived from the large-scale multi-party
dialogue dataset — Ubuntu Chat Corpus (Lowe
et al., 2015), whose main theme is technical dis-
cussions about problems on Ubuntu system. This
dataset features in its informal speaking style and
domain-specific technical terms. In total, it con-
tains 10,000 dialogues whose average and maxi-
mum number of speakers is 3.51 and 9 respectively.
Each dialogue is short in length with the average
and maximum number of tokens 104.4 and 208
respectively. Unanswerable questions are asked in
this dataset, hence the answerable loss in Eq. (14)
is applied. Additionally, this dataset is equipped
with discourse parsing annotations which is not
used by our model however.

To evaluate our model more comprehensively, an-
other open-domain dialogue MRC dataset Friend-
SQA is also used to conduct our experiments.
FriendsQA excerpts 1,222 scenes and 10,610 open-
domain questions from the first four seasons of a
well-known American TV show Friends to tackle
dialogue MRC on everyday conversations. Each
dialogue is longer in length and involves more
speakers, resulting in more complicated speaker
information flows compared to Molweni. For each
dialogue context, at least 4 out of 6 types (SW1H)
of questions, are generated. This dataset features
in its colloquial language style filled with sarcasms,
metaphors, humors, etc.

4.2 Implementation Details

We implement our model based on Transformers
Library (Wolf et al., 2020). The number of infor-
mation decoupling layers L is chosen from 3 - 5 ac-
cording to the type of the PrLM in our experiments.
For Molweni, we set batch size to 8, learning rate
to 1.2e-5 and maximum input sequence length of
the Transformer blocks to 384. For FriendsQA,
they are 4, 4e-6 and 512 respectively. Note that
in FriendsQA, there are dialogue contexts whose
length (in tokens) are larger than 512. We split
those contexts to pieces and choose the answer
with highest span probability psiart * Deng as the
final prediction?.

1Codes and data are available at https://github.
com/EricLee8/Multi-party-Dialogue-MRC
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4.3 Baseline Models

For FriendsQA, we adopt BERT as the baseline
model follow Li and Choi (2020) and Liu et al.
(2020). For Molweni, we follow Li et al. (2021)
who also employ BERT as the baseline model. In
addition, we also adpot ELECTRA (Clark et al.,
2020) as a strong baseline in both datasets to see if
our model still holds on top of stronger PrLLMs.

4.4 Results

Table 1 shows our experimental results on Friend-
SQA. BERTULM+UOP (Ll and Choi, 2020) is a
method using pretrain-fine-tune form. They first
pre-train BERT on FriendsQA and additional tran-
scripts from Seasons 5-10 of Friends using well de-
signed pre-training tasks Utterance-level-Masked-
LM (ULM) and Utterance-Order-Prediction (UOP),
then fine-tune it on dialogue MRC task. BERT gpn
(Liu et al., 2020) is a graph-based model that inte-
grates relation knowledge and coreference knowl-
edge using Relational Graph Convolution Net-
works (R-GCNs) (Schlichtkrull et al., 2018). Note
that this model utilizes additional labeled data on
coreference resolution (Chen et al., 2017) and char-
acter relation (Yu et al., 2020). We adopt the same
evaluation metrics as Li et al. (2020): exactly match
(EM) and F1 score. Our model reaches new state-
of-the-art (SOTA) result on EM metric and compa-
rable result on F1 metric, even without any addi-
tional labeled data. Besides, our model still gains
great performance improvement under ELECTRA-
based condition, which demonstrates the effective-
ness of our model over strong PrLLMs.

Model EM F1

BERTpasline 43.3  59.3
BERTypLMmsuop (Li and Choi) 46.8 63.1
BERTgpypn (Liu et al.) 46.4 64.3
BERT ¢ 46.9 63.9
ELECTRApagiine 52.8 70.1
ELECTRA ¢ 55.8 72.3

Table 1: Results on FriendsQA

Table 2 presents our experimental results on Mol-
weni. Public Baseline is directly taken from the
original paper of Molweni (Li et al., 2020). DAD-
Graph (Li et al., 2021) is the current SOTA model
that utilizes Graph Convolution Network (GCN)
and the additional discourse annotations in Mol-
weni to explicitly model the discourse structure.

We see from the the table that our model outper-
forms strong baselines and the current SOTA model
by a large margin, even under the condition that
we do not make use of additional discourse annota-
tions.

Model EM F1

BERTpublic bastine (Lietal.) 45.3 58.0
BERTour basline 45.8 60.2
BERTDADGraph (Li et al-) 46.5 61.5
BERTour 49.2 64.0
ELECTRAbasline 96.8 70.6
ELECTRAour 58.0 72.9

Table 2: Results on Molweni

5 Analysis

5.1 Performance Gain Analysis

To get more detailed insights on our proposed
method, we analyze the results on different ques-
tion types of FriendsQA over ELECTRA-based
model. Also, we compare our model with the base-
line model on these types to see where the perfor-
mance gains come from. Table 3 shows the results
of our model on different question types. Dist.
means the distribution of each question type, from
which we see that the question type of FriendsQA
is nearly uniformly distributed.

Performance gains mainly come from question
type Who, When and What. We argue that the
speaker information decoupling block is the pre-
dominant contributor to Who question type since
answering this type of question requires the model
to have a deep understanding of speaker informa-
tion flows and solve problems like coreference res-
olution, which is the same as our self-supervised
speaker prediction task. For question type When,
the key-utterance information decoupling block
contributes the most. The answer of question type
When usually comes from a scene description ut-
terance, hence grabbing key-utterance information
helps answer this kind of question. Among these
improvements, question type Who benefits the most
from our model, demonstrating the strong capabil-
ity of the self-supervised speaker prediction task.

5.2 Ablation Study

We conduct ablation study to see the contribution
of each module. Table 4 shows the results of our
ablation study. Here KIDB and SIDB are the abbre-
viation of Key-utterance Information Decoupling



Type ‘ Dist. H EM ‘ F1

Who | 18.82 || 66.8(1 6.2) | 74.6(1 4.7)
When | 13.57 || 63.2(1 6.1) | 74.1(1 3.3)
What | 18.48 || 58.6(17 5.0) | 76.9(1 1.9)
Where | 18.16 || 64.2(10.9) | 79.3(1 1.4)
Why | 15.65 || 36.2(4 0.5) | 62.9(1 1.4)
How | 15.32 || 41.3(4 0.9) | 63.5(1 0.1)

Table 3: Results on different question types, where up
arrows? represent performance gain and down arrows.
represent performance drop compared to the baseline
model. Significant gains (greater than 3%) are marked
as bold.

FriendsQA Molweni

Model EM Fl EM Fl
Our Model 55.8 723 58.0 729
w/oKIDB 554 71.7 57.7 721
w/oSIDB 55.0 71.4 582 71.8
SpeakerEmb  55.5 71.9 57.5 724

Table 4: Results of Ablation Study

Block and Speaker Information Decoupling Block
respectively. We see from the results that both of
the two modules contributes to the performance
gains of our final model. For FirendsQA, SIDB
contributes more and otherwise for Molweni. This
is because dialogue contexts in FriendsQA tend to
be long, involve more speakers and carry more com-
plex speaker information flows. On the contrary,
dialogue contexts in Molweni are short with less
turns and most of the questions can be answered
by considering only one key-utterance.

To further investigate the effectiveness of our
self-supervised speaker prediction task, we design
a SpeakerEmb model in which we replace the
speaker-aware token representation H . by speaker
representations. The speaker representations are
obtained by simply gathering embeddings from a
trainable embedding look-up table according to the
name of the speaker. Experimental results show
that it only makes a slight performance gain com-
pared to SIDB, demonstrating that simply adding
speaker information is sub-optimal compared to im-
plicitly modeling speaker information flows using
our self-supervised speaker prediction task.

5.3 Influence of Detaching Operation

We conduct experiments to investigate the influence
of detaching operation mentioned in Section 3.4.
As shown in Table 5, if we do not detach E from
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Figure 4: Influence of Speaker and Utterance Numbers

Model EM F1 Speaker
Our Model 55.8 723 80.8
w/o Detaching 54.5 70.8 96.8

Table 5: Influence of Detaching Operation

the original computation graph when performing
the speaker prediction task, the prediction accuracy
reaches 96.8% in the test set of FriendsQA, indicat-
ing obvious label leakage. In the meantime, the EM
and F1 scores drop to 54.5% and 70.8%, respec-
tively. On the contrary, our model reaches a speaker
prediction accuracy of 80.8%, which demonstrates
that the detaching operation can effectively prevent
label leakage.

5.4 Influence of Speaker and Utterance
Numbers

Figure 4 illustrates the model performance with
regard to the number of speakers and utterances on
FriendsQA. At the beginning, the baseline model
has similar performance to our model. However,
with the number of speakers and utterances increas-
ing, there is a growing performance gap between
the baseline model and our model. This observa-
tion demonstrates that our SIDB and KIDB have
strong abilities to deal with more complex dialogue
contexts with a larger number of speakers and ut-
terances.



[Context see figure 1 \

Question: Who was with Rachel in her dream?
you and [
Chandler Bing

Abaseline:

Aour model*

Phoebe Buffay: What are you doing?

Monica Geller: Alright, great. Thanks a lot. I'm
going to the tap class.

Rachel Green: What, what, so that you can
dance with the woman that stole your credit card?
Monica Geller: This woman’s got my life, |
should get to see who she is.

Question: Who’s credit card was stolen?
Apueline:  the woman that stole your credit card

\Aour model: Monica Geller /

Figure 5: Two cases from FriendsQA

5.5 Case Study

To get more intuitive explanations of our model,
we select two cases from FriendsQA in which the
baseline model fails to answer (F1 = 0, or "exactly
not match") but our model is able to answer (exactly
match). Figure 5 illustrates two cases where the
context of the first one is shown in Figure 1.

In the first case, the baseline model simply pre-
dicts that "you and I" were in Rachel’s dream while
fails to notice that "you" here refers to Chandler.
On the contrary, our model is able to capture this
information since it helps the speaker prediction
task. In fact, if we mask Rachel in Ug, our model
could tell the masked speaker is Rachel, indicating
that it knows it should be Rachel who had a dream
and Uy is in response to Usg.

Similar observations can be seen in the second
case. The baseline model simply matches the se-
mantic meaning of the question and the context
then makes a wrong prediction. Compared with the
baseline model, our model has the ability to catch
the information flow from Rachel to Monica thus
predicts the answer correctly.

6 Conclusion

In this paper, for multi-party dialogue MRC, we
propose two novel self- and pseudo-self-supervised
prediction tasks on speaker and key-utterance to
capture salient clues in a long and noisy dialogue.
Experimental results on two multi-party dialogue
MRC benchmarks, FriendsQA and Molweni, have
justified the effectiveness of our model.
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