
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1815–1828
November 7–11, 2021. ©2021 Association for Computational Linguistics

1815

UnClE: Explicitly Leveraging Semantic Similarity to Reduce the
Parameters of Word Embeddings

Zhi Li1, Yuchen Zhai1, Chengyu Wang2 , Minghui Qiu2, Kailiang Li1, Yin Zhang1∗

1College of Computer Science and Technology, Zhejiang University, China
2Alibaba Group

{zhili,zhaiyuchen,likailiang,zhangyin98}@zju.edu.cn
{chengyu.wcy,minghui.qmh}@alibaba-inc.com

Abstract

Natural language processing (NLP) models of-
ten require a massive number of parameters for
word embeddings, which limits their applica-
tion on mobile devices. Researchers have em-
ployed many approaches, e.g. adaptive inputs,
to reduce the parameters of word embeddings.
However, existing methods rarely pay atten-
tion to semantic information. In this paper,
we propose a novel method called Unique and
Class Embeddings (UnClE), which explicitly
leverages semantic similarity with weight shar-
ing to reduce the dimensionality of word em-
beddings. Inspired by the fact that words with
similar semantic can share a part of weights,
we divide the embeddings of words into two
parts: unique embedding and class embedding.
The former is one-to-one mapping like tradi-
tional embedding, while the latter is many-to-
one mapping and learn the representation of
class information. Our method is suitable for
both word-level and sub-word level models
and can be used to reduce both input and out-
put embeddings. Experimental results on the
standard WMT 2014 English-German dataset
show that our method is able to reduce the pa-
rameters of word embeddings by more than
11x, with about 93% performance retaining in
BLEU metrics. For language modeling task,
our model can reduce word embeddings by 6x
or 11x on PTB/WT2 dataset at the cost of a
certain degree of performance degradation.

1 Introduction

Recently, deep learning models like LSTM net-
works (Hochreiter and Schmidhuber, 1997), and
Transformer (Vaswani et al., 2017) based models
like BERT (Devlin et al., 2019) have made remark-
able progress in the field of natural language pro-
cessing (NLP). However, the sizes of these models
are usually too humongous, making them difficult
to deploy on low-resource machines such as edge-
computing devices, sensors or mobile phones.

∗Corresponding Author: Yin Zhang.

Method Adaptive Weight Sharing Semantic
Baevski and Auli (2019) 3

Grave et al. (2017) 3
Li et al. (2016) 3
Li et al. (2018) 3

Our Method 3 3

Table 1: Our method differs from previous methods in
that it takes advantage of inter-word semantic similarity
to reduce vanilla word embeddings significantly.

For a typical neural language model, especially
one with a large vocabulary size, the large memory
consumption of the model is mostly due to the need
of storing the input and output word embedding
matrices. The dimension of recurrent layers (e.g.,
LSTM), which corresponds to the hidden state, is
typically small and independent of the vocabulary
size. In contrast, the dimensions of the embedding
and softmax layers grow with the size of vocabu-
lary, which can easily reach the scale of hundreds
of thousands. As a result, parameter matrices of
the embedding and softmax layers are often respon-
sible for the majority of memory consumption of
a neural language model. For Transformer-based
models like Universal Transformer (Dehghani et al.,
2019) and Albert(Lan et al., 2020), which share
parameters across layers, word embeddings also
consume a large amount of memory.

Researchers have sought to reduce word em-
beddings through many efforts, such as, adaptive
method (Grave et al., 2017; Baevski and Auli,
2019) or designing mechanisms for weight sharing
(Li et al., 2016, 2018). However, previous methods
rarely take semantic information into consideration.
Some words are very similar regarding the seman-
tics. For example, "better" and "best" are similar,
except that the former is comparative level and the
latter is superior level. Also, their suffixes "er" and
"est", as subwords, have similar semantics to some
extent. We hold the same assumption as Chen et al.
(2016) and Shu and Nakayama (2018) that learn-
ing independent embeddings of large dimensions

1816

causes more redundancy in the embedding vectors,
as the inter-similarity among words is ignored.

In this paper, we propose UnClE, an intuitive
method for reducing the dimensionality of word
embeddings by explicitly leveraging semantic sim-
ilarity with weight sharing. We divide traditional
word embedding processes into two parts: unique
embedding and class embedding. There is a one-
to-one mapping between words and unique embed-
dings like traditional word embedding. For class
embeddings, words in the same class will share a
single class embedding. Before being fed to the
downstream neural network, each word will get its
unique embedding and class embedding through
its word index and class index. Then, the two em-
beddings are concatenated to generate the final em-
bedding of the word.

Our contributions are mainly three-fold:

• We propose a novel method to reduce the pa-
rameters of word embeddings. We first con-
struct semantic classes and group words into
different classes so that the words in the same
class can share a part of weights. Since the
class size is much smaller than the vocabu-
lary size and dimensions of share part can
range from 0 to the size of whole word em-
bedding dimensions, the method theoretically
can achieve a big reduction ratio .

• Our method can be used to reduce both in-
put and output embeddings. Meanwhile, our
method can share input and output embedding.
And our method is suitable to both word-level
and subword-level models.

• Experimental results on the standard WMT
2014 English-German dataset show that our
proposed approach can achieve 11x or more
reduction in the number of both input and
output embedding parameters while keeping
about 93% (25.92/27.82) BLEU score per-
formance. For language modeling task, our
model can reduce the parameters of word em-
beddings by 6x or 11x on PTB/WT2 dataset
at the cost of a certain degree of performance
degradation. Our method also outperforms
the projective and adaptive methods. Ablation
experiments further prove that our method in-
deed can leverage semantic similarity to re-
duce redundancy of word embeddings.

i th

…

i th

…

j th

…

(1) Traditional method

Ud

(2) Proposed method

Concat

Wd

Cd

Wd

dog

Word
Index
i

dog

Word
Index i

Class
Index j

Word
Embedding

Unique
Embedding

Class
Embedding

Figure 1: Traditional model vs our proposed model.

2 Related Works

Adaptive Method There are many efforts to-
wards reducing word embeddings. Baevski and
Auli (2019) extend the adaptive softmax (Grave
et al., 2017) to input word representations and as-
sign more capacity to frequent words and reduce
the capacity for less frequent words with the benefit
of reducing overfitting to rare words. Mehta et al.
(2020) point that projective embedding, including
Transformer-xl (Dai et al., 2019) and Albert (Lan
et al., 2020) is a special case of adaptive method
when the number of clusters is one. Similarly, Chen
et al. (2018) group words into blocks based on
their frequencies, and then refine the clustering it-
eratively by constructing the weighted low-rank
approximation for each block. Other works like
(Goodman, 2001; Morin and Bengio, 2005; Mnih
and Hinton, 2008) also propose hierarchical clus-
tering of words, but they mainly focus on training
effectively rather than reducing word embeddings.

Weight Sharing Another line of work employs
weight sharing to reduce the number of parameters.
Li et al. (2016) allocate all the words in the vocab-
ulary into a table. The words in the same row share
the row vector and the words in the same column
share the column vector. Slim embedding (Li et al.,
2018) randomly shares the structured parameters at
both the input and output embedding layers of the
recurrent neural language models. Press and Wolf
(2017) and Inan et al. (2017) share input and out-
put embeddings to improve language model while
significantly reducing the number of network pa-
rameters. Mehta et al. (2020) use a deeper network
with significantly fewer parameters to replace word
embedding layer. Zhao et al. (2019) introduce a
novel knowledge distillation technique for training
a student model with a significantly smaller vocab-

1817

ulary by mixing teacher vocabulary-tokenized with
student vocabulary-tokenized words.

Different from the above researches, our ap-
proach leverages semantic similarity to reduce
word embeddings. Words with similar semantic
will be grouped into the same class, and share a
part of weights.

Inter-similarity among Words Similar to our
method, several earlier studies (Chen et al., 2016;
Shu and Nakayama, 2018; Kim et al., 2020; Tissier
et al., 2019) are also based on the hypothesis that
the inter-similarity among words is ignored in
the conventional way of constructing word vec-
tors. Chen et al. (2016) represent infrequent words’
embeddings with frequent words’ embeddings by
sparse linear combinations. Our method is differ-
ent in that words in the same class share a part of
weights, no matter their frequency. Of course, in
the same class, there are also infrequent words and
frequent words. The training of both frequent and
infrequent words will update shared weights. To
some extent, frequent words will help infrequent
words via shared weights.

Shu and Nakayama (2018) also construct the
embeddings with a few basis vectors. For each
word, the composition of basis vectors is deter-
mined by a hash code rather than precomputation.
However, this method assigns the same length of
codes to each word without considering the sig-
nificance of downstream tasks. Kim et al. (2020)
further compress word embeddings by adaptively
assigning different lengths of codes to each word by
considering downstream tasks.Tissier et al. (2019)
employ an autoencoder architecture to transform
real-valued embeddings into binary embeddings
while preserving semantic information. Different
from these works above that implicitly leverage se-
mantic similarity, our method explicitly construct
semantic classes.

More importantly, Chen et al. (2016); Shu and
Nakayama (2018) focus on compressing the pre-
trained embeddings and our method is a novel
representation of word embeddings. The reduc-
tion of parameters comes from the smaller size of
dimensionality of unique embeddings rather than
from compressing pre-trained embeddings. And
our method also don’t need to modify the objective
function to learn the sparse linear combinations or
the code-book. So our method is easier to imple-
ment and have a wider range of applications.

3 Unique and Class Embedding

3.1 Constructing Semantic Classes
When we consider constructing semantic classes,
WordNet (Miller, 1995) is an optional choice. It
contains many nouns, verbs, adjectives, and ad-
verbs that are grouped into sets of cognitive syn-
onyms (synsets). However, tokens in datasets are
not always available in WordNet such as punc-
tuations, numbers and subwords. Inspired by
(Chen et al., 2016; Inan et al., 2017), word vector
(Mikolov et al., 2013; Pennington et al., 2014) pro-
vides an alternative to WordNet. In language mod-
eling, there is a well established metric space for
the outputs (words in the language) based on word
embeddings, with meaningful distances between
words. Yaghoobzadeh et al. (2019) also show that
semantic classes are recognizable in embedding
space. So we use the knowledge of word vectors to
measure semantic similarity approximately. After
we get the well-trained word vectors, a clustering
algorithm will be employed to group words into
different classes.

3.2 Method Formulation
Traditional Method Suppose xi is the i-th word
in the vocabulary and i ∈ [1, 2, ..., Vs], then W =
(W1,W2, ...,WVs) ∈ RWd×Vs is the embedding
matrix of the traditional method, where Wi ∈ RWd

is the word embedding of xi, Wd represents the
dimension of word embedding and Vs denotes the
size of vocabulary.

Our Method U = (U1, U2, ..., UVs) ∈ RUd×Vs

is a unique word embedding matrix, Ui represents
the unique word embedding of xi. We use Cj , j ∈
[1, 2, ..., Cs] to denote the class embedding of xi.
And C = (C1, C2, ...CCs) ∈ RCd×Cs is the class
embedding matrix. The whole word embedding
W
′
i of xi is obtained by concatenating the unique

word embedding Ui and the corresponding class
embedding Cj .

W
′
i = concatenate(Ui, Cj) (1)

Our method can also share input and output em-
beddings (Press and Wolf, 2017; Inan et al., 2017).
As stated above, input embedding contains unique
embedding and class embedding. And output em-
bedding actually is a linear projection matrix added
after the output of decoder. In our method, this
matrix consists of concatenated embedding (includ-
ing unique and class embedding) of each word in

1818

vocabulary. We first feed all vocabulary words to
input embedding of our method in order and get an
embedding matrix W ∈ RWd×Vs . Then we trans-
pose it and get W T ∈ RVs×Wd . At last, we replace
the traditional output embedding with W T .

When training, the parameters of unique embed-
ding will be optimized when the corresponding
word is trained. The parameters of class embed-
ding will be optimized when any word in the class
is trained. Except for this, everything else of train-
ing is consistent with the base model. The gradients
of unique embedding and class embedding come
from the concatenated embedding and the gradi-
ents of concatenated embedding come from input
embedding and output embedding.

In fact, our method can be extended to more fine-
grained and hierarchical approach. Each class can
be divided into multiple sub-classes. For example,
class Cj have two subclass Cj1 and Cj2. Then
for xi belongs to Cj and Cj1, Equation (1) can be
rewritten as:

W
′
i = concatenate(Ui, Cj , Cj1) (2)

In this paper, we just discuss the solution of Equa-
tion (1) to validate the effectiveness of our method.
We leave exploring the solution of Equation (2) as
future work.

3.3 Reduction Ratio
Given that the vocabulary size is Vs, we use Wd to
represent the dimension of traditional word embed-
ding. When we use the reduction method, the class
size is denoted by Cs, and Ud, Cd represents the
dimension of unique embedding and class embed-
ding, respectively.

Reduction Ratio =
Vs ∗Wd

Cs ∗ Cd + Vs ∗ Ud
(3)

When we set Cd = 0, Ud = Wd, Reduction
Ratio will be equal to 1, which means it turns into
the traditional word embedding. Further, we define

Pseudo Reduction Ratio =
Wd

Ud
(4)

In practice, if we set the number of classes 10x
less than the number of words, we have Vs ∗Ud �
Cs ∗ Cd and then

RR ≈ PRR (5)

where RR and PRR represent Reduction Ratio
and Pseudo Reduction Ratio respectively.

4 Experiments

We demonstrate the performance of our method
on two sequence-to-sequence modeling tasks: lan-
guage modeling and machine translation. For lan-
guage modeling, we compare our method with
AWD-LSTM (Merity et al., 2018). For machine
translation, we use Transformer (Vaswani et al.,
2017) as base model. We also compare our method
with projective method and adaptive method. Fol-
lowing the same setting as in (Merity et al., 2018;
Vaswani et al., 2017), we share input and output
embeddings for all models in this paper.

Task DataSet Type Vocab.
Language WikiText-2 Word 33278
Model PTB Word 10000
MT WMT14 en-de SubWord 40724

Table 2: Statistics of Datasets. MT stands for machine
translation.

4.1 Dataset and Hyperparameter Setting

Language Model. To evaluate the impact of our
method, we perform language modeling over the
preprocessed versions of the Penn Treebank (PTB)
(Mikolov et al., 2010) and the WikiText-2 (WT2)
dataset (Merity et al., 2017). There is a detailed
introduction to these two datasets in the appendix.
We use the same hyper-parameters and PyTorch
version as the original AWD-LSTM. For all lan-
guage modeling experiments, each model is trained
with one 1080Ti GPU. We use perplexity (PPL) as
the measure to evaluate the performance of models
(the lower, the better).

Machine Translation. We further evaluate our
approach on the standard WMT 2014 English-
German dataset consisting of about 4.5 million sen-
tence pairs. Following Vaswani et al. (2017), we
encode sentences using byte-pair encoding (Britz
et al., 2017) and get a shared source-target vocabu-
lary of about 40000 tokens.The input embedding
is shared by encoder and decoder. We use new-
stest2014 and newstest2017 as validation and test
sets, respectively. BLEU is employed to evaluate
the performance of models. The higher the score,
the better the model. Our implementation is based
on Ott et al. (2019). For all models in machine
translation without additional declaration, we use
the same parameter settings described as follows.

1819

Model PRR UniqueDim ClassDim EmbedParams(106) RR BLEU
Transformer(Vaswani et al., 2017) 1 512 0 20.9 1.00 27.30
Transformer(Our Implementation) 1 512 0 20.9 1.00 27.82

UnClE(Our Method)

2 256 256 10.7 1.95 27.73
4 128 384 5.59 3.73 27.35
8 64 448 3.05 6.83 26.83
16 32 480 1.78 11.69 25.92

Table 3: The effect of reduction ratio on Tranformer for machine transaltion. RR,PRR represent Reduction Ratio
and Pseudo Reduction Ratio of embeddings respectively. EmbedParams represents the number of parameters of
embedding layer. All results shown in the paper are averaged over three runs with different random seeds without
additional declaration.

Parameter Settings. We use a machine with 8
NVIDIA V100 GPUs. Each GPU has up to 4096
tokens. In practice, a training batch contains a
set of sentence pairs, which have approximately
30000 source tokens and 30000 target tokens. We
train all models for a total of 100,000 steps and
use the Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.98 and ε = 10−9. We
also employ a warmup mechanism and increase
the learning rate linearly for the first 4000 training
steps, and decrease it thereafter proportionally to
the inverse square root of the step number. We
apply dropout=0.1 (Srivastava et al., 2014) to the
output of each sub-layer before it is added to the
sub-layer input and normalize the sums of the em-
beddings and the positional encodings in both the
encoder and decoder stacks. We set label smooth-
ing (Szegedy et al., 2016) value εls = 0.1.

4.2 Constructing Semantic Classes

After preprocessing, we get the word-level (PTB,
WT2) and subword-level (WMT 2014 English-
German dataset) datasets. Then a word represen-
tation model (SkipGram) (Mikolov et al., 2013)
will be trained for each dataset. The training pro-
cess is much faster than language modeling and
machine translation. For example, the training of
word vector on PTB dataset takes several minutes
while its experiment of language modeling needs a
couple of hours even without taking finetuning into
consideration. Through these models, we obtain
a set of vectors for each word in the vocabularies.
These word vectors contain meaningful distances
between words. Then we explicitly construct se-
mantic classes via a clustering algorithm. In our
experiments, k-means (MacQueen et al., 1967) im-
plementation in NLTK (Xue, 2011) is employed.
After clustering, each word gets its class index.

Figure 2 shows the histogram of the number of

0 200 400 600 800 1000
class index

0

50

100

150

200

250

th
e

nu
m

be
r o

f w
or

ds

Figure 2: The histogram of the number of words in
different classes on the standard WMT 2014 English-
German dataset.

words in different classes on the standard WMT
2014 English-German dataset. We set class size
to 1000. It’s not too difficult to spot that the dis-
tribution is unbalanced and similar to long-tailed
distribution if we reorder the class index (abscissa)
according to the number of words in each class (or-
dinate). This way of constructing semantic classes
may not be subtle and exact, but an approximate
distribution is enough to test our hypothesis. It
should be noted that only class index will be used
in downstream tasks and we do not use the trained
vanilla word vector to initialize word embeddings
of Transformer-based or LSTM-based models.

4.3 Effect of Reduction Ratio on Model
Capability

In this section, we study the effects of different
reduction ratios on model capability. Following
Vaswani et al. (2017), we set the word embedding
dimension Wd to 512 for the baseline model on
machine translation. In our method, dimension of
whole word embedding W

′
d = Ud + Cd = 512 is

consistent with word embedding Wd of baseline
model. The unique dimension Ud is initially set to

1820

DataSet PRR UniqueDim ClassDim EmbedParams(106) RR PPL(dev) PPL(test)
PTB 1 400 0 4.0 1.00 61.51 59.08
PTB 2 200 200 2.20 1.82 63.50 60.90
PTB 4 100 300 1.30 3.08 66.78 64.16
PTB 8 50 350 0.85 4.71 71.33 68.75
PTB 16 25 375 0.625 6.40 78.30 75.58
WT2 1 400 0 13.31 1.00 68.70 65.60
WT2 2 200 200 6.86 1.94 71.40 68.07
WT2 4 100 300 3.63 3.67 76.82 72.73
WT2 8 50 350 2.01 6.61 85.27 80.54
WT2 16 25 375 1.21 11.03 98.26 92.48

Table 4: Effect of Reduction Ratio on LSTM(PTB/WT2) for language modeling. RR,PRR represent
Reduction Ratio and Pseudo Reduction Ratio of embeddings respectively. EmbedParams represents the number

of parameters of embedding layer.

512 and then divided by the power of 2. We have

U i
d =

512

2i
(6)

Ci
d = 512− U i

d (7)

where i represents the i-th model and ranges from
0 to 4 for machine translation. For language model-
ing, the settings are the same except that the word
embedding Wd = 400 and i ranges from 0 to 4.

The corresponding reduction ratio is calculated
according to Equation (3). To compare the results
fairly, we set the class size to 1000 for all models
in this section. Refer to Appendix for the choice of
class size. Moreover, in Section 4.5, we will further
study the impacts of different settings of class size.

Table 3 shows the BLEU scores of models. It
is worth noting that when we set the dimension
of unique embedding to 256 or 128, the BLEU
score just drops within 0.5. When Ud = 32, RR =
11.69, the model still achieves about 93% perfor-
mance. In appendix, we sample some specific cases
to study the model performance. Table 4 shows the
PPL scores of LSTM models and indicates that our
method is also suitable for LSTM models.

Table 5: Fine-tuning, continuous cache pointer on
LSTM for language modeling.

Model PRR RR PPL
Baseline 1 1.00 59.08
Baseline + ft 1 1.00 56.52
UnClE + ft 2 1.95 56.60
Baseline + pt 1 1.00 52.60
UnClE + pt 2 1.95 52.63

Table 5 shows the results of our proposed model

0 5 10 15 20
Compression Ratio

18

20

22

24

26

28

BL
EU

Our Method
Adaptive Method
Projective Method

Figure 3: The BLEU scores of projective method, adap-
tive method and our method (the higher, the better).

with fine-tuning and continuous cache pointer (Mer-
ity et al., 2018) on PTB dataset. We choose
RR = 1 model in Table 4 as baseline. For our
method, we choose the setting: Ud = 200, Cd =
200, RR = 1.95. The results indicate that these
two important strategies can also be employed in
our method.

4.4 Comparison with Related Works

Tradeoff between the model performance and the
number of word embedding parameters is studied
in section 4.3. In order to further validate the effec-
tiveness of our method, we compare our method
with the projective method and adaptive method on
WMT 2014 English-German dataset.

Projective Method The projective embedding
method factorizes the embedding matrix W ∈
RVs×Wd into Wf × Lin. Wf ∈ RVs×Wf , Lin ∈
RWf×Wd . It’s easy to implement and adopted by
several works (Dai et al., 2019; Lan et al., 2020).
In our experiments, we also share input and output
embeddings and Wf is initially set to 512 and then

1821

Table 6: Effect of class size on the performance of
Transformer-based models.

Model PRR Class Size BLEU
16 100 25.24

Transformer 16 1000 25.92
16 10000 26.93

Table 7: Effect of class size on the performance of
LSTM-based models.

Model PRR Class Size PPL
2 10 62.50

LSTM 2 100 61.69
2 1000 60.90

divided by the power of 2 according to reduction
ratio (Refer to Appendix for more details). Other
hyperparameters are the same as parameter settings
in section 4.1.

Adaptive Method Adaptive input embedding
(Baevski and Auli, 2019) defines a number of
bands that partition the frequency ordered vocab-
ulary V = V1 ∪ V2, . . . ,Vn−1 ∪ Vn and then re-
duces the capacity for each band by a factor of
k. If words in V1 have dimension d, then words
in Vn have dimension d

kn−1 . Next, linear projec-
tions W1 ∈ Rd×d, . . . ,Wn ∈ Rd/kn−1×d will be
added in order to map the embeddings of each band
to dimension d. Then the output of the adaptive
input embedding layer can be easily used by the
subsequent model. Adaptive softmax (Grave et al.,
2017) is similar to adaptive input by exploiting the
unbalanced word distribution to form clusters ex-
cept that it applys to output embedding rather than
input embedding.

In our experiments, the adaptive method uses
both adaptive input word representations (Baevski
and Auli, 2019) and an adaptive softmax (Grave
et al., 2017). We share the weight of adaptive input
and adaptive softmax to keep the same setting as in
Baevski and Auli (2019). For the sake of fairness,
we directly employ the author’s implementation 1

and we choose different bands’ sizes and factors k
according to the reduction ratio (Refer to Appendix
for more details). Other hyperparameters are the
same as parameter settings in Section 4.1.

Figure 3 shows the experimental results. Al-
though the adaptive method has a little fluctua-

1https://github.com/pytorch/fairseq

tion due to different bands’ sizes and factors, our
method outperforms both projective method and
adaptive method consistently when the reduction
ratio remains the same.

4.5 Impact of Class Size

In order to compare the impacts of different
class sizes, we keep the unique embedding di-
mension and class embedding dimension un-
changed. For Transformer-based models, we
choose 100, 1000, 10000 as class size. For LSTM-
based model, 10, 100, 1000 are used. Table 6 and 7
indicate that the larger class size will achieve better
results. In an extreme case, the reduction effect
will disappear when class size equals vocabulary
size. So there is a trade-off between the model per-
formance and the word embedding reduction ratio.
There is also another explanation. Although fre-
quent words will help infrequent words via shared
weights in our method, the words far away from
any common class will have to be assigned to one
class anyways, which possibly hurts the long tail
performance. When we increase the class size, the
words far from any common class can be assigned
to a separate category and the effect of long tail
problem can be alleviated.

4.6 Ablation Experiments

To further validate the effectiveness of our method,
we conduct ablation experiments on both language
modeling and machine translation tasks. Class in-
dex and class embedding are two key components
different from the traditional word embedding
method and play important roles in our method.
When removing them, the model degenerates back
to the traditional word embedding method.

Table 8: BLEU scores of random index/our method on
Transformer-based machine translation.

UniqueDim Random Index Our Method
256 27.39 27.73
128 26.9 27.35
64 26.43 26.83
32 25.74 25.92
16 25.17 25.01
8 23.77 22.75

4.6.1 Ablation of Class Index
For the ablation of class index, we assign words
to random classes on Transformer-based machine

https://github.com/pytorch/fairseq

1822

translation. We employ exactly the same setting
in Section 4.3 except that the indexes are drawn
randomly from the uniform distribution over the
range 0 to class size 1000.

Table 8 shows that our methods outperform the
random ones consistently when the dimension of
unique embedding Ud ranges from 32 to 256. It
indicates that leveraging the class index following
semantic similarity is more effective in reducing
word embeddings.

However, for extreme setting Ud = 16, 8, our
method performs worse. In fact, when unique em-
bedding is too small and underfitting, our assump-
tion that learning unique embeddings of large di-
mensions for words causes more redundancy in the
embedding vectors no longer holds. And unique
embedding of small dimensions lacks capacity to
learn rich representations to distinguish one word
from other words in the same class. Meanwhile,
the class index distribution of our method will be
more concentrated than uniform distribution, which
will undoubtedly increase the difficulty of distin-
guishing one word from other words in the same
class. So our method is lagging behind the random
one. And it also reminds us to pay attention to the
assumption when using the methods.

23242526272829

Ud

5

10

15

20

25

BL
EU

Our Method
Ablation

Figure 4: Different BLEU scores of our method and
ablation model (the higher, the better). Ud represents
the dimension of unique embedding.

4.6.2 Ablation of Class Embedding
We further conduct the ablation of class embedding
on both the Transformer-based and LSTM-based
models.

Following the similar setting in Section 4.3, the
unique dimension Ud is initially set to Wd = 512
and then divided by the power of 2. Class embed-
ding is set to 0. However, for a standard Trans-
former, the dimension of the encoder and decoder

2021222324

Ud / 25

100

200

300

400

500

600

PP
L

Our Method
Ablation

Figure 5: Different PPL scores of our method and ab-
lation model(the lower, the better). Ud represents the
dimension of unique embedding.

need to be equivalent with the word embedding
dimension. When we reduce the unique embed-
ding dimension, the number of encoder and de-
coder parameters will also be reduced, which obvi-
ously hurts the model’s performance. So in order to
compare models fairly, we add a linear projection
Lin ∈ RUd×Wd to map the embeddings of each
word to dimension Wd so that the dimensions of
encoder and decoder do not change. We also add
a linear projection Lout ∈ RWd×Ud before output
to ensure the sharing of input and output embed-
dings. We find that the method is the same as
projective embedding method, introduced in Sec-
tion 4.4. For LSTM-based models, the dimension
of hidden states is independent to the input embed-
dings. So we just remove the class embedding and
leave the unique embedding alone.

Experimental results illustrate that class embed-
ding is essential to model performance. Figure 4
compares the different BLEU scores of our method
and ablation model. Our method still achieves ac-
ceptable BLEU scores at larger reduction ratios,
while the scores of the ablation models drop rapidly.
For language modeling, we get similar results with
the Transformer. Figure 5 compares the different
PPL scores of our method and ablation models on
PTB dataset. Our method significantly outperforms
ablation models when the dimension of unique em-
bedding is small on both PTB and WT-2 datasets.
Refer to Appendix for more details.

4.6.3 Analysis of Unique and Class
Embeddings

We useC, U andW to denote the class, unique and
traditional word embeddings. CS means Cosine-
Similarity. (1) Cosine similarities of unique em-

1823

beddings (even in the same class) are usually low,
while class embeddings guarantee the overall sim-
ilarity. (2) In the PTB-LSTM-based experiment,
year and month belong to the same class. When
Ud decreases from 400 to 25 (with Ud + Cd =
Wd = 400 unchanged), CS(Uyear, Umonth) be-
comes smaller. It indicates unique embeddings
are more independent and informative. For Wd =
400, Ud = 100, Cd = 300, we have:

CS(Cyear, Cmonth) = 1.0

CS(Uyear, Umonth) = 0.067

CS(Wyear,Wmonth) = 0.734

CS(cat(Cyear, Uyear), cat(Cmonth, Umonth)) = 0.782

In terms of the relationship between class embed-
dings, we find that cosine similarities of different
class embeddings also reveal semantic information.
In the following examples, year, dog and Monday
belong to different classes.

CS(Cyear, Cdog) = 0.085

CS(Cyear, Cmonday) = 0.299

CS(Cdog, Cmonday) = −0.098

The similarity of class embeddings between year
and Monday is significantly larger than that be-
tween dog and Monday. This result conforms to
semantics, because year and Monday are both re-
lated to date/time.

5 Conclusion

In this paper, we propose a novel and intuitive
method, UnClE, to explicitly construct semantic
classes to reduce the parameters of word embed-
dings. We divide the traditional word embedding
into unique embedding and class embedding. Class
embedding is shared by all words belonging to the
same class. So we can reduce traditional word em-
bedding at a larger ratio. In the future, we plan to
apply our method to other tasks, such as question
answering and sentiment analysis. In addition, we
will try to apply UnClE on even larger corpora,
such as the One Billion Word benchmark, which
contains 768M word tokens and has a vocabulary
of about 800K word types.

Acknowledgments

We would like to thank anonymous reviewers
for their valuable comments. This work is sup-
ported by National Key R&D Program of China
(No. 2018AAA0101900), the NSFC projects (No.
62072399, No. U19B2042), Chinese Knowledge
Center for Engineering Sciences and Technology,
MoE Engineering Research Center of Digital Li-
brary, and the Fundamental Research Funds for the
Central Universities.

References
Alexei Baevski and Michael Auli. 2019. Adaptive in-

put representations for neural language modeling. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc V. Le. 2017. Massive exploration of
neural machine translation architectures. CoRR,
abs/1703.03906.

Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, and
Cho-Jui Hsieh. 2018. Groupreduce: Block-wise
low-rank approximation for neural language model
shrinking. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pages
11011–11021.

Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, and Zhi
Jin. 2016. Compressing neural language models by
sparse word representations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2978–2988. Association for Computational Linguis-
tics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking
http://papers.nips.cc/paper/8295-groupreduce-block-wise-low-rank-approximation-for-neural-language-model-shrinking
https://doi.org/10.18653/v1/p16-1022
https://doi.org/10.18653/v1/p16-1022
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

1824

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Joshua Goodman. 2001. Classes for fast maximum en-
tropy training. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP
2001, 7-11 May, 2001, Salt Palace Convention Cen-
ter, Salt Lake City, Utah, USA, Proceedings, pages
561–564. IEEE.

Edouard Grave, Armand Joulin, Moustapha Cissé,
David Grangier, and Hervé Jégou. 2017. Efficient
softmax approximation for gpus. In Proceedings
of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 1302–1310. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Yeachan Kim, Kang-Min Kim, and SangKeun Lee.
2020. Adaptive compression of word embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 3950–3959. Associa-
tion for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Xiang Li, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016.
Lightrnn: Memory and computation-efficient recur-
rent neural networks. In Advances in Neural Infor-
mation Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages
4385–4393.

Zhongliang Li, Raymond Kulhanek, Shaojun Wang,
Yunxin Zhao, and Shuang Wu. 2018. Slim embed-
ding layers for recurrent neural language models. In

Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
5220–5228. AAAI Press.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Sachin Mehta, Rik Koncel-Kedziorski, Mohammad
Rastegari, and Hannaneh Hajishirzi. 2020. Define:
Deep factorized input token embeddings for neural
sequence modeling. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048. ISCA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 3111–
3119.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Andriy Mnih and Geoffrey E. Hinton. 2008. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems
21, Proceedings of the Twenty-Second Annual Con-
ference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 8-
11, 2008, pages 1081–1088. Curran Associates, Inc.

https://doi.org/10.1109/ICASSP.2001.940893
https://doi.org/10.1109/ICASSP.2001.940893
http://proceedings.mlr.press/v70/grave17a.html
http://proceedings.mlr.press/v70/grave17a.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=r1aPbsFle
https://openreview.net/forum?id=r1aPbsFle
https://doi.org/10.18653/v1/2020.acl-main.364
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://papers.nips.cc/paper/6512-lightrnn-memory-and-computation-efficient-recurrent-neural-networks
http://papers.nips.cc/paper/6512-lightrnn-memory-and-computation-efficient-recurrent-neural-networks
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17042
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17042
https://openreview.net/forum?id=rJeXS04FPH
https://openreview.net/forum?id=rJeXS04FPH
https://openreview.net/forum?id=rJeXS04FPH
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model

1825

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, AISTATS 2005,
Bridgetown, Barbados, January 6-8, 2005. Society
for Artificial Intelligence and Statistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1532–1543. ACL.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 2: Short Papers, pages 157–163. Association
for Computational Linguistics.

Raphael Shu and Hideki Nakayama. 2018. Compress-
ing word embeddings via deep compositional code
learning. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 2818–2826.
IEEE Computer Society.

Julien Tissier, Christophe Gravier, and Amaury
Habrard. 2019. Near-lossless binarization of word
embeddings. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 7104–7111. AAAI
Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Nianwen Xue. 2011. Steven bird, evan klein and
edward loper. Natural Language Processing with
Python. o’reilly media, inc 2009. ISBN: 978-0-596-
51649-9. Nat. Lang. Eng., 17(3):419–424.

Yadollah Yaghoobzadeh, Katharina Kann, Timothy J
Hazen, Eneko Agirre, and Hinrich Schütze. 2019.
Probing for semantic classes: Diagnosing the mean-
ing content of word embeddings. arXiv preprint
arXiv:1906.03608.

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny
Zhou. 2019. Extreme language model compres-
sion with optimal subwords and shared projections.
CoRR, abs/1909.11687.

http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/e17-2025
https://doi.org/10.18653/v1/e17-2025
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1609/aaai.v33i01.33017104
https://doi.org/10.1609/aaai.v33i01.33017104
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
http://arxiv.org/abs/1909.11687
http://arxiv.org/abs/1909.11687

1826

Model UniqueDim EmbedParams(106) TotalParams(106) EmbedMemory TotalMemory BLEU
Transformer(Vaswani) 512 20.9 65.0 79.5M 247.9M 27.30
Transformer(Our Implementation) 512 20.9 65.0 79.5M 247.9M 27.82

UnClE(Our Method)

256 10.7 54.8 40.7M 209.1M 27.73
128 5.59 49.7 21.3M 189.7M 27.35
64 3.05 47.2 11.6M 180.0M 26.83
32 1.78 45.9 6.8M 175.2M 25.92

Table 9: The number of parameters and the memory sizes for Transformer-based models, when the UniqueDim
ranges from 512 to 32. EmbedParams and TotalParams represent the parameters of embedding layer and whole
model respectively. EmbedMemory and TotalMemory represent the memory sizes of embedding layer and whole
model respectively.

DataSet UniqueDim EmbedParams(106) TotalParams(106) EmbedMemory TotalMemory PPL(test)
PTB 400 4.0 24.2 15.26 92.32M 59.08
PTB 200 2.20 22.4 8.39 85.45M 60.90
PTB 100 1.30 21.5 4.96 82.02M 64.16
PTB 50 0.85 21.07 3.24 80.38M 68.75
PTB 25 0.625 20.85 2.38 79.54M 75.58
WT2 400 13.31 33.56 50.78 128.03M 65.60
WT2 200 6.86 27.01 26.15 102.97M 68.07
WT2 100 3.63 23.87 13.84 91.00M 72.73
WT2 50 2.01 22.26 7.68 85.08M 80.54
WT2 25 1.21 21.45 4.60 81.62 M 92.48

Table 10: The number of parameters and the memory sizes for LSTM-based models, when the UniqueDim ranges
from 400 to 25. EmbedParams and TotalParams represent the parameters of embedding layer and whole model
respectively. EmbedMemory and TotalMemory represent the memory sizes of embedding layer and whole model
respectively.

A Appendix

A.1 PTB and WT2 Datasets
The Penn Treebank dataset contains about
929K/74K/82K tokens in its train, validation, and
test sets respectively. The dataset does not contain
capital letters, numbers, or punctuation. There are
about 10K different words in its vocabulary.

WikiText-2 contains 2,088k training, 217k val-
idation, 245k test tokens, and a vocabulary of
33,278 words. The text is tokenized and processed
using the Moses tokenizer. Capitalization, punctua-
tion, and numbers are retained in this dataset.

A.2 Memory Size
Table 9 and Table 10 show the number of parame-
ters and the memory sizes for Transformer-based
and LSTM-based models. We believe our method
will be more impressive when the size of vocab-
ulary is very large, such as the One Billion Word
benchmark (800K), or working with Universal
Transformer or Albert models that share param-
eters across layers.

A.3 Related Works
A.3.1 Projective Method

Word Dimension RR BLEU
256 1.975 27.37
128 3.98 26.51
64 7.9 25.40
32 15.8 23.31
16 31 16.71
8 63.2 1.91

Table 11: Hyperparameter setting and the correspond-
ing results of the projective method.

We use Vs and Wd to represent the vocabulary
size and the dimension of traditional word embed-
ding, respectively. When we use the projective re-
duction method, let Wf denote another dimension
of linear projection, then we have the reduction
ratio as follows:

RR =
Vs ∗Wd

Vs ∗Wf +Wf ∗Wd
(8)

A.3.2 Adaptive Method
For adaptive method, we use V1, V2..., Vn to de-
note size of bands V1 ∪ V2, . . . ,∪Vn. If words in

1827

Source : He was accompanied on his visit to Russia by two German journalists .
Target : Er wurde bei seinem Besuch in Russland von zwei deutschen Journalisten begleitet .
Baseline : Er wurde bei seinem Besuch in Russland von zwei deutschen Journalisten begleitet .
Our method: Er wurde bei seinem Besuch in Russland von zwei deutschen Journalisten begleitet .
Ablation : Er wurde von zwei deutschen Journalisten auf seinen Besuch in Russland begleitet .

Source : The darker the meat , the higher the pH value .
Target : Je dunkler das Fleisch , desto höher der ph Wert .
Baseline : Je dunkler das Fleisch , desto höher der pH Wert .
Our method: Je dunkler das Fleisch , desto höher der pH Wert .
Ablation : Je neu das Fleisch ist , desto höher ist der pH Wert .

Figure 6: We sample two cases from the test set of WMT 2014 English-German. The words underlined in red are
wrong. In the first case, the ablation model’s result has a different word order, which is written in blue and green.
In the second case, there are several wrong words in the ablation result.

k V1 V2 V3 RR BLEU
15000 21000 4728 1.96 27.42

4 4000 8000 28728 5.12 26.32
2000 4000 34728 7.64 26.12
600 1200 38928 11.66 25.68
1000 5000 34728 18.18 22.38

8 500 4500 35228 24.06 21.85

Table 12: Hyperparameter setting and the correspond-
ing results of the adaptive method.

V1 have dimension Wf1 , then words in Vn have
dimension Wfn =

Wf1
kn−1 . In our experiments, we

choose Wf1 = 512 and the factor k = 4 or 8. We
have the reduction ratio:

RR =
Vs ∗Wd

[V1 ∗Wf1
+ Wf1

∗Wd] + ... + [Vn ∗Wfn + Wfn ∗Wd]
(9)

A.4 Choice of the Number of Classes
We suggest that the number of classes should be
a bit less than one tenth of vocabulary size. Lin-
guistically speaking, dozens of words may have
similar semantics in most cases. Figure 2 also sup-
ports this point. Experimentally, we also find that
the result of 1000 class size is better than those
of 100 and 10000 cases under the same reduction
ratio. However, the number of classes indeed is
the hyperparameter and doing grid search is always
necessary for the best one. Here we just give a
suggestion that is worth trying.

A.5 Out-of-vocabulary Words
Here we give a way to handle Out-of-vocabulary
words in our method. We use the publicly trained
word vectors such as Glove, GoogleNews-vectors

or the embedding of BERT, in which the out-of-
vocabulary words can be found, to compute the
similarities between the center word of each class
and out-of-vocabulary words. The class embedding
of out-of-vocabulary words will be the same as
that of the closest center words. As for the unique
embedding, we compute the similarities between
the given out-of-vocabulary word and other words
in the same class by word vectors. Then we nor-
malize the similarities distribution, and obtain the
unique embedding of the out-of-vocabulary word
by weighted linear combination of the unique em-
beddings of other words in the same class. The
weight is the normalized distance.

A.6 Ablation Experiment

UniqueDim BLEU(A) BLEU(U)
256 27.37 27.73
128 26.51 27.35
64 25.40 26.83
32 23.31 25.92
16 16.71 25.01
8 1.91 22.75

Table 13: Results of ablation studies of UnClE along
with Transformer for machine transaltion. We denote
the BLEU score of ablation models and our method
as BLEU(A) and BLEU(U) respectively. The ablation
model here is equivalent to the predictive method.

Table 13 and Table 14 summarize the results of
ablation studies of UnClE along with Transformer
models and LSTM-based models. For machine
translation, our method still achieves acceptable
BLEU scores at larger reduction ratios, while the
score of ablation models drops rapidly. Especially,

1828

DataSet UniqueDim PPL(A) PPL(U)
200 62.27 60.90

PTB 100 74.87 64.16
50 97.84 68.75
25 639.47 75.58
200 71.15 68.07

WikiText-2 100 84.96 72.73
50 157.12 80.54
25 708.02 92.48

Table 14: Results of ablation studies of UnClE along
with LSTM for language modeling. We denote the
PPL of ablation models and our method as PPL(A) and
PPL(U) respectively. The ablation model here is equiv-
alent to the predictive method.

when unique embedding size decreases to 8, BLEU
score of ablation method drops to 1.91 and our
method achieves 22.75 BLEU score.

A.7 Case Study on Translation Quality
We sample several specific examples to evaluate
the translation quality of our method (See Figure
6). We choose the model with Ud = 32, Cd = 480,
RR = 11.69 to represent our method. We com-
pare our method with baseline model (Wd = 512)
and ablation model (Ud = 32). Sampled results
indicate that the baseline model and our model are
consistent with the target while the ablation model
has a poor performance.

A.8 Polysemous Words
Refer to Equation (2). Our method can be extended
to more fine-grained and hierarchical approach.
Each class can be divided into multiple sub-classes.
This will alleviate the polyseme issue. Also, the
Transformer-based model itself can alleviate this
problem by learning contextual representations.

