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Abstract

Transformer-based pre-trained models, such
as BERT, have achieved remarkable results on
machine reading comprehension. However,
due to the constraint of encoding length (e.g.,
512 WordPiece tokens), a long document is
usually split into multiple chunks that are in-
dependently read. It results in the reading
field being limited to individual chunks with-
out information collaboration for long docu-
ment machine reading comprehension. To ad-
dress this problem, we propose RoR, a read-
over-read method, which expands the reading
field from chunk to document. Specifically,
RoR includes a chunk reader and a document
reader. The former first predicts a set of re-
gional answers for each chunk, which are then
compacted into a highly-condensed version of
the original document, guaranteeing to be en-
coded once. The latter further predicts the
global answers from this condensed document.
Eventually, a voting strategy is utilized to ag-
gregate and rerank the regional and global an-
swers for final prediction. Extensive exper-
iments on two benchmarks QuAC and Trivi-
aQA demonstrate the effectiveness of RoR for
long document reading. Notably, RoR ranks
Ist place on the QUAC leaderboard ' at the
time of submission (May 17th, 2021)2.

1 Introduction

The task of machine reading comprehension
(MRC), which requires machines to answer ques-
tions through reading and understanding a given
document, has been a growing research field in nat-
ural language understanding (Hermann et al., 2015;
Trischler et al., 2017; Rajpurkar et al., 2016, 2018;
Joshi et al., 2017; Choi et al., 2018).
Transformer-based pre-trained models have been
widely proven to be effective in a range of natu-

Corresponding Author: baojunwei001 @ gmail.com
"https://quac.ai/
2Qur code is available at https://github.com/
JD-AI-Research-NLP/RoR

ral language processing tasks, including the MRC
task (Devlin et al., 2019; Liu et al., 2019; Yang
et al., 2019; Clark et al., 2020). Typically, these
models consist of a stack of transformer blocks
that only encode a length-limited sequence (e.g.,
512). However, the input sequences in some MRC
tasks may exceed the length constraint. For exam-
ple, each instance in open-domain MRC usually
consists of a collection of passages, such as Trivi-
aQA (Joshi et al., 2017), one of the most popular
open-domain MRC datasets, containing 6,589 to-
kens on average. In addition, for conversational
MRC task, such as QuAC (Choi et al., 2018), ex-
isting methods incorporate conversation history by
prepending the previous utterances to the current
question, which is packed with the document into
a length input (707 tokens on average).

To handle a long document that exceeds the
length constraint, a commonly used approach is
to split a document into multiple individual chunks
and then predict answers from each chunk sepa-
rately. The highest scoring span in these answers
is selected as the final answer. This approach is
straightforward but results in two problems: (1) the
reading field is limited to the regional chunk in-
stead of the complete document; and (2) the scores
of the answers are not comparable as they are not
globally normalized over chunks.

To address these problems, we propose RoR, a
read-over-read pipeline, which is able to expand
the reading field from chunk-level to document-
level. RoR contains a chunk reader and a document
reader, both of which are based on the pre-trained
model. Specifically, the chunk reader first predicts
the regional answers from each chunk. These an-
swers are then compacted into a new document
through a minimum span coverage algorithm guar-
anteeing that its sequence length is shorter than the
limitation (i.e., 512). By this means, all regional
answers can be normalized in one document. This
document serves as the highly-condensed version
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of the original document, which is further read
by the document reader to predict a set of global
answers. As the chunk reader and global reader
provide high confidence answers from different
views, we fully leverage both of them for final an-
swer prediction. Specifically, after predicting the
regional and global answer spans, a voting strategy
is proposed and utilized to rerank them. This vot-
ing strategy is based on the idea that a candidate
regional or global answer span overlapped more
with the others is more likely to be correct.
The contributions are summarized as follows:

* We propose a read-over-read pipeline contain-
ing an enhanced chunk reader and a document
reader, which is able to solve the problem of long
document reading limitation in existing models.

* We propose a voting strategy to rerank the an-
swers from regional chunks and a condensed
document, overcoming the major drawback in
aggregating the answers from different sources.

» Extensive experiments on long document bench-
marks are conducted to verify the effectiveness
of our model. Especially on the QuAC dataset,
our model achieves state-of-the-art results over
all evaluation metrics on the leaderboard.

2 Related Work

MRC is a fundamental task in natural language
understanding that aims to determine the correct
answers to questions after reading a given pas-
sage (Hermann et al., 2015; Trischler et al., 2017;
Rajpurkar et al., 2016, 2018). The best performing
models in various MRC tasks are commonly based
on the pre-trained language models (PLMs) within
the typical encoding limit of 512 tokens. However,
the input sequence in some MRC tasks usually ex-
ceeds the length limit, such as conversational MRC
and open-domain MRC.

Conversational MRC, which extends the tra-
ditional single-turn MRC, requires the models
to additionally understand the conversation his-
tory (Reddy et al., 2019; Choi et al., 2018; Gao
et al., 2018; Huang et al., 2019; Gupta et al., 2020)
as dialog and conversational recommendation sys-
tems (Lu et al., 2021). A straightforward but effec-
tive approach of modeling the history is to prepend
the previous dialogs to the current question, which
will compose a lengthy input sequence with the
relatively long document (Gong et al., 2020).

Open-domain MRC is a task of answering
questions using a large collection of passages (Joshi
et al., 2017; Dunn et al., 2017; Kwiatkowski et al.,
2019). The main challenge of this task is that the
sequence length of multiple passages relevant to
each question far exceeds the length limit of 512 to-
kens. For example, documents in TriviaQA (Joshi
et al., 2017) contain 6,589 tokens on average.

To enable the PLMs to encode long documents,
a common approach is to chunk the document into
overlapping chunks of length 512, then process
each chunk separately, which inevitably causes the
two problems aforementioned. Another intuitive
approach is to increase the encoding length of the
PLMs. For example, the recently proposed PLMs
Longformer (Beltagy et al., 2020) and Big bird (Za-
heer et al., 2021), specifically for long document
modeling, have extended the encoding length from
512 to 4,096. However, their encoding length is
fixed. The two problems caused by chunking still
exist when encoding the sequences longer than
4,096. In contrast, our proposed model RoR is
flexible which is able to encode sequences of arbi-
trary length. Moreover, RoR is assembleable and
its encoder can be replaced with any PLMs, such
as BERT and Longformer.

Theoretically, hierarchical models can be
adapted to long document MRC (Yang et al., 2016;
Wang et al., 2018; Yang et al., 2020). However,
deploying the large transformer-based PLMs as
the encoders of hierarchical models can be pro-
hibitively costly. Typically, hierarchical models
parallelly encode the splitted chunks of a long doc-
ument with multiple transformers, which requires
extremely large GPU support. In contrast, RoR
only needs to read a chunk at each encoding pro-
cess, then gradually predict all answers from chunk
to document. Therefore, RoR is able to deal with a
long document without consuming too much com-
puting resources and can be more widely used than
hierarchical models.

3 Approach

3.1 Task Formulation

Given a document P, a question ¢, the task of MRC
is to predict an answer span y from P based on the
comprehension of P and q. If ¢ is an unanswerable
question, the QuAC dataset requires the model to
give an unanswerable tag as the final answer. To
model the dialog history in QuAC, we prepend
previous pairs of (question, answer) to the current
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Figure 1: The architecture of the proposed Read-over-Read pipeline.

question to form the question ¢. Formally, ¢ =
[Hy; [SEP]; qx], where gy, is k-th question and Hj,
is dialog history.

Additionally, a special task in the QuAC dataset
is dialog act prediction. QuAC provides two dialog
acts, namely, continuation (Follow up) and affirma-
tion (Yes/No). The continuation dialog act consists
of three possible labels (follow up, maybe follow
up or don’t follow up). The affirmation dialog act
also consists of three labels (yes, no or neither).
Both two dialog act predictions are three-label clas-
sification tasks.

3.2 Framework Overview

The architecture of our proposed read-over-read
pipeline is illustrated in Figure 1. RoR includes a
chunk reader and a document reader, both of which
employ the PLM as the text encoder. Given a data
sample (P, gq), we split it into multiple chunk-based
sample {(P1,q), ..., (Pn,q)} with slide-window,
where N is the number of split chunks. The
chunk reader first predicts a set of regional an-
swers {{ri,j}le}f\él from all chunks, where T’
is the max number of the predicted answers for one
chunk. The regional answers are then compacted to
a new document P? by a minimum span coverage
algorithm (MSC). Notably, most of the answers in
TriviaQA dataset are named entities that cannot re-
flect enough contextual information. Therefore, for
the TriviaQA dataset, we use the sentences where
the regional answers are located to compact to P9.
P1 is the condensed version of original document
P to the question ¢, which is packed into the text

encoder at once. P? is further read by the docu-
ment reader to predict the global answers {g; } =, .
The answers from all chunks and the condensed
document are aggregated together and reranked by
a voting strategy to choose the final answer.

3.3 Chunk Reader

The chunk reader predicts the regional answers for
each chunk based on the contextualized represen-
tations of a given document which are obtained by
the pre-trained encoder. This section introduces the
components of the chunk reader in detail.

3.3.1 Text Encoder

The goal of a text encoder is to convert the input
sequence into a series of contextualized feature
representations {h;}~_,, where L is the length of
input sequence. The input sequence of the encoder
contains a chunk P, the question ¢ which are con-
catenated to one token sequence with a special split-
ter [SEP], represented as X = [[CLS]; ¢; [SEP]; P],
where X is the input token sequence. the representa-
tion of [CLS] is treated as the sentence-level feature
for the sentence classification tasks, i.e. answer-
ability and dialog acts prediction.

3.3.2 Answer Prediction

The answers prediction of conversational MRC re-
quires two levels of feature, token level feature for
predicting answer span and sentence level feature
for predicting dialog acts and answerability. Open-
domain MRC only requires token level feature.

Token level answer. The encoder representations
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{h;}L | serve as the token level features, which are
used to compute the probability of each token being
the begin or the end of an answer span. Concretely,
{h;}L_, are projected onto start logit and end logit
through multi-layer perceptrons separately, which
are then sent to a softmax function to compute
the start and end probability distributions along all
tokens in this sequence. The probabilities of each
token being the begin and the end of predicted span
are calculated as follows:

r; = W5tanh(Wih;) (1)
r{ = W5tanh(W [h,,h )] (2)
p® = softmax(r®) 3)
p¢ = softmax(r®) 4)

where Wi, W3, 'W¢{, WS are trainable parameters
of the projection function. hy is the token represen-
tation of the start label. p*, p© are the start and the
end probability distributions over all tokens respec-
tively, where p* C R, p¢ C R, Different from
predicting start and end independently, we explic-
itly model the relation between them. As shown
in Equation 2, the calculation of end distribution
depends on start position. The training objective
of token level prediction is defined as the cross
entropy loss of start and end predictions:

1 M
17 2 lloa(wys) +log(we)) (5)
]:1

where yj and yj are the ground-truth of start and
end positions of j-th example respectively. M is
the number of examples.

Sentence level answer. Encoder representation of
[CLS] token hycg) is viewed as the sentence level
feature, which is used to predict dialog acts and
answerability by:

p = 5(W£tanh(W{h[CLS]) (6)
pY = 5(Wgch(W¥h[CLs]) (7)
p" = o(Witanh(Wihg)) )

where W/, W1 WY WY W W are trainable
parameters. ¢ is a softmax function. o is a sig-
moid function. p/, p¥ are prediction distributions
of continuation and affirmation respectively, where
p/ C R3 p¥ C R3. p¥ is the prediction score of
answerability. Their corresponding cross entropy

losses are defined as:

La =77 > llogw)] ©)
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where yjc-t, Y; af ;y;* are the ground-truths of contin-
uation, afﬁrmatlon and answerability respectively.
The training objective of sentence level prediction
is defined as:

Es :Ect+£af+£na (12)

3.3.3 Answer Calibration

The highest scoring span among the regional an-
swers is sometimes not the span with the highest
F1 score. Motivated by this issue, we introduce
an answer calibration mechanism, with the goal of
predicting more accurate regional answers. Particu-
larly, given the answer candidates, we first compute
their span representation, which is a weighted self-
aligned vector:

o' = softmax(W,hy,.,) (13)
€t
=) alh, (14)

Jj=st

where W, is a trainable parameter. hy, .., is a short-
hand for stacking a list of vectors h; (s; < j < ey).
s¢, e; are the start and end of the ¢-th answer can-
didate. c; is the span representation of the ¢-th
answer candidate. Then, all candidate representa-
tions are transferred to a multi-head self-attention
layer (Multi-SelfAtt) to capture the similarities
and the differences among them, and the detailed
calculation is shown as:

¢t = ¢; + Emb(¢) (15)
¢ =Multi-SelfAtt(c) (16)
B = softmax(tanh(W,c o.7))  (17)

where Emb is the position embedding of ¢ and a
smaller value ¢t means a higher original prediction
score, which is a valuable feature for the model to
identify the different importance of candidates. ¢
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is list of candidate representations, formally ¢ =
[c1,...,c7]. W, is trainable parameter. [ is the
distribution of calibration score over the answer
candidates,  C R”. The cross entropy loss for
answer calibration is given as:

T

1
o= Sl
j=1

where y7¢ is a manually constructed label. We de-
fine y is the candidate which obtains the highest
F1 score with the gold span among all candidates.
If the highest F1 score is zero and the correspond-
ing question is answerable, we randomly replace a
candidate with the gold span.

(18)

3.4 Document Reader

The predicted spans from different chunks are com-
pacted to a new text P¢ with a designed Minimum
Span Coverage (MSC) algorithm, as shown in Al-
gorithm 1. MSC guarantees that P? covers all
regional spans and is sufficiently condensed to be
encoded once.

Algorithm 1 Minimum Span Coverage

Input: A = {q;}N7

A is the set of regional spans from all chunks

N is the number of chunks, 7" is the number of
regional spans for one chunk

1: for a; in A do

2 for Qj i in A do

3 if overlap(a;, a;) then

4: A += coverage(a;, a;)

5 A-=q;,A-= a;

6: coverage(a;,a;) is the span corresponding to
(start,end) = (min(s;, s;), max(e;, €;)), where
(si,ei) and (s;, e;) are (start,end) of a; and a;.

7: Recursively execute the above steps until no
condition of overlap(a;,a;)

8: Concatenate the elements in A together as P?

9: return P9

The input sequence of the text encoder is X =
[[CLS]; ¢; [SEP]; PY], which is further read by the
document reader to predict the answers as the
global answers. The span label of the document
reader is the longest common substring between
P? and the original gold span.

The global answers and the regional answers are
aggregated as final predictions. For answerability
prediction, the document reader predicts a global

no answer score U, and the chunk reader predicts
a series of no answer score U, = {ug }2_, where
uy, is the predicted no answer score of k-th chunk.
The final no answer score S, is defined as:

Spa = AU, + (1 — Nmin(U,)  (19)

where ) is a hyperparameter to tune the weights of
the global answers and the regional answers.

3.5 Voting Strategy

After aggregating the answer spans, we re-score
them with a voting strategy that is based on a hy-
pothesis: the spans predicted by both the chunk
reader and the document reader are more likely to
be correct. This strategy allows all spans to vote
with each other to choose the most common span.
Concretely, the voting score of each span is ob-
tained by:

T
Voting(z 1 Z (FL(zs, zj52))  (20)

7j=1

2R(i, ) P(i, j)

Fl(zi, x5) = - — 21
(i, 25) R(i,7) + P(i,]) <D

. x; N
R, ) = $4|9’ (22)

J

L x;, Nx

P(i,j) = | i i (23)

where | | denotes the number of words, |z; N ;|
denotes the number of the common words between
x; and z;. The function of F1(z;, x;) represents
the sequence similarity between x; and x;. A larger
voting score means that the corresponding span is
similar to more candidates than the others. Finally,
the voting strategy reranks answer spans according
to the original prediction score S(z) and the voting
score:

=78(x) + (1 —7)Voting(x) (24)

v is the weight of two scores.

score(x)

3.6 Training and Inference

We adopt the multi-task learning idea to jointly
learn the predictions of answer span, answerability
and dialog acts. All parameters are trained with an
end-to-end manner. The training loss of the chunk
reader L. and the document reader L, are:

Lc:£t+£s+£ac
Log=Li+ Ls

(25)
(26)

The detailed training and inference processes are
given in Algorithm 2.
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Algorithm 2 Training and Inference Process
Input: D = training set, d = test set
Initialize: O, Oy <+ pre-trained parameters

1: Training

2: Train ©1 on D with L., then predict answers
on D to construct a new dataset D’ through
Algorithm 1

3: Train © on D’ with £

4: Inference

5: Oy predict the regional answers set A on d and
construct a new dataset d’ through Algorithm 1

6: O, predict the global answers set A" on d/N

7: Aggregate and rerank the final answers set A =
AU A" with Equation 24

3.7 Experiment Setup
3.7.1 Dataset

Our experiments are mainly conducted on two long
document datasets QuUAC (Question Answering in
Context) (Choi et al., 2018) and TriviaQA (Joshi
et al., 2017). QuAC is a large-scale dataset created
for simulating information-seeking conversations.
Its questions are often more open-ended, unanswer-
able, or only meaningful within the dialog con-
text. TriviaQA is a large-scale open-domain MRC
dataset, which requires cross sentence reasoning to
find answers. It contains data from Wikipedia and
Web domains, where Wikipedia subset is used in
our work. The statistic information of these two
dataset is summarized in Table 1.

Train Dev Test
TriviaQA
# questions 61,888 7,993 7,701
# tokens / input 11,222 11,382 -
QuAC
# questions 83,568 7,354 7,353
# tokens / input 641 707 -
# dialogs 11,567 1000 1002
# question / dialog 7.2 7.4 7.4
% unanswerable 20.2 20.2 20.1

Table 1: Statistics of two datasets. # denote the number
of each item. % denote a percentage value.

3.7.2 Evaluation Metrics

For answer span prediction, the QuAC challenge
provides two evaluation metrics, the word-level F1
and the human equivalence score (HEQ). The word-
level F1 measures the overlap of the prediction and

the gold span after removing stopwords. HEQ mea-
sures the percentage of examples for which model
F1 score is higher than the average human F1 score.
HEQ contains two variants HEQ-Q and HEQ-D.
HEQ-Q is 1 if model performance exceeds the hu-
man performance for each question. HEQ-D is 1 if
model performance of all the questions in the dia-
log exceeds human. For dialog act prediction, the
accuracy is adopted as evaluation metric. For the
TriviaQA dataset, word-level F1 score and exact
match (EM) are used as evaluation metrics.

3.7.3 Implementation Details

We tried three different PLMs, BERT-large 3
ELECTRA-large # and Longformer-large > as ini-
tialization parameters of text encoder to verify the
effectiveness of RoR comprehensively. The max
sequence length of questions is set to 128 and the
answer length is set to 64. The stride of the sliding
window for splitting documents is set to 128. The
batch size is set to 12. The model is optimized
using Adam (Kingma and Ba, 2015) with learning
rate = 2e-5, maximal gradient clipping = 1.0. The
hyperparameter A is set to 0.9, y is set to 0.5. In the
inference process, we use beam search to predict
end position based on start position and the beam
size is 5. The decision of answerability depends
on the numerical comparison between the no an-
swer score Sy, in equation 19 and a threshold (,
which is set to 0.3. If S, is higher than (, the
corresponding question is unanswerable.

MSC algorithm is important in RoR which guar-
antees the condensed form of an arbitrarily long
input sequence shorter than 512 tokens through
limiting the total number and length of the regional
answers. In practice, we perform the following four
operations on TriviaQA and QuAC:

¢ The max number of answer candidates for
each chunk 7' is set to 5.

* A document is split up to 7 chunks in QuAC
and 15 chunks in TriviaQA.

* The regional answer is truncated if longer than
15 tokens.

* Many regional answers overlap or even differ
by a few words. MSC algorithm removes
the duplicate words to ensure the condensed
document shorter.

3https://github.com/google-research/BERT

*https://github.com/google-research/electra
Shttps://github.com/allenai/Longformer
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Model F1 HEQ-Q HEQ-D Answerability Continuation Affirmation
Longformer 74.3 71.5 14.5 76.5 64.4 89.8
BERT 67.4 63.7 7.9 68.3 63.3 88.4
BERT-RoR 69.6 65.8 9.8 74.7 63.5 88.6
ELECTRA 738 712 143 76.1 64.9 89.7
ELECTRA-RoR | 75.7 73.4 17.8 78.2 65.0 90.0
Table 2: Results on the development set of QuAC.
After the operations above, the longest condensed ’ Model ‘ FI HEQ-Q HEQ-D ‘
document contains 471 tokens in TriviaQA and 184 ’ Human ‘ 11 100 100 ‘
tokens in QuAC. When RoR is adapted to other
datasets, the length of the condensed documents ’ ELECTRARoR ‘ Ty 72 164 ‘
> g
can be guaranteed to be shorter than 512 as long EL-QA 74.6 71.6 163
as the parameters in the above four operations are History QA 742 TS 13.9
adjusted correspondingly. TR-MT 744713 13.6
. GraphFlow (Chen et al., 2020) 64.9 60.3 5.1
In order to 1mpr0VF: the model Performance, HAM (Qu et al., 20195) 65.4 618 67
some data augmentat%ons are applied to . better FlowDelta (Yeh and Chen, 2019) | 65.5  61.0 69
train the model. Specifically, ELECTRA is fine- HAE (Qu et al., 2019) 04 578 s1
tuned on other MRC datase.ts before fine-tuned on FlowQA (Huang et al., 2019) 641 596 53
QuAC, such as SQuAD (Rajpurkellr etal., 2018) and BiDAF++ 1/ 2-Context 0.1 S48 40
CoQA (Reddy et al., 2019), hoping to transfer the BiDAF++ (Peters et al.. 2018) 02 433 22

knowledge in other datasets to our model. Experi-
mental results show that CoQA has a much higher
lifting effect than SQuAD. This is because both
CoQA and QuAC are conversational MRC datasets,
while SQuAD is a single-turn MRC dataset. The
answers in CoQA are free-form and generally short
(average answer length = 2.7), which is quite dif-
ferent from QuAC (average answer length = 15.1).
As a result, we choose the rationale sentence of the
gold span in CoQA as the prediction target.

3.8 Main Results

Results on QuAC. Table 2 displays the experi-
mental results on the development set of QuAC.
In view of the fact that the sequence length in
QuAC dataset does not exceed the encoding length
limit of Longformer (i.e., 4096), we did not apply
RoR to the Longformer. The results show that
RoR significantly improves the performance of
PLMs on all evaluation metrics, illustrating the
effectiveness of RoR on long document modeling.
Among the three PLMs, Longformer, which can en-
code longer sequences, performs best, followed by
ELECTRA. Nevertheless, with the enhancement
of RoR, ELECTRA-RoR outperforms Longformer
and achieves state-of-the-art results over all metrics
on the dev set of QuAC.

Table 3: Test results on QuAC with sample methods on
the leaderboard https://quac.ai/.

Official leaderboard results on QuAC. QuAC
challenge provides a hidden test set, where the
dialog acts prediction is not the main task of the
leaderboard and their evaluation scores are not con-
sidered in the final model ranking. Table 3 dis-
plays the span prediction results of all baselines
and our model, from which we can see that our
model ELECTRA-RoR outperforms the previous
best performing model EL-QA and achieves new
state-of-the-art on all three metrics. From the re-
sults of the leaderboard, we observe that the top
ranking models almost all use the advanced pre-
trained models, such as ELECTRA, RoBERTa
and BERT. Although some models have a well-
designed model structure, they still lag behind the
models that uses the pre-trained models as encoder,
showing the powerful modeling capabilities of the
pre-trained model. For example, FlowDelta boosts
the F1 score of FlowQA from 64.1 to 65.5 with the
help of BERT. Compared to BIDAF++, BiDAF++
w/ 2-Context incorporates two turns of previous
dialog history and significantly improves the per-
formance of BIDAF++, verifying the importance of
historical information in the conversational MRC.
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Model F1 HEQ-Q HEQ-D Answerability Continuation Affirmation
chunk reader 73.8 71.2 14.3 76.1 64.9 89.7
w/ calibration 74.1 71.4 15.3 76.9 64.6 89.7
w/ document reader 74.8 72.1 15.7 77.4 64.7 89.7
w/ voting strategy 75.4 72.9 16.9 77.4 64.7 89.7
w/ knowledge transfer | 75.7 73.4 17.8 78.2 65.0 90.0

Table 4: Ablation study of ELECTRA-RoR on the development set of QuAC.

Results on TriviaQA. Table 5 displays the exper-
imental results on the TriviaQA dataset. The ex-
perimental results show that RoR is able to com-
prehensively improve the score of the PLMs and
the average F1 gain is 2.1, proving that RoR is also
highly effective in the task of open-domain MRC.
Similar to the performance on the QuAC dataset,
among the three PLMs, Longformer performs best
on the TriviaQA dataset, ELECTRA followed, and
the worst is BERT. Although Longformer has such
excellent performance which used to be state-of-
the-art model on the TriviaQA dataset, RoR still
further improve its performance (F1 score from
77.8 to 80.0). The test results show that all improve-
ments of RoR in Table 3 and Table 5 are statistically
significant (paired t-test, p-value < 0.01).

Model F1 EM
BERT 68.4  60.7
BERT-RoR 70.3 62.1
ELECTRA 70.6 653
ELECTRA-RoR | 729 67.8
Longformer 71.8 73.0
Longformer-RoR | 80.0 75.0

Table 5: Results on the TriviaQA dataset.

3.9 Ablation Test

We conduct an ablation analysis on development
set of QuAC to investigate the contributions of each
module of the best model ELECTRA-RoR.

Table 4 displays the results of ablated systems,
where we gradually add the proposed modules to
the model structure. It can be observed that answer
calibration mechanism boosts the performance of
the chunk reader in all three span evaluation met-
rics. An interesting phenomenon is the calibration
mechanism has the ability to improve the prediction
accuracy of unanswerable questions. This may be
because we mask some training instances during
calculating the calibration loss L, if their ques-

tions are unanswerable, since all span candidates
are not correct. This may provide some supervision
signals for model training to identify unanswerable
questions. Next we analyze the contributions of
the document reader. It can be seen that the evalua-
tion scores of span prediction are further improved
when adding the document reader. Especially the
F1 score is improved by 0.7. Moreover, the accu-
racy of answerability prediction is also improved.
This is because the document reader predicts a
global no answer score which contributes to the
final decision of answerability through equation 19.
Afterwards, the ablation results show that the vot-
ing strategy yields substantial improvement over
the RoR model. Finally, we can see that the trans-
fer module could also comprehensively enhance
the model performance, proving the efficiency of
knowledge transfer in MRC task.

In terms of continuity and affirmation, the ac-
curacy scores do not change much in the ablation
experiments. Nevertheless, we cannot completely
ignore them when training our model, as we find
that the performance of RoR will drop if remove
the losses of L. and L,y. This reflects that the
dialog acts can indeed encourage the encoder to
produce more generic representations that benefit
the answer span prediction task.

3.10 Discussion on Answer Calibration

As shown in Table 4, the answer calibration mecha-
nism improves the performance of the chunk reader.
This section further discusses its other promoting
effects on RoR. The predicted regional answers
determine the quality of global answers that will
be predicted by the document reader. An ablation
test on the condensed document P? is conducted
on the dev set. We find that the average F1 score of
P17 drops from 30.3 to 29.7 if without the answer
calibration. This test validates that the calibration
mechanism is able improve the input accuracy of
the document reader. Meanwhile, the quality of
global answers are further improved.
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Figure 2: The influence of weight.

We also attempt to integrate the answer calibra-
tion mechanism into the document reader, but the
results show that the improvement is not significant.
We speculate the reason is that the predictions of
the document reader is sufficiently accurate.

3.11 Influence of Weight Parameter

In the voting strategy, the parameter y weights the
prediction score and the voting score. In the pro-
cess of answers aggregation, \ weights the score
of the regional answers and the global answers.
This section explores the influence of these two
parameters on the model.

Figure 4 displays the F1 and mean average pre-
cision (MAP) curves of ELECTRA-RoR on QuAC
with respect to different A and ~. The results sug-
gest that the model performance are sensitive to
the weights. As the weights increases, both curves
show a trend of increasing at first and then decreas-
ing, reaching peaks at 0.5 and 0.9 respectively. For
the changing degree of the curves, v actually has
a greater influence on RoR than A. We notice that
MAP score dramatically declines when reducing
the weight of the voting score (i.e., v from 0.5 to
1.0), indicating that the voting score is a reliable
basis to rerank the final prediction results.

4 Conclusion

In this work, a read-over-read (RoR) pipeline is
proposed for long document MRC, which contains
an enhanced chunk reader to predict the regional
answers and a document reader to predict the global
answers. Moreover, a voting strategy is designed to
optimize the process of answer aggregation in RoR.
Comprehensive empirical studies on QuAC and
TriviaQA demonstrate the effectiveness of RoR,
which comprehensively improves the performances
of the PLMs on long document reading. Mean-
while, ELECTRA-RoR achieves state-of-the-art
over all evaluation metrics on QuAC leaderboard.

5 Acknowledge

The authors would like to thank three anonymous
reviewers for their useful feedback. This work
is supported by the National Key Research and
Development Program of China under Grant No.
2020AAA0108600.

References

1z Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2020.
Graphflow: Exploiting conversation flow with graph
neural networks for conversational machine compre-
hension. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence,
1JCAI 2020, pages 1230-1236. ijcai.org.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in con-
text. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2174-2184, Brussels, Belgium. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new ga dataset augmented with context
from a search engine.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational Al In The
41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval, SI-
GIR 2018, Ann Arbor, MI, USA, July 08-12, 2018,
pages 1371-1374. ACM.

Hongyu Gong, Yelong Shen, Dian Yu, Jianshu Chen,
and Dong Yu. 2020. Recurrent chunking mecha-
nisms for long-text machine reading comprehension.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6751-6761, Online. Association for Computational
Linguistics.

1870


http://arxiv.org/abs/2004.05150
https://doi.org/10.24963/ijcai.2020/171
https://doi.org/10.24963/ijcai.2020/171
https://doi.org/10.24963/ijcai.2020/171
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/D18-1241
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
https://doi.org/10.1145/3209978.3210183
https://doi.org/10.18653/v1/2020.acl-main.603
https://doi.org/10.18653/v1/2020.acl-main.603

Somil Gupta, Bhanu Pratap Singh Rawat, and Hong
Yu. 2020. Conversational machine comprehension:
a literature review. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2739-2753, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1693-1701.

Hsin-Yuan Huang, Eunsol Choi, and Wen-tau Yih.
2019. Flowqa: Grasping flow in history for con-
versational machine comprehension. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601-1611, Van-
couver, Canada. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452—466.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Yu Lu, Junwei Bao, Yan Song, Zichen Ma, Shuguang
Cui, Youzheng Wu, and Xiaodong He. 2021.
RevCore: Review-augmented conversational recom-
mendation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1161-1173, Online. Association for Computational
Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019a. BERT
with history answer embedding for conversational
question answering. In Proceedings of the 42nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
2019, Faris, France, July 21-25, 2019, pages 1133—
1136. ACM.

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang,
Cen Chen, W. Bruce Croft, and Mohit Iyyer. 2019b.
Attentive history selection for conversational ques-
tion answering. In Proceedings of the 28th ACM In-
ternational Conference on Information and Knowl-
edge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, pages 1391-1400. ACM.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784—
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Siva Reddy, Dangi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249-266.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191-200, Vancouver, Canada. Association for Com-
putational Linguistics.

Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu,
Hua Wu, Sujian Li, and Haifeng Wang. 2018. Multi-
passage machine reading comprehension with cross-
passage answer verification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1918-1927, Melbourne, Australia. Association for
Computational Linguistics.

Liu Yang, Mingyang Zhang, Cheng Li, Michael Ben-
dersky, and Marc Najork. 2020. Beyond 512 to-
kens: Siamese multi-depth transformer-based hier-
archical encoder for long-form document matching.

1871


https://doi.org/10.18653/v1/2020.coling-main.247
https://doi.org/10.18653/v1/2020.coling-main.247
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://openreview.net/forum?id=ByftGnR9KX
https://openreview.net/forum?id=ByftGnR9KX
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-acl.99
https://doi.org/10.18653/v1/2021.findings-acl.99
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3357384.3357905
https://doi.org/10.1145/3357384.3357905
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/P18-1178
https://doi.org/10.18653/v1/P18-1178
https://doi.org/10.18653/v1/P18-1178
https://doi.org/10.1145/3340531.3411908
https://doi.org/10.1145/3340531.3411908
https://doi.org/10.1145/3340531.3411908

In CIKM °20: The 29th ACM International Confer-
ence on Information and Knowledge Management,
Virtual Event, Ireland, October 19-23, 2020, pages
1725-1734. ACM.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754-5764.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489, San Diego, California. Associa-
tion for Computational Linguistics.

Yi-Ting Yeh and Yun-Nung Chen. 2019. FlowDelta:
Modeling flow information gain in reasoning for
conversational machine comprehension. In Pro-
ceedings of the 2nd Workshop on Machine Reading
for Question Answering, pages 86-90, Hong Kong,
China. Association for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2021. Big bird: Transformers for
longer sequences.

1872


https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062

