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Abstract

Due to complex cognitive and inferential ef-
forts involved in the manual generation of one
caption per image/video input, the human an-
notation resources are very limited for cap-
tioning tasks. We define language resource
efficient as reaching the same performance
with fewer annotated captions per input. We
first study the performance degradation of cap-
tion models in different language resource set-
tings. Our analysis of caption models with SC
loss shows that the performance degradation
is caused by the increasingly noisy estimation
of reward and baseline with fewer language re-
sources. To mitigate this issue, we propose
to reduce the variance of noise in the base-
line by generalizing the single pairwise com-
parison in SC loss and using multiple gener-
alized pairwise comparisons. The generalized
pairwise comparison (GPC) measures the dif-
ference between the evaluation scores of two
captions with respect to an input. Empirically,
we show that the model trained with the pro-
posed GPC loss is efficient on language re-
source and achieves similar performance with
the state-of-the-art models on MSCOCO by us-
ing only half of the language resources. Fur-
thermore, our model significantly outperforms
the state-of-the-art models on a video caption
dataset that has only one labeled caption per
input in the training set.

1 Introduction

Generating natural language descriptions for im-
ages and videos (Vinyals et al., 2015; Chen et al.,
2015; Yao et al., 2015; Li et al., 2016) is one of the
core steps towards ultimate image and video under-
standing. However, the cost of collecting a caption
dataset is nontrivial. Actually, it is much higher
than the cost of collecting a detection/classification
dataset with the same number of images/videos,
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Figure 1: Behavior of models in different language re-
source settings: “re-K” means K labeled captions per
input are used in training and “full” means using all 5
labeled captions per input in training. XE loss is su-
pervised learning (Vinyals et al., 2015); SC loss is re-
inforcement learning (Rennie et al., 2017); GPC loss is
the proposed method.

since annotating an image/video with a caption
involves more complex cognitive and inferential
efforts for human beings. That means the man-
ual labeling effort is a very limited resource that
could not be neglected in collecting a caption
dataset. This issue becomes even more critical
as researchers move on to new domains and need
more data to train caption models to cover new
scenarios or tasks.

The scale of a caption dataset can be defined
by the product of the number of images/videos
and the number of captions per input. Thus there
are two ways to reduce the labeling resources: re-
ducing the number of images/videos (image/video
resource) or reducing the number of captions per
input (language resource). In this paper, we fo-
cus on “language resource efficient” that aims to
reach the same performance with fewer language
resources. As shown in figure 1, with fewer num-
ber of captions provided per input from full set-
ting to re-1 setting in training, the performance of
the model degrades in general. Slower degrading
curve means that the corresponding model requires
fewer number of captions per input to reach the
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performance of other models and therefore is more
resource-efficient.

In figure 1, the performance degradation of mod-
els with XE loss trained by supervised learning
is easy to understand as there are fewer supervi-
sions with fewer captions per input. However, the
performance degradation of models with SC loss
trained by reinforcement learning is more complex.
In SC loss, we sample one caption from the model
for each input in each epoch of training. Thus,
the number of captions sampled from the model
in training is irrelevant to the size of language re-
source. On the other hand, when calculating the
reward in SC loss, we first calculate the evalua-
tion score based on each groundtruth caption and
then average the evaluation scores across multiple
groundtruth captions of the same input, which is
related to the size of language resource. Similar
things happen when we calculate the baseline value
in the SC approach, which evaluates the score of
the caption decoded greedily from the model. Thus,
the calculation of reward and baseline is affected
by the size of language resource. As the evaluation
score, e.g., CIDEr (Vedantam et al., 2015), still
has some gap from human judgement, we consider
that both the reward and baseline in the SC model
have noise. Such noise is amplified when the lan-
guage resource is small, which contributes to the
performance degradation of models with SC loss.

To solve this issue, we introduce generalized
pairwise comparison (GPC) to reduce the noise
in the baseline. GPC measures the difference be-
tween the evaluation scores of two captions with
respect to an input. For example, neither “a white
cat plays with a ball” nor “a dog plays with a
ball” is a correct caption for the input image with
a groundtruth caption “a brown cat plays with a
brown ball”. However, the former is much closer to
the groundtruth. Such subtlety comes from the fact
that a caption is a complex object. We use the pair-
wise comparison to quantify the difference rather
than the absolute value. We propose to combine
multiple GPCs by comparing the sampled caption
to multiple other captions, which results in GPC
loss. The GPC loss can be decomposed into two
items. The first item is the reward of the sampled
caption, same as the reward in SC. The second item
is the average evaluation score of multiple captions
other than the sampled caption, which works as a
new baseline with smaller noise in estimation.

We show theoretically and empirically that GPC

loss has a less noisy baseline compared to SC loss.
Experimental results show that our proposed GPC
can achieve the same performance as the state-of-
the-art SC loss (Rennie et al., 2017) while using
only half of the captions per input on MSCOCO
(Chen et al., 2015). We also test GPC on a video
caption dataset TGIF (Li et al., 2016), which has
only one caption per video in the training set (low
language resource), and achieve significant perfor-
mance improvement over the state-of-the-art mod-
els on all metrics.

In summary, the main contributions of this work
are as follows:

e We propose to optimize language resource
efficiency in captioning tasks.

o We study and analyze the behavior of models
trained by supervised learning and reinforce-
ment learning in terms of language resource
efficiency.

e We propose generalized pairwise comparison
(GPC) to reduce noise in the baseline.

o Extensive experiments are conducted to assess
the language resource efficiency of the model
trained by the proposed GPC. We achieve
the state-of-the-art performance by using only
half of the captions per input on MSCOCO,
and improve performance significantly on all
metrics on TGIF.

2 Related Work

With the success of the encoder-decoder architec-
ture in machine translation (Bahdanau et al., 2014),
researchers begin to apply the encoder-decoder ar-
chitecture to directly generate image/video descrip-
tions in an end-to-end way (Vinyals et al., 2015;
Mao et al., 2014; Sutskever et al., 2014). Convolu-
tional neural networks are utilized as the encoder
to encode visual contents as distributional vector
representations, and recurrent neural networks are
widely used as the decoder to produce natural and
meaningful description sentences. The success of
encoder-decoder architectures in the captioning
task has attracted more research interest on this
topic. Many research works have been proposed
to improve the basic architecture. For example,
the spatial (Xu et al., 2015; Li et al., 2017) and
temporal (Yao et al., 2015) attention mechanisms
have been proposed in image and video caption-
ing respectively to dynamically select relevant vi-
sual content for generating future words. Semantic
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concepts produced in object detection and action
recognition tasks are also beneficial to caption gen-
eration and have been encoded into the decoder in
different approaches (You et al., 2016; Pan et al.,
2017). All these research works focus on improv-
ing the network architecture under the supervised
problem formulation with cross-entropy loss.

Recently, researchers (Ranzato et al., 2015; Ren-
nie et al., 2017; Liu et al., 2017) have proposed to
use reinforcement learning to bridge the gap be-
tween training and testing in the captioning task,
which considerably boosts the performance. Dai
and Lin (Dai and Lin, 2017) combine the contrast
loss with the cross-entropy loss to generate more
discriminating captions. Luo et al. (Luo et al.,
2018) take a different approach to generate more
discriminating captions by adding the contrastive
loss as reward. All these works improve the caption
performance by changing the loss functions.

Meanwhile, many caption datasets (Chen et al.,
2015; Xu et al., 2016; Li et al., 2016; Sigurds-
son et al., 2016) covering different media such as
images, GIFs and videos have been proposed to
promote the captioning research. Among them,
MSCOCO is one of the largest one in both the
number of instances and the number of instance-
caption pairs. Many of the caption datasets are
either small in the number of instances such as
MSRVTT (Xu et al., 2016) or the number of cap-
tions per instance such as TGIF (Li et al., 2016)
and Charade (Sigurdsson et al., 2016) due to the
limited budget for collecting data. Surprisingly, the
huge cost of data collecting has been neglected and
most research works are trained and evaluated on
rich resource datasets such as MSCOCO. To the
best of our knowledge, we are the first to take the
labeling resource into account at the beginning to
develop the model.

3 Study of Language Resource Efficiency

3.1 Language Resource Efficiency

The resource we talk about here is the human la-
beling resource, which is the major bottleneck in
collecting a large scale caption dataset. The scale
of a dataset can be measured, for example, by the
number of images/videos N times the number of
captions per input K, which results in N x K in
total. Correspondingly, the cost of labeling a cap-
tion dataset could be roughly estimated by its scale
N x K. The major labeling cost comes from the
training set. To save labeling efforts for datasets

that contain many images/videos, researchers cut
down the number of labeled captions per input such
as the TGIF (Li et al., 2016) dataset. Given a fixed
amount of images/videos in the training set, if one
model achieves the same performance as another
model using fewer number of labeled captions per
input in training, this model is more language effi-
cient as fewer labeling efforts are needed for train-
ing. In this way, the language resource efficiency is
defined as the number of labeled captions per input
in the training set. Note that the language resource
efficiency doesn’t apply to the test set as multiple
captions per input are helpful for stable and robust
evaluation (Vedantam et al., 2015). Furthermore,
the labeling cost of the test set is usually not the
focus as the number of images/videos in the test set
constitutes only a small fraction of the whole set.
We construct a series of different language re-
source settings from the caption dataset MSCOCO
(Chen et al., 2015) for a systematic study of current
models. To be specific, MSCOCO contains 5 cap-
tions per image in the training set. For each image,
we randomly preserve only one caption and con-
struct the re-1 training setting. Similarly, we could
randomly preserve K captions for each image and
get corresponding re- K training setting, where K
ranges from 1 to 4. Together with the full setting
containing all the available captions, we have 5 set-
tings in total: re-1, re-2, re-3, re-4, full. We only
apply the 5 settings on the training set. The test set
still contains 5 captions per input to guarantee the
stable evaluation result. We use the standard split
(Karpathy and Li, 2015) for all experiments.

3.2 Current Model Behavior on Language
Resource Efficiency

Under the five resource settings constructed in the
above subsection, we study models trained by two
widely used objective functions in captioning tasks:
cross-entropy (XE) loss (Vinyals et al., 2015; Mao
et al., 2014) and self-critical (SC) loss (Rennie
et al., 2017). The objective function of XE loss is:

N K '
min : — Z Z log p(y?|z:) (D

i=1 j=1

where x; is the input image, yg is the j-th
groundtruth caption for image z;. It does word-
level supervision and is limited by the train-to-test
gap for sequence prediction (Ranzato et al., 2015).
In contrast, SC loss (Rennie et al., 2017) doesn’t
have the train-to-test gap and reaches better perfor-
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mance than XE loss. Its objective function maxi-
mizes the expected return of sampled caption y*:

N
max IZEysNP(ys|zi) [r(y®) —b] (2)
=1

As shown in figure 1, we observe that for both
learning objective functions XE and SC, the perfor-
mance drops almost linearly on CIDEr when the
number of captions per input decreases. From full
setting to re-1 setting, the model trained by XE loss
drops by 11.8 on CIDEr and the model trained by
SC loss drops by 21.9 on CIDEr. The experimental
setup is elaborated in section 5.1.

It is easy to understand the performance drop of
models with XE loss as fewer labels are provided
for supervision from full setting to re-1 setting.
However, the performance drop of models with SC
loss requires more complex reasoning. In this ap-
proach, we sample one caption from the model for
each input in each epoch of training. The amount
of captions sampled from the model in the train-
ing process is proportional to the number of im-
ages/videos in the training set and is therefore fixed
across different resource settings. Thus, the perfor-
mance degradation is related to the calculation of
reward and baseline.

Next we analyze how the number of captions
per input influences the calculation of reward and
baseline, which further leads to the performance
degradation. The reward r(y®) and baseline b in
eq (2) are calculated via a evaluation score ¢:

)
3
vl)

e

K
Z v,
In the above equation, calculating reward r(y*®) for
the sample caption y® involves K calls of the eval-
uation score ¢(y°, yf ) and each call uses one of the
groundtruth caption to calculate the score. Simi-
larly, calculating baseline b also involves K calls
of the evaluation score ¢(y,y]) on the caption y?
which is decoded greedily from the model. Ideally,
the evaluation score ¢ should be exactly equiva-
lent to the human judgement, and we denote this
“perfect” evaluation score as gg Intuitively, the eval-
uation score ¢(y) of any caption y should be the
same no matter which groundtruth caption is used
for evaluation:

o(y) = oly,yi) = = oy, ui") )

Therefore, in an ideal situation, the calculation of
reward and baseline is independent of the number
of captions:

(&)

where 7(y*) and b denote the “prefect” reward
and baseline respectively. However, the evalua-
tion score ¢ that we use in practice is usually based
on n-gram matching (e.g., CIDEr) which correlates
well with gg but is not perfect. For any caption y
and the groundtruth caption yf , we introduce an
additional random noise ¢; to describe such noisy
relation between ¢(y, yf ) and g(y)

& = oy, yl) — o) ©

Thus we can measure the difference £ between the
baseline b in practice and the perfect baseline b:

K 1 K
= Z (%, y) =K Z%‘ @)
j=1 j=1

For simplicity, we assume that the random noises

€j={1,...,k} are i.i.d. with variance o2, and the vari-
ance of the difference &£ can be calculated as:
Var(€) = i02 (8)
T K

According to eq (8), when K becomes smaller (i.e.,
fewer groundtruth captions per input), the variance
of the difference £ is amplified, which means the
estimation of the perfect baseline b becomes less
accurate. Similar argument could be also applied
to the reward. Training with less accurate reward
and baseline leads to the performance degradation
of models with SC loss as shown in figure 1.

4 Reducing Variance by Generalized
Pairwise Comparison

We propose to reduce the variance Var(€) in eq (8)
and make the estimation of the prefect baseline b
more accurate by generalized pairwise comparison
(GPC). Using re-1 as an example, we have only
one groundtruth caption y; for input x;, which re-
sults in only one call of the evaluation score ¢ in
the calculation of the baseline. GPC enables us to
add more independent calls of ¢ even in the re-1
setting to reduce the noise in the baseline and still
keeps the difference between the reward and the
baseline meaningful, which is the merit of SC loss.
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Figure 2: Illustration of generalized pairwise comparison (GPC)

4.1 Generalized Pairwise Comparison

The generalized pairwise comparison (GPC)
A(Y, Yep|yi) is defined on the triplet (y, Yep, Yi)s
where y; is the groundtruth caption used as the
reference, and y, Y., could be any two captions,
e.g., captions sampled from the model or captions
associated with other input in the dataset. As illus-
trated in figure 2, the generalized pairwise compari-
son measures the difference between the evaluation
scores of ¢(y, y;) and ¢(yep, yi) With the reference
caption y; as follows:

A, Yeplyi) = (Y, yi) — d(Yeps yi) Q)

We show that SC is a special case of GPC if we
substitute y and ¥, by the sampled caption y* and
the greedily decoded caption 39 respectively:

r(y") = b= vi) — sy, 1) = A, y’y:)  (10)
In GPC view, the meaning of 7(y®) — b is that how
much better the sampled caption y° is compared to
the greedily decoded caption y9 on the evaluation
score ¢ with the reference y;. Actually, we could
substitute y., with any other caption in GPC and
the corresponding meaning is the comparison of
the sampled caption y® with any other caption, in-
cluding the greedily decoded caption. Furthermore,
we could combine multiple generalized pairwise
comparisons instead of only using single one.

For m multiple GPCs, we average them and get:

1 1 «—
— D AWl = W v — — > 6 v)
n=1 n=1
=7(y°) — barc
r(y®) = ¢(y", vi)

I~ »
bapc = > d(yep vi)
n=1

(1)

where yg, denotes the n-th in the m captions for
comparison. As a result, we get the same reward as

that in SC but a different baseline b; pc. The vari-
ance of the difference Eqpo between the perfect
baseline b = Ly gg(y?p) and the new base-
line b pc is related to m, which changes by our
choice, rather than K, which is the fixed number
of groundtruth captions:

Var(Eapc) = Var(bgpe — b) = %& (12)
Thus, comparing eq (12) with eq (8), we could
reduce the noise in the baseline even in the re-1
setting (K = 1) by introducing more generalized
pairwise comparisons (%02 < 0% whenm > 1).
We leave making the estimation of the reward more
accurate in the future work.

4.2 Learning with GPC by Mixed
Distribution Sampling

Generalizing from re-1 setting to re-K setting, we
finally obtain the objective function of multiple
GPCs on the entire dataset as follows:

N 1 K
i=1 J:1 (13)

m

> oy y])) log p(y|=:)

n=1

L
m

It could be optimized by the standard policy gra-
dient algorithm REINFORCE if we have m dif-
ferent y,, for each x;. Note that we assume that
the random noise €; associated with ¢(y,, yl‘.j ) is
independent in the variance reduction analysis. To
ensure this, we need to sample m captions ¥, inde-
pendently to cover the whole caption space, which
is almost intractable.

Mixed Distribution Sampling Instead of try-
ing to cover the whole caption space, we turn to
cover the whole value range of evaluation score
¢. First, We categorize the evaluation scores into
three groups, low, medium and high based on the
pre-defined thresholds. Then we sample from a
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Figure 3: Mixed distribution sampling: the x-axis refers to the three groups and y-axis refers to proportion of each
group. CIDETr thresholds for low, medium and high groups are set to 0.2 and 0.7 for illustration purpose.

Algorithm 1 Learning with GPC by Mixed Distribution Sampling

1: for epoch in [0, M) do > standard warm-up stage before reinforcement learning for captioning tasks
2: train by cross-entropy loss
3: end for
4: for epoch in [M, N) do > reinforcement learning with GPC loss
5: for each instance z; do
6: sample y* from current model
7: yip, .. ,yf{, = MIXDIS_SAMPLING(M, My, mp), Where m = my + my, + myp,
8: calculate loss L by eq (13)
9: update model by gradient — Zle (6, y)) — = 2oy (Yl yl)) Viog p(y°|z:)
10: end for
11: end for
12: procedure MIXDIS_SAMPLING(My, M, Mp) > mixed distribution sampling from three distributions D!, D™, D"
13: for D', sample m; captions %', ..., y™ from the captions in the whole dataset
14:  for D™, sample 1., captions y™ 1 . 4™ FT™m from the current model
15: if m; == 1 then
16: for D", greedily decode caption ¢ from the current model
17: return y', ... gy Tmm 49
18: else
19: return i, ... g Tmm
20: end if

21: end procedure

mixture of different distributions which concen-
trate on different groups of evaluation score:
low-score distribution D'. We randomly sample
m; captions from the dataset. The score of such
samples is usually low from the statistics shown in
figure 3a.

medium-score distribution D™. We randomly sam-
ple m,,, captions from the model. The score of such
samples is usually medium based on the statistics
shown in figure 3b.

high-score distribution D". We use greedy decod-
ing to generate a caption from the model. The score
is usually high based on the statistics shown in fig-
ure 3c. Since at most one caption could be greedily
decoded, the number of captions sampled from this
distribution, my, is 1 or 0. mj = 0 means that we
do not sample from D",

Finally, we combine the sampled results into the m
captions ¥, in eq (13). In the experiment section,
we will show empirically that the captions sampled
by the procedure of mixed distribution sampling
turns out to be a quite good approximation of the

whole caption space.

Following the standard procedure of reinforce-
ment learning in captioning tasks, we first run a
warm-up stage of training with XE loss. Then we
switch to the reinforcement learning stage with
objective function defined in eq (13). In each eval-
uation of the objective function, we need to run the
sub-procedure MIXDIS_SAMPING (mixed dis-
tribution sampling) to get y/}, . .., y/. The entire
learning algorithm is summarized in algorithm 1.

5 Experiments

5.1 Experiment Setup

We use the image caption dataset MSCOCO (Chen
et al., 2015) and the video caption dataset TGIF
(Li et al., 2016). MSCOCQO, one of the largest
image caption datasets, contains more than 120K
images crawled from Flickr. Each image is anno-
tated with 5 reference captions. We use the public
split (Karpathy and Li, 2015) to evaluate our model
as most image caption researches (Xu et al., 2015;
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Rennie et al., 2017) are evaluated on this split. We
follow the practice in section 3 to synthesize 4 lan-
guage resource settings that are different in the cap-
tion number per image. Combined with the original
setting, we have 5 settings in total to do extensive
evaluations. TGIF is one of the largest video cap-
tion datasets in terms of video numbers, which con-
tains 100K animated GIFs collected from Tumblr
and 120K caption sentences. We use the official
split (Li et al., 2016) to evaluate the generation task.
For videos in the training and validation set, it con-
tains one caption per video. For videos in the test
set, it contains three captions per video.

For image, we use Resnet101 (He et al., 2016)
which was pre-trained on ImageNet and apply spa-
tial mean pooling to generate a feature vector of
dimension 2048. We resize the larger side of the
image to 450. For video, we use I3D (Carreira and
Zisserman, 2017) pre-trained on Kinetics400 and
apply spatial-temporal mean pooling to generate a
feature vector of dimension 1024. We resize the
larger side of the video to 224.

We use the vanilla encoder-decoder architecture
for simplicity. For the encoder, we use a full con-
nection layer to reduce the dimension of input fea-
ture to 512. For the decoder, we use standard RNN
with LSTM cell. The dimension of hidden unit is
set to 512. In step O the hidden state is initialized by
the output of the encoder. We use ADAM (Kingma
and Ba, 2014) optimizer with batch size 64 and
set the learning rate to 10~° to run algorithm 1.
The model is selected based on CIDEr score on the
validation set. In MIXDIS_SAMPLING proce-
dure, we set m;, my,, mp, to 2, 2, 1 across different
language resource settings and datasets. Detailed
ablation study of tuning my, m,,,, my will be dis-
cussed in section 5.2.1.

5.2 [Evaluation on Synthesized Language
Resource Settings of MSCOCO

We compare the performance of the proposed gen-
eralized pairwise comparison (GPC) loss to cross-
entropy (XE) loss and self-critical (SC) loss under
different resource settings. The construction of dif-
ferent language resource settings, re-1, re-2, re-3,
re-4 and full, are the same as those in section 3.
As shown in table 1, we see that the performance
improvement of GPC loss over XE and SC loss is
very significant in re-1 and re-2 settings. It im-
proves over XE on CIDEr by 11.5 absolute points
(13.6% relatively) in re-1 and 16.1 absolute points

Table 1: Performance comparison on different lan-
guage resource settings: SC* refers to the performance
reported in (Rennie et al., 2017)

model setting BLEU4 METEOR CIDEr
XE re-1 26.5 24.4 84.7
XE re-2 27.7 25.0 89.6
XE re-3 29.2 25.2 92.8
XE re-4 28.7 25.4 94.0
XE full 29.6 25.6 96.5
SC re-1 27.9 23.6 88.4
SC re-2 29.7 24.5 96.3
SC re-3 30.7 24.7 100.5
SC re-4 31.8 25.4 105.4
SC full 33.1 26.0 110.4
SC* full 31.9 25.5 106.3
GPC re-1 30.0 24.8 96.2
GPC re-2 31.9 25.4 105.7
GPC re-3 32.1 25.6 106.8
GPC re-4 32.3 25.5 109.6
GPC full 33.2 25.8 110.8

(18.0% relatively) in re-2. Compared to SC loss, it
improves on CIDEr by 7.8 absolute points (8.8%
relatively) in re-1 and 9.4 absolute points (9.8%
relatively) in re-2. Furthermore, the model trained
by GPC loss converges quickly to the full setting
performance on most metrics (BLEU4, METEOR)
with very few captions per instance such as re-2
setting. The improvement is not significant in the
full setting as the variance of baseline is already
very small given 5 groundtruth captions per input.
This aligns well with our motivation and variance
reduction analysis in section 3.

We also list the performance of SC loss reported
in the original work (Rennie et al., 2017) for ref-
erence in the table. SC loss implemented by us
performs better than the one reported by (Rennie
et al., 2017) and we attribute the difference to the
preprocessing as we resize the extracted feature
of images to a larger size 450!. The comparison
to the results in the original paper shows that the
SC model implemented by us is a strong baseline.
Thus, we can conclude that the model trained by
GPC loss works in all resource-efficient levels.

We further compare the labeling resource re-
quired by different methods when the performance
is fixed. As highlighted in red, GPC loss reaches
almost the same performance of XE with only 1/5
of training data as re-1 setting has 1 caption per
image and full setting has 5 captions per image.
Furthermore, GPC loss reaches almost the same
performance of SC loss with only 1/2 of training

I'This is related to both the receptive field size of the CNN
and the size of object in the image, which is out of the scope
of this paper.
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Table 2: Ablation study of each distribution in
MIXDIS_SAMPLING procedure from algorithm 1
on re-1 setting

Table 3: Ablation study of distribution combination in
MIXDIS_SAMPLING procedure from algorithm 1
on re-1 setting

\ m; m,; my BLEU4 METEOR  CIDEr m; mm mp  BLEU4 METEOR  CIDEr

1 1 0 0 28.9 24.4 93.0 2 3 0 29.5 24.6 94.1

2 2 0 0 29.1 24.4 93.3 4 0 1 29.5 24.5 94.0

3 3 0 0 29.1 24.4 92.8 0 4 1 29.4 24.5 94.4

4 4 0 0 29.1 24.4 93.2 2 2 1 30.0 24.8 96.2

5 5 0 0 29.5 24.6 94.0

6 0 1 0 29.9 24.4 93.6 Table 4: Evaluation on TGIF dataset

7 0 2 0 29.3 24.5 93.8

910 4 0 29.3 24.6 94.4 Official 12.7 16.7 31.6

10 0 5 0 29.1 24.5 94.1 Show-adapt ~ 11.8 16.2 29.8

1110 0 1 27.9 23.6 88.4 XE 15.7 18.4 45.6

SC 15.7 18.5 49.8

GPC 16.1 19.0 52.1

data as highlighted in blue. This shows that GPC
loss is more resource efficient and works particu-
larly well with very few captions per input.

5.2.1 Ablation Study on Mixed Distribution
Sampling

We first study only sampling from one distribu-
tion. As shown in table 2, the first, second, and
third blocks correspond to only sampling from D',
D™ and D" respectively. We see that in general
the performance improves mildly when we sam-
ple more captions from the distribution. Sampling
from only the distribution D" actually degener-
ates to self-critical loss (Rennie et al., 2017) based
on the MIXDIS_SAMPLING procedure in algo-
rithm 1. Comparing different distributions with m
fixed to 1, we see that sampling from D (row 1)
and D™ (row 6) both outperforms that using only
greedily decoded samples D" (row /1) on CIDEr
by 4.6 and 5.2 respectively. This shows that the
proposed GPC loss is not only a generalization of
the self-critical loss but also performs much bet-
ter for variance reduction of baseline in different
language resource settings.

We also study sampling from the combination of
different distributions. As shown in table 3, we set
the total number of samples m to 5. Among all the
distribution combinations (altogether 4) under the
same quota m = 5, we see that sampling from all
the three distributions (m; = 2, m,, = 2, my, =
1) performs best on all the three metrics. This
shows that covering the whole score range of ¢ is
beneficial for the variance reduction. Furthermore,
the setting m; = 2, m,,, = 2, my, = 1 turns out to
be a good and stable approximation of the whole
caption space across different language resource
settings and datasets.

5.3 Evaluation on TGIF

To show the general resource-efficiency of GPC
loss, we further run experiments on TGIF. TGIF
is a GIF dataset in which only one caption per in-
put is provided for training. It is different from
the above experiments from two aspects. First, it
is a video dataset. Second, the language resource
setting of one labeled caption per input is not syn-
thesized. From table 4, we see that GPC loss per-
forms significantly better than both XE and SC loss,
i.e., boosting 6.5 points (14.3% relatively) and 2.3
points (4.6% relatively) on CIDEr over XE and SC
loss respectively. It is interesting to compare the
performance boost of SC loss over XE and the per-
formance boost of GPC loss over SC loss. SC loss
achieves almost no boost on BLEU4 and METEOR
over XE loss. But GPC loss boosts all metrics over
SC loss. This shows that GPC loss is effective on
the real-world language resource efficient setting
with one labeled caption per input.

6 Conclusion

In this paper, we propose the language resource
efficient concept for captioning tasks in terms of
the number of captions per input. Our analysis
shows that in captioning tasks, fewer captions per
input lead to larger noise in estimating the reward
and baseline for self-critical loss of reinforcement
learning. We propose to reduce the noise in the
baseline by multiple generalized pairwise compar-
isons, which results in the GPC loss. Experimental
results show that our proposed model is efficient
on language resource and achieves similar perfor-
mance with the state-of-the-art models by using
only half of the captions per input. Furthermore,
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the proposed model performs significantly better
than the state-of-the-art models on a video caption
dataset that has only one labeled caption per input.
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