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Abstract

Reviewing contracts is a time-consuming pro-
cedure that incurs large expenses to companies
and social inequality to those who cannot af-
ford it. In this work, we propose document-
level natural language inference (NLI) for con-
tracts, a novel, real-world application of NLI
that addresses such problems. In this task, a
system is given a set of hypotheses (such as
“Some obligations of Agreement may survive
termination.”) and a contract, and it is asked
to classify whether each hypothesis is entailed
by, contradicting to or not mentioned by (neu-
tral to) the contract as well as identifying ev-
idence for the decision as spans in the con-
tract. We annotated and release the largest cor-
pus to date consisting of 607 annotated con-
tracts. We then show that existing models
fail badly on our task and introduce a strong
baseline, which (1) models evidence identifi-
cation as multi-label classification over spans
instead of trying to predict start and end to-
kens, and (2) employs more sophisticated con-
text segmentation for dealing with long docu-
ments. We also show that linguistic character-
istics of contracts, such as negations by excep-
tions, are contributing to the difficulty of this
task and that there is much room for improve-
ment.

1 Introduction

Reviewing a contract is a time-consuming proce-
dure. A study (Exigent Group Limited, 2019) re-
vealed that “60-80% of all business-to-business
transactions are governed by some form of written
agreement, with a typical Fortune 1000 company
maintaining 20,000 to 40,000 active contracts at
any given time”. Contract review is carried out
manually by professionals, costing companies a
huge amount of money each year. Even worse,
smaller companies or individuals may opt for sign-
ing contracts without access to such professional
services.

... 	

Confidential Information: means all confidential information (however recorded, preserved or disclosed) disclosed by 

a Party or its Representatives to the other Party and that Party's Representatives including but not limited to: // 	

(a) the fact that discussions and negotiations are taking place concerning the Purpose and the status of those	

     discussions and negotiations;//	

(b) the existence and terms of this Agreement;//	

(c) any information relating to://	

    (i) the business, affairs, customers, clients, suppliers, plans, intentions, or market opportunities of the Disclosing	

        Party or of the Disclosing Party's Affiliates; and //	

    (ii) the operations, processes, product information, know-how, designs, specifications, trade secrets, computer	

         programs or software of the Disclosing Party or of the Disclosing Party's Affiliates; and //	

(d) any information or analysis derived from Confidential Information.//	

...

 Examples of hypotheses:

Entailment
Contradiction
Not mentioned

Receiving Party shall not disclose the fact that Agreement was agreed or 

negotiated.
(Evidence denoted with green highlight on upper half of text)

Entailment
Contradiction
Not mentioned

Confidential Information shall only include technical information.

(Evidence denoted with blue highlight on bottom half of text)

Entailment
Contradiction
Not mentioned

Receiving Party shall not use any Confidential Information for any purposes other 

than the purpose(s) stated in Agreement.
(Evidence does not exist when the hypothesis is not mentioned)

 // denotes a span border

Figure 1: An overview of document-level NLI for con-
tracts. Given a contract, a system must classify whether
each hypothesis is entailed by, contradicting to or not
mentioned by the contract and identify evidence for the
decision as spans in the contract.

To address this need, there is a growing interest
in contract review automation. Recently, Leivaditi
et al. (2020) and Hendrycks et al. (2021) introduced
datasets for extracting certain terms in contracts,
which can help a user comprehend a contract by
providing a consistent legend for what sort of terms
are discussed in the contract. However, these works
only aim to find what sort of terms are present, not
what each of such terms exactly states. For exam-
ple, (Hendrycks et al., 2021) involves extracting
a span in a contract that discusses about a ques-
tion “Is there a restriction on a party’s soliciting or
hiring employees ...?”. Being able to answer such
questions can further benefit users by automatically
detecting terms that are against the user’s policy
without having have to read each of the extracted
terms.

In this paper, we argue that contract review is
also a compelling real-world use case for natural
language inference (NLI). However, rather than
evaluating a hypothesis versus a short passage, eval-
uation is against a whole document. Concretely,
given a contract and a set of hypotheses (such as
“Some obligations of Agreement may survive ter-
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mination.”), we would like to classify whether each
hypothesis is entailed by, contradicting to or not
mentioned by (neutral to) the contract as well as
identifying evidence for the decision as spans in
the contract (Figure 1). Therefore, the problem
involves similar evidence identification problems
as open domain question answering, a problem less
studied in the NLI context, and practical useful-
ness also involves identifying the evidence spans
justifying an NLI judgment.

Our work presents a novel, real-world appli-
cation of NLI. We further argue that contracts —
which occupy a substantial amount of the text we
produce today — exhibit interesting linguistic char-
acteristics that are worth exploring. Our contribu-
tions are as follows:
1. We annotated and release1 a dataset consisting

of 607 contracts. This is the first dataset to uti-
lize NLI for contracts and is also the largest
corpus of annotated contracts.

2. We introduce a strong baseline for our task, Span
NLI BERT, which (a) makes the problem of evi-
dence identification easier by modeling the prob-
lem as multi-label classification over spans in-
stead of trying to predict the start and end tokens,
and (b) introduces more sophisticated context
segmentation to deal with long documents. We
show that Span NLI BERT significantly outper-
forms the existing models.

3. We investigate interesting linguistic characteris-
tics in contracts that make this task challenging
even for Span NLI BERT.

2 ContractNLI Dataset

2.1 Task Formulation

Our task is, given a contract and a set of hypothe-
ses (each being a sentence), to classify whether
each hypothesis is entailed by, contradicting to or
not mentioned by (neutral to) the contract, and to
identify evidence for the decision as spans in the
contract. More formally, the task consists of:
Natural language inference (NLI) Document-

level three-class classification (one of ENTAIL-
MENT, CONTRADICTION or NOTMENTIONED).

Evidence identification Multi-label binary classi-
fication over spans, where a span is a sentence
or a list item within a sentence. This is only de-
fined when NLI label is either ENTAILMENT or
CONTRADICTION.
1https://stanfordnlp.github.io/

contract-nli/

We argue that extracting whole sentences is more
appropriate for ContractNLI because a lawyer can
then check the evidence with comprehensible con-
text around it, as oppose to the token-level span
identification as in factoid question answering
where users do not need to see the textual support
for the answer. Evidence spans therefore must be as
concise as possible (need not be contiguous) while
being self-contained, such that a reasonable user
should be able to understand meaning just by read-
ing the evidence spans (e.g., the second hypothesis
in Figure 1 includes the first paragraph in order to
clarify the clauses’ subject). We comprehensively
identify evidence spans where they are redundant.

Unlike (Hendrycks et al., 2021), we target a sin-
gle type of contracts. This allows us to incorpo-
rate less frequent and more fine-grained hypothe-
ses, as we can obtain a larger amount of such ex-
amples with the same number of annotated con-
tracts. While practioners will have to create a sim-
ilar dataset to scale their system to another type
of contracts, our work can be a model for how to
generalize to other types of contracts because they
would exhibit similar linguistic characteristics. We
chose non-disclosure agreements (NDAs) for our
task, which are relatively easy to collect.

Because a lawyer would look for the same type
of information in contracts of the same type, we
fixed the hypotheses throughout all the contracts
including the test dataset. Given the closed set of
hypotheses, this problem could also be addressed
by building a text classifier for each hypothesis.
However, given the modest available data for a task
requiring natural language understanding, we be-
lieve more power can be achieved by viewing this
as an NLI problem. Indeed, you can think of the
NLI approach as building a multi-task text classi-
fier with the hypothesis serving as a “prompt” to
the model. We will discuss whether introducing
hypotheses is helpful to the model or not in Sec-
tion 5.1.

2.2 Data Collection

In this section, we briefly discuss how we collected
and annotated the dataset. Since it posed many chal-
lenges that we cannot adequately describe within
the page limit, we provide more details and caveats
in Appendix A.1.

We collected NDAs from Internet search engines
and Electronic Data Gathering, Analysis, and Re-
trieval system (EDGAR). We searched data with

https://stanfordnlp.github.io/contract-nli/
https://stanfordnlp.github.io/contract-nli/
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1. Explicit identification
2. None-inclusion of non-technical information
3. Inclusion of verbally conveyed information

4. Limited use
5. Sharing with employees

6. Sharing with third-parties
7. Notice on compelled disclosure

8. Confidentiality of Agreement
9. No reverse engineering

10. Permissible development of similar information
11. Permissible acquirement of similar information

12. No licensing
13. Return of confidential information

14. Permissible copy
15. No solicitation

16. Survival of obligations
17. Permissible post-agreement possession
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Figure 2: The NLI label distribution. Hypothesis names are used only for a human readability purpose. A full list
of hypotheses can be found in Table 10.

Format Source Train Development Test Total

Plain Text EDGAR 83 12 24 119
HTML EDGAR 79 11 23 113
PDF Search engines 261 38 76 375

Total 423 61 123 607

Table 1: Data split

Number per a document Tokens per an instance

Average Min. Max. Average Min. Max.

Paragraph 43.7 9 248 52.8 1 1209
Span 77.8 18 354 29.5 1 289
Token 2,254.3 336 11,503 — — —

Table 2: Basic statistics of the training dataset

a simple regular expression and hand-picked valid
contracts.

Since the collected documents came in various
formats including PDFs, we used (Koreeda and
Manning, 2021) to extract plain text from the doc-
uments by removing line breaks, detecting para-
graph boundaries and removing headers/footers. In
order to further ensure the quality of our data, we
manually screened all the documents and corrected
mistakes made by the tool. We then used Stanza
(Qi et al., 2020) to split each paragraph into sen-
tences and further split each sentence at inline list
items (e.g., at “(a)” or “iv)”) using another regular
expression. Finally, we tokenized each sentence
with Stanza and further split each token into subto-
kens using BERT’s tokenizer (Devlin et al., 2019;
Wu et al., 2016).

For hypotheses, we developed 17 hypotheses by
comparing different NDAs. We did not include hy-
potheses that would simply reason about presence
of certain clauses (such as “There exists an arbi-
tration clause in the contract.”) because they are
covered by previous studies (Leivaditi et al., 2020;
Hendrycks et al., 2021).

Finally, we annotated all the contracts based on
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Figure 3: Number of evidence spans in each document.

the principles discussed in Section 2.1. Since we
employ a fixed set of hypotheses unlike existing
NLI datasets, we were able to utilize an example-
oriented annotation guideline to improve annota-
tion consistency.

2.3 Data Statistics

We annotated a total of 607 documents, which are
split into training, development and testing data
at a ratio of 70:10:20 stratified by their formats
(Table 1). We show statistics of the documents in
Table 2. A document on average has 77.8 spans to
choose evidence spans from. An average number of
tokens per a document is 2,254.0, which is larger
than maximum allowed context length of BERT
(512 tokens). Even though an NDA is relatively
short for a contract, 86% of documents exceed the
maximum allowed context length of BERT.

The distribution of NLI labels is shown in Fig-
ure 2. ENTAILMENT and NOTMENTIONED oc-
cupy a significant ratio of the dataset, but around
half of the hypotheses contain both ENTAILMENT

and CONTRADICTION. The distribution of evi-
dence spans is shown in Figure 3. The most of
entailed/contradicting hypotheses have one or two
evidence spans, but some have up to nine spans.
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… …[CLS] Receiving [SEP] [SPAN] Confidential and [SPAN] …This Confidential

BERT

[Confidentiality and Non-disclosure Agreement] [This ... Information.] [1. Definitions and Interpretation] [Confidential ...  not limited to] [(a) the existence …] […]
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Figure 4: Model architecture of proposed Span NLI BERT

3 Span NLI BERT for ContractNLI

Transformer-based models have become a domi-
nant approach for many NLP tasks. Previous works
implemented span identification on the Trans-
former architecture by predicting start and end to-
kens, scaling it to a document by splitting the doc-
ument into multiple contexts with a static window
and a stride size (Devlin et al., 2019; Hendrycks
et al., 2021). The start/end token prediction makes
the problem unnecessarily difficult because the
model has to solve span boundary detection and
evidence identification concurrently, whereas the
definition of spans is usually fixed for many appli-
cations. Splitting a document can be problematic
when a span is split into multiple contexts or when
a span does not receive enough surrounding con-
text.

To that end, we introduce Span NLI BERT, a
multi-task Transformer model that can jointly solve
NLI and evidence identification, as well as address-
ing the above shortcomings of the previous works
(Figure 4). Instead of predicting start and end to-
kens, we propose to insert special [SPAN] tokens
each of which represents a span consisting of sub-
sequent tokens, and model the problem as straight-
forward multi-label binary classification over the
[SPAN] tokens. We also propose to split docu-
ments with dynamic stride sizes such that there
exists at least one context setting for each span in
which the span is not split and receives enough
context.

First, we split each document into contexts us-
ing Algorithm 1. Given a user-specified maximum
context length l and a minimum number of sur-
rounding tokens n, the algorithm adds first l tokens
to a context and marks the spans whose tokens have
all been added to the context. For the next context,
it will start again from n tokens before the next un-

Input: Span boundary token indices B = [b0, b1, ...],
Tokens T = [t0, t1, ...], min. # of surrounding
tokens n, max. context length l

Output: List of overlapping contexts
1 contexts = [] ;
2 start = 0 ;
3 while len(B) > 0 do
4 for bi in B where bi − start <= l do
5 B.remove(bi−1) ;
6 end = bi−1 ;
7 end
8 contexts.append(T [start : (start + l)]) ;
9 start = end− n ;

10 end
11 return contexts ;

Algorithm 1: Dynamic context segmentation

marked span and repeat this until all the spans are
marked. We mark variables associated with m-th
context with a left superscript m where necessary.

For each context, contract tokens and hypothe-
sis tokens are concatenated with a [SEP] token
and fed into a Transformer-based model. For evi-
dence identification, we place a randomly initial-
ized multi-layer perceptron (MLP) on top of each
[SPAN] token followed by sigmoid activation to
predict a span probability ŝi ∈ R. Likewise for
NLI, we place a randomly initialized MLP on top
of the [CLS] token followed by a softmax layer to
predict ENTAILMENT, CONTRADICTION and NOT-
MENTIONED probabilities mŷE ,mŷC ,mŷN ∈ R,
respectively.

For evidence identification loss `span of a single
context, we employ cross entropy loss between the
predicted span probability ŝi and the ground truth
span label si ∈ {0, 1}.

`span =
∑
i

(−si log ŝi − (1− si) log(1− ŝi))

Although there exists no evidence span when NLI
label is NOTMENTIONED, we nevertheless incorpo-
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rate such an example in the evidence identification
loss with negative span labels si = 0.

For NLI loss `NLI , we likewise employ cross
entropy loss between the predicted NLI probabil-
ities ŷE , ŷC , ŷN and the ground truth span labels
yE , yC , yN ∈ {0, 1}. However, there are contexts
without an evidence span despite the NLI label
being ENTAILMENT or CONTRADICTION. This
causes inconsistency between what the model sees
and its teacher signal. Thus, we ignore the NLI
predictions for the contexts that do not contain an
evidence span.

`NLI =

{
−
∑

L∈{E,C,N} yL log ŷL, if ∃si = 1,

0, otherwise.

The multitask loss ` for a single context is then

` = `span + λ`NLI ,

where λ is a hyperparameter that controls the bal-
ance between the two losses. We mix contexts from
different documents during training, thus contexts
from a single document may appear in different
mini batches.

Since each document is predicted as multiple
contexts, results from these contexts have to be
aggregated to obtain a single output for a document.
For the evidence identification, we simply take the
average of span probabilities over different model
outputs.

∗ŝi =
1

Mi

∑
m

mŝi,

where Mi is the number of contexts that have the
full i-th span in its context.

For NLI, we weighted the NLI probabilities by
the sum of the span probabilities:

∗ŷ• =
1∑

m
1
Sm

∑
i
mŝi

∑
m

(
mŷ• ·

1

Sm

∑
i

mŝi

)
,

where Sm is the number of [SPAN] tokens in the
m-th context. This is based on an intuition that con-
texts with evidence spans should contribute more
to NLI.

4 Experiments

4.1 Baselines
In order to study the dataset’s characteristics, we
implemented five baselines with different capabili-
ties. We briefly explain the five baselines that we
implemented below, but more details can be found
in Appendix A.2.1

Majority vote A baseline that outputs an oracle
majority label for each hypothesis (NLI only).

Doc TF-IDF+SVM A document-level multi-class
linear Support Vector Machine (SVM; Chang
and Lin, 2011) with unigram bag-of-words fea-
tures (NLI only).

Span TF-IDF+Cosine Evidence identification
based on unigram TF-IDF cosine similarities be-
tween each hypothesis and each span (evidence
identification only).

Span TF-IDF+SVM A span-level binary Linear
SVM with unigram bag-of-words features (evi-
dence identification only).

SQuAD BERT A Transformer-based model as in
the previous works discussed in Section 3. In-
stead of allowing it to predict spans at arbitrary
boundaries, we calculate a score for each of pre-
defined spans by averaging token scores asso-
ciated with the start and end of the span over
different context windows. This makes sure that
its performance is not discounted for getting span
boundaries wrong.

4.2 Experiment Settings

For evidence identification, we report mean average
precision (mAP) that is micro averaged over labels.
We also report precision at recall 0.8 (P@R80)
that is micro averaged over documents and labels.
P@R80 is the precision score when the threshold
for evidence identification is adjusted to achieve
a recall score of 0.8. It was used in (Hendrycks
et al., 2021) to measure efficacy of a system under
a required coverage level that is similar to typical
human’s.

For NLI, we report accuracy, a F1 score for con-
tradiction (F1 (C)) and for entailment (F1 (E)). We
micro average these scores over documents and
then macro average over labels. This is to avoid the
label imbalance to cancel out with micro averaging
and the results to appear too optimistic.

For our Span NLI BERT, we ran the same ex-
periment ten times with different hyperparameters
(detailed in Appendix A.2.2) and report the average
score of three models with the best development
scores. Since NLI is more challenging than evi-
dence identification, we used macro average NLI
accuracy for the criterion. For the SQuAD BERT
baseline, we ran hyperparameter search over 18
hyperparameter sets as described in (Devlin et al.,
2019) and likewise report the average score of the
three best models. The metrics for the experiments
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Evidence NLI

Backbone Model Fine-tuning Method mAP P@R80 Acc. F1 (C) F1 (E)

BERTbase None .885.025 .663.093 .838.020 .287.022 .765.035
BERTlarge None .922.006 .793.018 .875.006 .357.039 .834.002
DeBERTa v2xlarge None .933.002 .859.008 .885.001 .360.027 .855.002

BERTbase Pretrained from scratch using a case law corpus (Zheng et al., 2021) .870.015 .578.052 .831.032 .289.026 .783.040
BERTbase Fine-tuned on case law and contract corpora (Chalkidis et al., 2020) .925.004 .811.002 .794.008 .272.008 .746.018
DeBERTa v2xlarge Fine-tuned on span identification (Hendrycks et al., 2021) .936.002 .860.003 .892.001 .405.016 .859.005

BERTbase Fine-tuned on NDAs .892.002 .690.014 .864.004 .326.014 .820.010
BERTlarge Fine-tuned on NDAs .922.003 .837.008 .875.000 .389.009 .839.003

Refer to Section 4.2 for the details on the metrics.

Table 3: Results for different backbone and pretrained models

Evidence NLI

mAP P@R80 Acc. F1 (C) F1 (E)

Majority vote — — .674 .083 .428
Doc TF-IDF+SVM — — .733 .197 .641
Random .024 .000 — — —
Span TF-IDF+Cosine .381 .057 — — —
Span TF-IDF+SVM .836 .322 — — —
SQuAD (BERTbase) .825.004 .574.004 — — —
SQuAD (BERTlarge) .869.005 .661.043 — — —

Ours (BERTbase) .885.025 .663.093 .838.020 .287.022 .765.035
Ours (BERTlarge) .922.006 .793.018 .875.006 .357.039 .834.002

Refer to Section 4.2 for the details on the metrics.

Table 4: Main results

with the hyperparameter search are followed by
subscript numbers each of which denotes standard
deviation of metrics over three runs.

4.3 Results

We first compared Span NLI BERT against base-
lines (Table 4). Span NLI BERT performed sig-
nificantly better than the baselines, both in terms
of evidence identification and NLI. Nevertheless,
the performance for contradiction labels is much
worse than that of entailment labels, due to the im-
balanced label distribution. In terms of evidence
identification, SQuAD BERT’s mAP score was no
better than that of Span TF-IDF+SVM, which il-
lustrates the importance of explicitly incorporating
span boundaries to input.

We then compared Span NLI BERT’s perfor-
mance with different backbone models and pre-
training corpora including DeBERTa v2 (He et al.,
2021) which was most successful in (Hendrycks
et al., 2021) (Table 3). We can observe that making
the models bigger benefits both evidence identifica-
tion and NLI. Fine-tuning models on legal corpora
had mixed results. Using a model pretrained on a
case law corpus (Zheng et al., 2021) did not ben-
efit evidence identification nor NLI. Fine-tuning
BERTbase on NDAs has slightly improved the per-
formance but the benefit is no longer visible for
BERTlarge. Transferring DeBERTaxlarge trained on

Evidence NLI

Hypothesis Usage mAP P@R80 Acc. F1 (C) F1 (E)

Symbol (BERTbase) .857.044 .574.136 .830.014 .294.075 .751.027
Symbol (BERTlarge) .894.020 .703.092 .849.006 .303.058 .794.026

Text (BERTbase) .885.025 .663.093 .838.020 .287.022 .765.035
Text (BERTlarge) .922.006 .793.018 .875.016 .357.039 .834.002

Refer to Section 4.2 for the details on the metrics.

Table 5: A controlled experiment using a randomly ini-
tialized special token for each hypothesis (Symbol) in-
stead of hypothesis’ surface tokens (Text)

CUAD (Hendrycks et al., 2021) gave marginal im-
provement on NLI, making it the best performing
model on the ContractNLI dataset.

5 Discussion

5.1 Controlled Experiments

In order to identify what is and what is not capable
by the models, we carried out controlled experi-
ments where we modified the input of the models.

Is Hypothesis Information Useful? It is non-
trivial that hypotheses surface tokens which were
merely used as an instruction to the annotators can
be useful in evidence identification. The fact that
Span TF-IDF+Cosine performed significantly bet-
ter than the random baseline (Table 4) implies that
hypothesis surface tokens do convey useful infor-
mation. Furthermore, we also experimented with
a condition where we used a randomly initialized
special token for each hypothesis instead of the hy-
pothesis’ surface tokens. Removing the hypothesis
surface tokens resulted in consistent decrease of
performance for both evidence identification and
NLI (Table 5). This implies that the hypothesis
surface tokens are somewhat meaningful, but these
narrow differences suggest that there could be a
better way to utilize the hypothesis surface tokens.

Can Better Evidence Identification Lead to Bet-
ter NLI? In ContractNLI, evidence identification
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NLI

Accuracy F1 (C) F1 (E)

Majority vote .814 .239 .645
Span NLI (BERTbase) .883 .006 .490.007 .795.005
Span NLI (BERTlarge) .899 .004 .492.065 .820.012
Oracle NLI (BERTbase) .918 .005 .657.062 .816.006
Oracle NLI (BERTlarge) .908 .011 .620.082 .806.015

Refer to Section 4.2 for the details on the metrics.

Table 6: A controlled experiment of document-level
binary classification over ENTAILMENT and CONTRA-
DICTION utilizing oracle evidence spans.

NLI Accuracy

Condition Majority Minority Weighted % minority label

w/o (local) .91 .77 .84 21
w/ (local) .92 .40 .66 7

w/o (non-local) .98 .72 .85 19
w/ (non-local) .90 .00 .45 6

Accuracy has been calculated for majority and minority ground-truth NLI
labels separately in order to rule out the effect of the label distribution.
“Weighted” denotes an average of the two accuracy scores that are weighted
disproportionally to the number of occurances of each label. Only the
hypotheses that exhibit negation by exception are used for this experiment (#1,
4, 5, 6, 14, 16 and 17 for local, and #4, 5, 6 and 17 for non-local).

Table 7: NLI accuracy in instances with and without
(non-)local negation by exception

and NLI are dependent on each other. We experi-
mented whether good evidence identification can
benefit NLI by feeding models with oracle evidence
spans for NLI. For the oracle model (Oracle NLI),
we concatenated a hypothesis and ground truth evi-
dence spans as an input and predicted a binary label
of ENTAILMENT or CONTRADICTION. We can ob-
serve in Table 6 that giving models oracle spans
substantially improves NLI performance, notably
the F1 score of CONTRADICTION. This suggests
that there is still much room for improvement on
NLI just by improving evidence identification.

5.2 Challenges of ContractNLI

Our task is challenging from a machine learning
perspective. The label distribution is imbalanced
and it is naturally multi-task, all the while training
data being scarce. Furthermore, we argue that there
exist multiple linguistic characteristics of contracts
that make the task challenging.

We annotated the development dataset on
whether each document-hypothesis pair exhibits
certain characteristics and evaluated impact of each
characteristic on the performance of the best Span
NLI BERT (BERTlarge) from Table 4. Since evi-
dence spans are only available when the NLI la-
bel is either ENTAILMENT or CONTRADICTION,
document-hypothesis pairs with NOTMENTIONED

label are excluded from the evaluations in this sec-

# spans read before finding:

n # spans one span all spans mAP

Continuous 128 2.64 1.09 3.82 0.91
Discontinuous 128 2.34 1.04 3.84 0.94

Continuous 64 2.64 1.16 4.33 0.89
Discontinuous 64 2.34 1.01 4.85 0.94

“# spans read before finding one (all) span(s)” refers to the number of spans a
user needs to read until the user finds one (all) span(s) if the user reads the
spans in an order of a system’s span probability output. Thus, it is better
when it is lower and 1.0 is the best possible value.

Table 8: Evidence identification performance of mod-
els with different minimum number of surrounding to-
kens n on documents with dis-/continuous spans

tion.

Negation by Exception Contracts often state a
general condition and subsequently add exceptions
to the general condition. For example, in “Recipi-
ent shall not disclose Confidential Information to
any person or entity, except its employees or part-
ners ...”, the first half clearly forbids sharing confi-
dential information to an employee, but the latter
part flips this decision and it is actually permitting
the party to share confidential information. This
phenomenon can occur both locally (i.e., within a
single span) or non-locally, sometimes pages away
from each other. In our dataset, the local case hap-
pens in 12% of document-hypothesis pairs, which
corresponds to 59% of documents with at least one
of such hypotheses. The non-local case happens
in 7% of document-hypothesis pairs and 44% of
documents. By comparing document-hypothesis
pairs with and without such phenomena, we can
see that local and non-local negation by exception
is hurting the model’s NLI accuracy (Table 7).

Discontinous Spans As sketched in Figure 1, ev-
idence spans can be discontinous and may even be
pages apart. Such discontinous spans occur in 28%
of document-hypothesis pairs, which corresponds
to 81% of documents with at least one of such
hypotheses.

Contrary to our expectation, discontinuous set-
ting did not have a negative effect on overall evi-
dence identification mAP score (Table 8). This can
be attributed to the fact finding a single span was
easier in the discontinuous setting, which is evi-
dent from “the number of spans read before finding
one span”. “Number of spans read before finding
all spans” is nevertheless affected by discontinous
spans, especially when the model’s minimum num-
ber of surrounding tokens n is small2. Furthermore,

2This is the best BERTlarge with n = 64 and the fifth best
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NLI Accuracy

Condition Majority Minority Weighted % minority label

w/o Reference .91 .88 .89 26
w/ Reference .93 — — 0

Accuracy has been calculated for majority and minority ground-truth NLI
labels separately in order to rule out the effect of the label distribution.
“Weighted” denotes an average of the two accuracy scores that are weighted
disproportionally to the number of occurances of each label. Only the
hypotheses that exhibit references are used in this experiment (#5 and 6).

Table 9: NLI accuracy on documents with and without
references to definitions

there was a positive correlation between the gap
between the discontinuous spans and “number of
spans read before finding all spans” (a Spearman
correlation of ρ = 0.205, p = 0.015). This is be-
cause many hypothesis-distinctive spans (e.g., a
span starting with “(ii)” in the second hypothesis of
Figure 1) can be inferred without access to its con-
text, but finding the accompanying spans (e.g., the
first span in Figure 1) is impossible when they do
not fit onto a single context window. Nevertheless,
the effect of discontinous spans is very small and
Span NLI BERT can overcome this with a larger
number of surrounding tokens.

Reference to Definition Contracts often have
references to definitions. In our dataset, hypothe-
ses #5 and 6 “Sharing with employees/third-parties”
tend to have such references. For example, if a con-
tract says “The Receiving Party undertakes to per-
mit access to the Confidential Information only to
its Representatives ....”, the hypothesis #5 “Sharing
with employees” is entailed by such span but the
hypothesis #6 “Sharing with third-parties” is not.
Only when the contract includes a definition such
as “ “Representatives” shall mean directors, em-
ployees, professional advisors or anyone involved
with the Party in a professional or business capac-
ity.”, hypothesis #6 is also entailed by the contract.
We speculated that this could make NLI more diffi-
cult because the model has to refer to both spans in
order to get NLI right. However, our observation
discovered that examples with references are no
more difficult than those without them (Table 9).

6 Related Works

Helped by their accessibility, there exist multiple
prior works on “legal NLI” for case and statute
laws. One of the subtasks in COLIEE-2020 shared
task (Rabelo et al., 2020) was, given a court deci-
sion Q and relevant cases, to extract relevant para-

model overall.

graphs from the cases and to classify whether those
paragraphs entail “Q” or “not Q”. Holzenberger
et al. (2020) introduced a dataset for predicting an
entailment relationship between a statement and a
statute excerpt. While they are both “legal” and
“NLI”, statutes and contracts exhibit different char-
acteristics including the fact that statutes/cases tend
to be written in consistent vocabulary and styles.
Moreover, there only exists a single right answer
for a hypothesis in case/statute law NLI, whereas
a hypothesis can be entailed by or contradicting to
each contract in our task; i.e., hypotheses and docu-
ments have one-to-one relationships in case/statute
law NLI, but they have many-to-many relationships
in our task.

As discussed in Section 1, our task has practical
and scientific significance compared to informa-
tion extraction for contracts (Leivaditi et al., 2020;
Hendrycks et al., 2021). We showed in our experi-
ments that the NLI part of our task is much more
challenging than the evidence identification task.
Furthermore, we gave observations to linguistic
characteristics of our dataset that are lacking in
these prior works.

Lippi et al. (2019) presented a dataset where
certain types of contract clauses are identified and
annotated with “clearly fair”, “potentially unfair”
or “clearly unfair”. While the format of the task
input and output is quite similar, our task requires
reasoning over a much diverse set of hypotheses
than just fair or unfair. Similarly, fact extraction
and claim verification tasks (Thorne et al., 2018;
Jiang et al., 2020), where the task is to extract facts
from Wikipedia articles and to classify whether the
claim is entailed by the facts, have similar input
and output formats. Such claims and our hypothe-
ses are quite different in nature and working on
contracts poses unique challenges as discussed in
Section 5.2.

7 Conclusion

In this work, we introduced a novel, real-world ap-
plication of NLI, document-level NLI for contracts
which aim to assist contract review. We annotated
a dataset consisting of 607 contracts and showed
that linguistic characteristics of contracts, particu-
larly negations by exceptions, make the problem
difficult.

We introduced Span NLI BERT that incorporates
more natural solution to evidence identification by
modeling the problem as multi-label classification
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over spans instead of trying to predict the start and
the end token as in previous works. Span NLI
BERT performed significantly better than existing
Transformer-based models.

Notwithstanding the performance gain by Span
NLI BERT, there exists much room for improve-
ment. Span NLI BERT still has poor performance
on rare labels, as well as being easily impacted by
negations by exceptions.

For future works, we will also explore systems
that can generalize to different types of contracts
and hypotheses. We believe that studying how hy-
pothesis phrasing can affect performance and de-
veloping a better way to utilize hypothesis text can
be the key to such goal.

We hope that the dataset and Span NLI BERT
will serve as a starting point for tackling the inter-
esting challenges in our ContractNLI task.

Ethical Consideration

In this work, we collected contracts from EDGAR
and Internet search engines. For the former,
EDGAR states that all filed documents are pub-
lic information and can be redistributed without a
further consent3. For the latter, we obtained pub-
licly accessible documents and our academic use
is within the scope of fair use. Nevertheless, we
placed a contact form for a concerned individual
or organization in a similar way as other crawled
datasets.

For the annotation, we hosted our annotation task
on Amazon Mechanical Turk so that each worker
can participate voluntarily and withdraw at any
time. We made sure each worker receives at least
the US federal wage and the actual average pay
was 18.31 US dollars per hour (excluding Amazon
Mechanical Turk fees). Our annotation procedure
did not go through an institutional review board
since we are not directly collecting information
from human subjects.

While we did not run computationally expensive
pretraining of Transformer-based models, we ran
fine-tuning of the models 156 times for this paper.
Running experiments multiple times was neces-
sary in order to ensure validity and reproducibility
of the experiments when our dataset is modest in
size from a machine learning perspective. We be-
lieve this energy consumption can be justified by
resources that we can potentially save by assisting

3https://www.sec.gov/privacy.htm#
dissemination

contract review. Moreover, we introduced an ar-
chitectural change that benefits the models more
than simply making the model larger (e.g., Span
NLI BERT with BERTbase performed better than
SQuAD BERT with BERTlarge in Table 4).

There was a concern that publication of our an-
notations or models may be regarded as an unau-
thorized practice of law (i.e., giving a legal advice
without a license), which is forbidden in many ju-
risdictions. This also means that an individual may
suffer from a loss by relying on information from
our annotation or model outputs as a legal advice.
We have consulted an attorney regarding this issue
and were advised that releasing general information
(the annotations and the models) does not constitute
an unauthorized practice of law. We were never-
theless advised to place a disclaimer that warns
users not to rely on the information and to seek an
attorney’s advice instead. Furthermore, we took ad-
ditional measures, such as forbidding a crawler to
index our annotations, in order to minimize a risk
of an individual from referencing our annotation as
a legal advice.
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A Appendix

A.1 Details on Data Collection
In this section, we provide supplemental informa-
tion regarding the data collection discussed in Sec-
tion 2.2.

As discussed in Section 2.1, our dataset consists
exclusively of non-disclosure agreements (NDAs)
in order to incorporate more fine-grained hypothe-
ses. More specifically, we used unilateral or bilat-
eral NDAs or confidentiality agreement between
two parties. We excluded employer-employee
NDAs and those that are part of larger agreements
(such as a confidentiality agreement inside a larger
merger agreement), because they are quite different
from the rest of NDAs.

We collected NDAs from Internet search engines
and Electronic Data Gathering, Analysis, and Re-
trieval system (EDGAR). For the collection from
the search engines, we queried Google search en-
gines with a search query “ “non-disclosure” agree-
ment filetype:pdf” and downloaded the PDF files
that the search engines returned. We note that
Google search engines in different domains return
different results. Therefore, we used seven domains
from countries where English is widely spoken (US
“.com”, UK “.co.uk”, Australia “.com.au”, New
Zealand “.co.nz”, Singapore “.com.sg”, Canada
“.ca” and South Africa “.co.za”). Since collected
PDFs contain irrelevant documents, we manually
screened all 557 documents and removed all the
irrelevant documents. We also removed NDAs that
do not have embedded texts (i.e., glyphs are em-
bedded as an image) or those that have more than
one columns, since they are difficult to preprocess.

For the collection from EDGAR, we first down-
load all the filed documents from 1996 to 2020
in a form of daily archives4. We uncompressed
each archive and deserialized files using regular
expressions by referencing to the EDGAR specifi-
cations (The U.S. Securities and Exchange Com-
mission, 2018), which gave us 12,851,835 fil-
ings each of which contains multiple documents.
We then extracted NDA candidates by a rule-
based filtering. Using meta-data obtained dur-
ing the deserialization, we extracted documents
whose file type starts with “EX” (denotes that
it is an exhibit), its file extension is one of
“.pdf”, “.PDF”, “.txt”, “.TXT”, “.html”, “.HTML”,
“.htm” or “HTM”, and its content is matched by a

4https://www.sec.gov/Archives/edgar/
Oldloads/

(a) Evidence identification

(b) NLI

Figure 5: Question answering with evidence annotation
interface

regular expression “(?<![a-zA-Z,̇"()] *)([Nn]on[-
][Dd]isclosure)|(NON[- ]DISCLOSURE)”. We

manually screened all 28,780 NDA candidates
and obtained 236 NDAs. All of the NDAs from
EDGAR were either in HTML or plain text format.

A.1.1 Details on Contract Annotation
We developed 17 hypotheses by comparing differ-
ent NDAs and had them reviewed by paralegals.
List of hypotheses can be found in Table 10.

Since we employ a fixed set of hypotheses unlike
existing NLI datasets, we employed an example-
oriented annotation guideline for each hypothesis
in order to improve annotation consistency. Fur-
thermore, we developed an annotation interface in
order to efficiently and consistently annotate the
NDAs. The interface allows the users to select
spans (Figure 5a) and then a NLI label (Figure 5b).

Annotation was conducted by a computational
linguistic researcher (the primary annotator) with
a help from workers at Amazon Mechanical Turk.
We chose two workers at Amazon Mechanical Turk
who were consistently performing well and asked
them to redundantly annotate each document with
a priority on coverage. We merged annotated spans
for each document. Finally, the primary annotator

https://www.sec.gov/Archives/edgar/Oldloads/
https://www.sec.gov/Archives/edgar/Oldloads/
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# Title Hypothesis

1 Explicit identification All Confidential Information shall be expressly identified by the Disclosing Party.
2 Non-inclusion of non-technical information Confidential Information shall only include technical information.
3 Inclusion of verbally conveyed information Confidential Information may include verbally conveyed information.
4 Limited use Receiving Party shall not use any Confidential Information for any purpose other than

the purposes stated in Agreement.
5 Sharing with employees Receiving Party may share some Confidential Information with some of Receiving

Party’s employees.
6 Sharing with third-parties Receiving Party may share some Confidential Information with some third-parties

(including consultants, agents and professional advisors).
7 Notice on compelled disclosure Receiving Party shall notify Disclosing Party in case Receiving Party is required by

law, regulation or judicial process to disclose any Confidential Information.
8 Confidentiality of Agreement Receiving Party shall not disclose the fact that Agreement was agreed or negotiated.
9 No reverse engineering Receiving Party shall not reverse engineer any objects which embody Disclosing

Party’s Confidential Information.
10 Permissible development of similar information Receiving Party may independently develop information similar to Confidential In-

formation.
11 Permissible acquirement of similar information Receiving Party may acquire information similar to Confidential Information from a

third party.
12 No licensing Agreement shall not grant Receiving Party any right to Confidential Information.
13 Return of confidential information Receiving Party shall destroy or return some Confidential Information upon the ter-

mination of Agreement.
14 Permissible copy Receiving Party may create a copy of some Confidential Information in some circum-

stances.
15 No solicitation Receiving Party shall not solicit some of Disclosing Party’s representatives.
16 Survival of obligations Some obligations of Agreement may survive termination of Agreement.
17 Permissible post-agreement possession Receiving Party may retain some Confidential Information even after the return or

destruction of Confidential Information.

Table 10: List of hypotheses. The titles are only used for human readabilities.

reviewed the merged annotations and adjusted the
annotations where necessary. For the train split,
the primary annotator only reviewed the annotated
spans to judge NLI labels and to consolidate the
span boundaries. For most of the test split, the pri-
mary annotator went through the whole contracts to
further improve coverage. Most of the development
dataset and some of the test dataset were annotated
exclusively by the primary annotator without a help
from the workers. This allowed us to obtain consis-
tent and high coverage annotations.

A.2 Detailed Experiment Settings

A.2.1 Baselines

We provide supplemental information of the base-
lines discussed in Section 4.1.

For Doc TF-IDF+SVM, Span TF-IDF+Cosine
and Span TF-IDF+SVM, we tokenized the input us-
ing Stanza (Qi et al., 2020) and extracted unigram
TF-IDF vectors using Scikit-learn’s (Pedregosa
et al., 2011) TfidfVectorizerwith the default
configuration (i.e., no stopwords apart from punc-
tuations, minimum document frequencies of one,
and smoothed inverse document frequencies). For
Doc TF-IDF+SVM and Span-TF-IDF+SVM, we
used a Support Vector Machine (SVM; Chang and
Lin, 2011) with a linear kernel with the default
hyperparameters implemented in Scikit-learn (i.e.,

C = 1.0 with a stopping tolerance of 0.001).
For SQuAD BERT, we tried to be as faithful

to a commonly used implementation as possible.
Thus, we implemented SQuAD BERT by imple-
menting preprocessing and postprocessing scripts
for the Huggingface’s implementation5. Because
the SQuAD BERT only utilizes the first span even
if a training example included multiple spans, we
created an example for each span of each document-
hypothesis pair. Within the Huggingface’s imple-
mentation, each example is further split into con-
texts with a fixed window size. It is trained to point
at starting and ending tokens of the span, or at
[CLS] token when a span is not present. Instead
of allowing it to predict spans at arbitrary bound-
aries, we calculate a score for each of predefined
spans by averaging token scores associated with
the start and end of the span over different context
windows. This makes sure that its performance is
not discounted for getting span boundaries wrong.

A.2.2 Hyperparameters
For Span NLI BERT, we ran the same experiment
ten times with different hyperparameters (Table 11).

5https://github.com/
huggingface/transformers/blob/
0c9bae09340dd8c6fdf6aa2ea5637e956efe0f7c/
examples/question-answering/run_squad.py;
We have slightly modified their implementation so that we
have access to start/end token probabilities.

https://github.com/huggingface/transformers/blob/0c9bae09340dd8c6fdf6aa2ea5637e956efe0f7c/examples/question-answering/run_squad.py
https://github.com/huggingface/transformers/blob/0c9bae09340dd8c6fdf6aa2ea5637e956efe0f7c/examples/question-answering/run_squad.py
https://github.com/huggingface/transformers/blob/0c9bae09340dd8c6fdf6aa2ea5637e956efe0f7c/examples/question-answering/run_squad.py
https://github.com/huggingface/transformers/blob/0c9bae09340dd8c6fdf6aa2ea5637e956efe0f7c/examples/question-answering/run_squad.py
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Hyperparameter BERTbase BERTlarge DeBERTaxlarge

Batch size 32 32 32
Learning rate 1e-5, 2e-5, 3e-5, 5e-5 1e-5, 2e-5, 3e-5, 5e-5 5e-6, 8e-6, 9e-6, 1e-5
AdamW’s ε 1e-8 1e-8 1e-6

Weight decay 0.0, 0.1 0.0, 0.1 0.01
Max. gradient norm 1.0 1.0 1.0

Warmup steps 0, 1000 0, 1000 50, 100, 500, 1000
# epochs 3, 4, 5 3, 4, 5 3, 4, 5

Min. # surrounding tokens n 64, 128 64, 128 64, 128
Loss weight λ 0.05, 0.1, 0.2, 0.4 0.05, 0.1, 0.2, 0.4 0.05, 0.1, 0.2, 0.4

Use weighted NLI True, False True, False True, False

Table 11: Hyperparameter search space. The hyperparameters below the middle line are the hyperparameters
specific to Span NLI BERT. The bold values denote the best hyperparameters in our experiment.

Hyperparameter search spaces for BERT and De-
BERTa have been adopted from (Devlin et al.,
2019) and (He et al., 2021), respectively. For the
SQuAD BERT baseline, we ran hyperparameter
search over 18 hyperparameter sets as described in
(Devlin et al., 2019).

In both cases, we report the average score of
three models with the best development scores.
Since NLI is more challenging than evidence iden-
tification, we used macro average NLI accuracy for
the criterion.

The choice of weighted/unweighted NLI prob-
ablities was a part of our hyperparameters and
we found that the best models (for BERTbase,
BERTlarge and DeBERTaxlarge) preferred the
weighted probablities. The models with weighted
probablities had on average 0.782 (BERTbase) and
0.803 (BERTlarge) macro average NLI accuracies
whereas the models with unweighted probablities
had on average 0.458 (BERTbase) and 0.454 (large)
macro average NLI accuracies. This implies that it
is critical to incorporate the weighted probablities.

As for the loss weight λ, we found in pilot ex-
periments that NLI starts to overfit faster than span
detection, thus we searched values in λ < 1. A
possible hypothesis is that there is less diversity
in teacher signal for NLI than that for evidence
span detection; Contexts extracted from a single
hypothesis-document pair have the same NLI label
which could be somewhat redundant, whereas each
context has a different span label.


