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Abstract

Thanks to the strong representation learning
capability of deep learning, especially pre-
training techniques with language model loss,
dependency parsing has achieved great perfor-
mance boost in the in-domain scenario with
abundant labeled training data for target do-
mains. However, the parsing community has
to face the more realistic setting where the
parsing performance drops drastically when la-
beled data only exists for several fixed out-
domains. In this work, we propose a novel
model for multi-source cross-domain depen-
dency parsing. The model consists of two
components, i.e., a parameter generation net-
work for distinguishing domain-specific fea-
tures, and an adversarial network for learn-
ing domain-invariant representations. Experi-
ments on a recently released dataset for multi-
domain dependency parsing show that our
model can consistently improve cross-domain
parsing performance by about 2 points in aver-
aged labeled attachment accuracy (LAS) over
strong BERT-enhanced baselines. Detailed
analysis is conducted to gain more insights on
contributions of the two components.

1 Introduction

Dependency parsing aims to derive syntactic and
semantic tree structures over input words (Mc-
Donald et al., 2013). Given an input sentence
s = w1w2 . . . wn, a dependency tree, as depicted
in Figure 1, is defined as d = {(h,m, l), 0 ≤ h ≤
n, 1 ≤ m ≤ n, l ∈ L}, where (h,m, l) is a depen-
dency from the head word wh to the child word
wm with the relation label l ∈ L.

Recently, supervised neural dependency pars-
ing models have achieved great success, leading
to impressive performance (Chen and Manning,
2014; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017; Li et al., 2019a). Remarkably, the
BiAffine parsing model can obtain a UAS of 96.67
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$ 手套 到了 ， 非常 不错 。
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Figure 1: An example of dependency tree from product
comments.

and a LAS of 95.03 on standard Penn Treebank
benchmark for the English language.

In order to obtain competitive performance, su-
pervised dependency parsing models rely on a suf-
ficient amount of training data, which is inevitably
dominated to several fixed domains. When the
test data is sourced from similar domains, good
performance could be achieved. However, the per-
formance could be decreased significantly when
the test data is from a different domain which has
a large gap between the training domains. Thus do-
main adaptation for dependency parsing has been
concerned by a number of studies (Koo et al., 2008;
Yu et al., 2013; Sato et al., 2017; Clark et al., 2018;
Li et al., 2020b). These works mostly focus on
single-source cross-domain dependency parsing,
assuming the training data is from a single source
domain (Yu et al., 2013; Sato et al., 2017). In fact,
multi-source cross-domain dependency parsing is a
more practical setting, considering that several de-
pendency parsing corpora from different domains
have been developed (Peng et al., 2019). Intuitively,
an effective exploration of all these corpora can
give better performance for the target domain com-
pared with the single-source domain adaptation.

Separating domain-invariant and domain-
specific features is one popular way for domain
adaptation to distinguish the similarity and discrep-
ancy of different domains (Daumé III, 2007; Kim
et al., 2016; Sato et al., 2017). Domain-invariant
features indicate the shared feature space across
domains, which have been widely-adopted as
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knowledge transferring. Domain-specific features
imply the differences between domains, which
could be helpful if the domain gaps could be
accurately measured and effectively modeled.
The learning of domain invariant and specific
features are actually complementary because of
mutual exclusivity, especially for single-source
domain adaptation. Although single-source
and multi-source settings are easily separated
domain-invariant and domain-specific features via
independent BiLSTMs, the in-depth relevance of
domain-specific representations becomes more
complicated with the increasing of source domains.
Hence, how to construct the relationship between
different domain-specific features after a simple
feature separation becomes more challenge for
multi-source dependency parsing.

In this work, we for the first time apply adversar-
ial and parameter generation networks (APGN) to
multi-source cross-domain dependency parsing for
extracting domain-invariant and domain-specific
features. Experiments on a benchmark dataset
show that our proposed model can boost the pars-
ing performance significantly, leading to averaged
LAS improvements by 2 points over strong BERT-
enhanced baselines. First, explorations on different
unlabeled data sizes reveal that unlabeled data is an
useful resource and proper utilization of unlabeled
data further improves our model performance by a
large margin. Then, we conduct in-depth analysis
to gain crucial insights on the effect of adversar-
ial and parameter generation networks, finding the
two components are complementary and both have
the capability of modeling short- or long-range
dependencies. Finally, detailed comparative exper-
iments on alternative domain representation strate-
gies show that our designed distributed domain rep-
resentation can accurately measure domain gaps
and extract more reliable domain knowledge that
benefits the dependency parsing task. We will
release our code at https://github.com/
suda-yingli/EMNLP2021-apgn for facili-
tating future researches.

2 Baseline Model

In this work, we adopt the state-of-the-art deep
BiAffine parser (Dozat and Manning, 2017) as our
baseline model. Figure 2 shows the framework of
the parser, which mainly contains four components,
i.e., Input layer, Encoder layer, MLP layer, and
BiAffine layer.

Input Layer

. . .. . . . . .

BiLSTM Encoder

wjwi

hi hj

xi xj

MLPHMLPD

rD
i rH

j

BiAffines

score(i← j)

Figure 2: Framework of the BiAffine parser.

Input layer. The input layer maps each word
wi into a dense vector representation xi. First, we
apply a BiLSTM to encode the constituent charac-
ters of each word wi into its character representa-
tion repchari . Then, we concatenate repchari with
embwordi as the input vector xi.

xi = embwordi ⊕ repchari (1)

where embwordi is the pre-trained word embed-
ding, and ⊕ indicates vectorial concatenation. In
addition, we also use BERT representation to
enhance our model, denoted as repBERTi , where
embwordi is substituted by repBERTi simply.

Encoder layer. Following Dozat and Man-
ning (2017), we employ a three-layer BiLSTM to
sequentially encode the inputs x0 . . .xn and gener-
ate context-aware word representations h0 . . .hn.
We omit the detailed computation of the BiLSTM
due to space limitation.

MLP layer. The MLP layer uses two indepen-
dent MLPs to get lower-dimensional vectors of
each position 0 ≤ i ≤ n.

rH
i = MLPH (hi)

rD
i = MLPD (hi)

(2)

where rH
i is the representation vector of wi as a

head word, and rD
i as a dependent.

BiAffine layer. The score of a dependency i←
j is computed by a BiAffine attention as follows,

score(i← j) =

[
rD
i

1

]T
WbrH

j (3)

where the weight matrix Wb determines the
strength of a link from wj to wi.

 https://github.com/suda-yingli/EMNLP2021-apgn
 https://github.com/suda-yingli/EMNLP2021-apgn
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Parsing loss. The parsing loss for each position
i is computed as:

Lpar(i l←− j) =− log
escore(i←j)∑

0≤k≤n,k 6=i
escore(i←k)

− log
escore(i

l←−j)∑
l′∈L e

score(i
l′←−j)

(4)

where wj is the gold-standard head of wi, and l is
the corresponding gold relation label.

3 Proposed APGN Approach

The goal of multi-source cross-domain dependency
parsing is to train a parser that generates well to
the target domain with labeled training data from
multiple source domains and unlabeled data from
the target domain. The most straightforward ap-
proach is training a parser with the concatenation
of all source-domain training data. This can extract
common features across different domains but fail
to capture domain-specific knowledge. To address
this issue, we propose an APGN approach for mod-
eling the discrepancy and commonality between
different domains simultaneously. As shown in
Figure 3, our APGN model mainly contains two
components, i.e., a PGN for distinguishing domain-
specific features, and an adversarial network for
learning domain-invariant representations.

In this section, we first give a detailed illustration
of the parameter generation network which takes
distributed domain embedding as input to allevi-
ate potential domain conflicts caused by the fixed
one. Then, we introduce the adversarial network
which encourages the BiLSTM to extract more pure
shared information by fooling the domain classi-
fier. Finally, we propose a new strategy for our
model training to make full use of all labeled and
unlabeled data.

3.1 PGN
Jia et al. (2019) first propose PGN to generate BiL-
STM parameters based on fixed task and domain
embeddings for NER domain adaptation, finding
that the PGN can effectively extract domain differ-
ences. However, the vanilla PGN requires cross-
domain language model task as a bridge to help
fixed domain embeddings training. Considering
the development of pre-training techniques with
language model loss and computational complex-
ity, we first remove the language model from the

PGN component and use pre-trained BERT to en-
hance model performance in the final experiments.
Intuitively, each input word has its unique domain
distributions, initializing these words with the same
fixed domain embedding may lead to potential do-
main conflicts. We then improve the PGN via
replacing the fixed domain embedding with dis-
tributed one to more accurately integrate multi-
domain information. As shown in the right part
of Figure 3, our PGN takes distributed represen-
tations as inputs and dynamically generates the
domain-related PGN-BiLSTM parameters.

PGN-BiLSTM encoder. To better capture
domain-specific features, we exploit the PGN-
BiLSTM instead of a standard BiLSTM encoder.
For convenience, we directly formalize the vanilla
BiLSTM encoder as follows:

h0 . . .hn = BiLSTM (x0 . . .xn,V) (5)

where V ∈ RU can be regarded as a flattened
vector which contains all the BiLSTM parameters.
Different from a vanilla BiLSTM which use stat-
ically allocated parameters and update them dur-
ing training, PGN-BiLSTM dynamically generates
BiLSTM parameters in order to reflect domain dif-
ferences as follows.

hspe0 . . .hspen = PGN-BiLSTM (x0 . . .xn,E)

= BiLSTM (x0 . . .xn,V = W ⊗ E)
(6)

where ⊗ denotes matrix multiplication; W ∈
RU×D is a parameter matrix to be trained; E ∈ RD

is distributed domain-aware sentence representa-
tion vector and will be explained later.

Distributed domain-aware sentence repre-
sentation. The distributed domain-aware sentence
representation vector can be regarded as a sum
of weighted domain embeddings, where higher
weights are expected to be assigned to domains
that are more similar to the input sentence.

First, we compute domain distribution probabili-
ties of each word via simple domain classification.

zi = softmax
(
MLP

(
hdomi

))
(7)

where hdomi is the representation vector of the i-th
word generated by a separated standard BiLSTM.

Then, we compute a distributed domain-aware
word representation vector for each word via ag-
gregating domain embeddings according to the do-
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Figure 3: Framework of our proposed APGN model.

main distribution of the word.

repdomi =
m+1∑
j=1

zi,jembdomj (8)

where embdomj is the embedding vector of the j-
th domain; zi,j is the probability of the i-th word
belonging to the j-th domain.

Finally, we utilize an average pooling to yield
distributed domain-aware sentence representation
vector, i.e., E, which is used to generate BiLSTM
parameters.

E =
1

n

n∑
i=1

repdomi (9)

Domain classification loss. The domain clas-
sification module, as shown in the right part of
Figure 3, is trained via minimizing a standard cross-
entropy loss.

Ldom = − 1

n

n∑
i=1

m+1∑
j=1

(ẑi,j)log ((zi,j)) (10)

where m is the number of source domains (plus a
target domain); n is the word number of the input
sentence; ẑi is the gold-standard domain distribu-
tion vector, where only one element is 1 corre-
sponding to the domain index where the sentence
comes from.

3.2 The Adversarial Network
The goal of adversarial learning is to encourage the
shared BiLSTM to extract domain-invariant fea-
tures that are not specific to a particular domain
as much as possible (Ganin et al., 2017). During
training, we expect the BiLSTM to make it difficult

for the domain classifier to correctly distinguish
domain categories. The architecture of adversarial
network is shown in the left part of Figure 3. First,
input words from different domains are encoded
by the same standard BiLSTM. Before feeding the
BiLSTM output hinvi to the domain classifier, hinvi

goes through the gradient reversal layer (GRL). Fol-
lowing Ganin and Lempitsky (2015), the forward
and backward propagations for the GRL are defined
as follows:

Gλ(h
inv
i ) = hinvi

dGλ(h
inv
i )

d(hinvi )
= −λI

(11)

where λ is a hyper-parameter. Over the GRL, the
domain classifier is applied to identify the domain
of input word. Finally, the adversarial network is
trained via minimizing the cross-entropy loss Ladv.

3.3 Joint Training
In this work, we design a joint training strategy
to make full use of all available training datasets,
shown as Algorithm 1. In the first k iterations,
mini-batches of source-domain and target-domain
take turns to train. If the mini-batch comes from
the source-domain labeled data, we jointly train
the model with the parsing, adversarial, and do-
main classification losses. Otherwise, the model
is trained with the adversarial and domain classi-
fication losses. In the first stage, all data is used
to select domain-invariant and domain-specific fea-
tures via the adversarial and parameter generation
networks. In the second stage, only source domain
labeled data is available and the model is updated
with the parsing loss until convergence after k iter-
ations, which is helpful to deal with the overfitting
problem of domain classifications.
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Algorithm 1 Joint Training Procedure
Input: source-domain labeled data S = {Si}mi=1,

target-domain unlabeled data T.
Hyper-parameters: loss weights α and β, joint training

iteration k.
Output: Target model.
1: Repeat
2: if iter < k do
3: Take turns to sample a mini-batch x from S and T.
4: if x ∈ S do
5: Accumulate loss L = Lpar + αLadv + βLdom
6: else
7: Accumulate loss L = αLadv + βLdom
8: else
9: Sample a mini-batch x ∈ S
10: Accumulate loss L = Lpar
11: Updating parameters via minimizing L.
12: iter+ = 1
13: until convergence

BC PC PB ZX
train 16,339 6,885 5,129 1,645
dev 997 1,300 1,300 500
test 1,992 2,600 2,600 1,100

unlabeled - 349,922 291,481 33,792

Table 1: Data statistics in sentence number

4 Experiments

4.1 Settings

Data. We use the Chinese multi-domain depen-
dency parsing datasets released at the NLPCC-
2019 shared task1, containing four domains: one
source domain which is a balanced corpus (BC)
from news-wire, three target domains which are
the product comments (PC) data from Taobao, the
product blog (PB) data from Taobao headline, and
a web fiction data named “ZhuXian” (ZX). Table
1 shows the detailed illustration of the data statis-
tics. In this work, we pick one target dataset as the
target domain, and the rest are the source domains.
For example, if the target domain is PC, source
domains are BC, PB, and ZX.

Evaluation. We use unlabeled attachment score
(UAS) and labeled attachment score (LAS) to eval-
uate the dependency parsing accuracy (Hajic et al.,
2009). Each model is trained for at most 1, 000
iterations, and the performance is evaluated on the
dev data after each iteration for model selection.
We stop the training if the peak performance does
not increase in 100 consecutive iterations.

Baseline models. To verify the effectiveness
and advantage of our proposed model, we select
the following approaches as our strong baselines.

1http://hlt.suda.edu.cn/index.php/
Nlpcc-2019-shared-task

• Concatenation (CON). We directly train Bi-
Affine parser (Dozat and Manning, 2017) with
all source-domain labeled data. The main
drawback is that the parser shares all parame-
ters across different domains and ignores do-
main differences, thus making it difficult to
build the relationship between different do-
mains.

• Domain embedding (DE). The vanilla DE
method has been proven more effective than
CON on semi-supervised dependency parsing
(Li et al., 2019b). The key idea is to train
BiAffine parser with an extra fixed domain
embedding to indicate which domain the in-
put sentence comes from. However, when the
DE is directly applied to our task, fixed em-
beddings are trained inadequately due to the
lack of target-domain labeled data.

• Adversarial domain embedding (ADE). Li
et al. (2020b) propose to apply adversarial net-
work on DE method, which separates domain-
specific and domain-invariant features via
domain-aware embeddings and adversarial
learning. The ADE model can be regarded
as the APGN removing the PGN component.

• Parameter generation network (PGN). Mo-
tivated by Jia et al. (2019), we exploit the PGN
based on distributed domain representations
to generate domain-related BiLSTM parame-
ters as our strong baseline. The PGN can be
regarded as our APGN model removing the
adversarial network.

4.2 Hyper-parameter Choices
We mostly follow the hyper-parameter settings of
Dozat and Manning (2017), such as learning rate,
dropout ratios, and so on. The loss weights both α
and β are set as 0.01. The domain embedding size
is set as 8. The Chinese character embeddings are
randomly initialized, and the dimension is 100. For
pre-trained word embeddings, we train word2vec
(Mikolov et al., 2013) embeddings on Chinese Gi-
gaword Third Edition, consisting of about 1.2 mil-
lion sentences. For BERT, we use the released Chi-
nese BERT-Based model to obtain BERT represen-
tations for each word.2 Following Li et al. (2019a),
we utilize the averaged sum of the top-4 layer out-
puts as the final BERT representation repBERTi .

2https://github.com/google-research/
bert

 http://hlt.suda.edu.cn/index.php/Nlpcc-2019-shared-task
 http://hlt.suda.edu.cn/index.php/Nlpcc-2019-shared-task
https://github.com/google-research/bert
https://github.com/google-research/bert
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Iter k PC PB ZX Avg.
UAS LAS UAS LAS UAS LAS UAS LAS

10 49.62 37.89 73.96 68.26 74.19 66.90 65.92 57.68
20 52.22 40.58 74.60 68.90 75.19 68.26 67.34 59.25
30 50.57 38.46 73.99 68.24 74.51 67.50 66.36 58.07
40 49.77 37.61 74.25 68.09 74.67 67.21 66.23 57.64
50 50.10 38.09 74.01 67.97 74.39 67.20 66.17 57.75

Table 2: Results on the dev data regarding the joint
training iteration k.

PC PB ZX Avg.
UAS LAS UAS LAS UAS LAS UAS LAS

Comparison with Baseline Models
CON 47.30 35.63 72.81 67.24 71.00 62.91 63.70 55.26
DE 47.49 35.56 72.61 67.08 70.98 62.68 63.69 55.11
ADE 48.61 36.90 72.80 67.25 71.46 63.59 64.29 55.91
PGN 49.53 36.87 72.71 66.93 70.65 63.16 64.30 55.66
APGN 51.48 39.12 73.86 68.10 72.43 64.80 65.92 57.34

Comparison with BERT-Enhanced Baseline Models
CON 60.62 49.52 81.59 77.07 80.60 74.53 74.27 67.04
DE 60.45 49.49 82.08 77.15 79.85 73.65 74.13 66.76
ADE 60.76 50.22 82.54 78.04 81.43 75.70 74.91 67.99
PGN 62.87 50.94 82.50 77.93 81.59 76.24 75.65 68.37
APGN 63.17 52.11 82.92 78.21 82.71 77.03 76.27 69.12

Table 3: Final results on test data.

Preliminary experiments show that our model is
insensitive to most of the above parameters, while
the setting of joint training iteration has a larger im-
pact on the performance as shown in the following
results.

Joint training iteration k. Table 2 shows the
results with different joint training iteration k on
the dev data. Increasing the iterations from 10
to 20 consistently improves the performance on
all domains. The performance drops significantly
when using iteration k above 20. These results
indicate that more joint training iterations not only
increase the complexity of the model, but also make
the model prone to overfit the training data.

4.3 Final Results

Table 3 shows the final results and makes a compar-
ison with multiple baselines on test data. First, we
can see that our proposed APGN model achieves
the best results on all domains, demonstrating that
the APGN is extremely useful for multi-source
cross-domain dependency parsing. Second, com-
pared the results of ADE and PGN, we find that
both adversarial and parameter generation net-
works have the capability of capturing useful infor-
mation to improve the parsing accuracy. Finally,
although the performance of different models is
obviously improved by utilizing BERT representa-
tions, our model still achieves consistently higher
accuracy than other baselines, further demonstrat-
ing the effectiveness of our proposed method.
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Figure 4: Influence of utilizing different amount of un-
labeled data on APGN model. The x-axis is the ratio
of target-domain unlabeled data size to source-domain
labeled data.

4.4 Utilization of Unlabeled Data
Considering the lack of target-domain labeled data,
we directly use unlabeled data for the model train-
ing. For unlabeled sentences, the model discards
the parsing loss and updates the parameters with
only adversarial and domain classifier losses. Fig-
ure 4 illustrates the influence of target-domain un-
labeled data sizes on dev data. In each curve, we
fix the size of labeled data and incrementally add
a random subset of unlabeled data. Considering a
large-scale unlabeled data may lead to the sample
unbalance problem, we randomly sample unlabeled
data with the ratios less than 1. On the one hand,
we can see that using unlabeled data leads to con-
sistently higher performance for all three domains,
indicating that the unlabeled data is an important
resource that contributes the target-domain depen-
dency parsing. On the other hand, we find that
the improvement of parsing accuracy is obviously
steady when the ratio is set as 0.75, showing that
the APGN model can achieve best performances
with a suitable amount of unlabeled data.

4.5 Analysis
Ablation study. The results of ablation study on
dev data are shown in Table 4. We can see that
removing any component from the APGN causes
obvious performance degradation. First, compared
with the accuracy of “w/o two”, “w/o PGN” can
further improve parsing performance, showing the
usefulness and importance of domain-invariant fea-
tures generated by adversarial network. Second, it
is clear that “w/o Adv” achieves better performance
than “w/o PGN”, indicating that the parameter gen-
eration network is crucial. The reason may be that
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PC PB ZX Avg.
UAS LAS UAS LAS UAS LAS UAS LAS

APGN 52.22 40.58 74.60 68.90 75.19 68.26 67.34 59.25
w/o Adv 51.16 38.72 73.96 67.88 74.00 67.17 66.37 57.92
w/o PGN 49.34 37.50 73.23 67.54 73.87 66.73 65.48 57.26
w/o Two 48.97 37.32 73.36 67.61 73.30 65.53 65.21 56.82

Table 4: Ablation study on reducing the component of
the APGN model on dev data. “w/o Adv” and “w/o
PGN” mean removing adversarial network or parame-
ter generation network.

the parameter generation network enable correctly
construct domain relations and extract practical
domain-specific features, which is significant for
dependency parsing. Finally and most importantly,
we find that our proposed APGN model achieves
consistently higher accuracy than “w/o PGN” and
“w/o Adv”, demonstrating that the two components
are complementary.

Error analysis. Since ablation study only gives
an overall performance trend, we conduct in-depth
error analysis in order to gain more insights on the
contributions of adversarial and parameter genera-
tion networks. We divide the gold-standard depen-
dencies into seven subsets according to the absolute
distance between the head word and the modifier
word, and calculate the accuracy for each subset.
The group whose dependency distance is 0 means
the words which take the pseudo node “root” as
their head words. Figure 5 compares the accuracy
curves of ADE (“w/o PGN”), PGN (“w/o Adv”),
and APGN models with regard to the dependency
distance on the test data. First, we can see that
the parsing accuracy becomes better on all mod-
els when the dependency distance is smaller. The
reason may be that the contextualized information
decays when the distance between two words is
too far. Second, there seems slight difference be-
tween ADE and PGN performances on the same de-
pendency distance, indicating that adversarial and
parameter generation networks, as two typical fea-
ture extraction methods, both have the competitive
capability of capturing short- and long-range de-
pendencies. Finally, we find that the APGN model
achieves better performances than ADE and PGN
models, demonstrating that adversarial and param-
eter generation networks are complementary and
can certainly benefit from each other.

4.6 Comparisons on Alternative Domain
Representation Strategies

Most previous works use a fixed domain embed-
ding to indicate the domain of each input word (Jia
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et al., 2019; Li et al., 2019b). However, the fixed
representation may lead to potential domain con-
flicts when a word belongs to multiple domains. As
shown in Figure 6, we can see that each word has
its unique domain distribution and it is difficult to
define all word with an explicit fixed representation.
Hence, it is necessary to design a more accurate
representation, named as distributed domain em-
bedding, which can be regarded as weighted sum of
the fixed domain embeddings and its distributional
probabilities.

Detailed comparative experiments are conducted
to verify the effectiveness of two domain represen-
tation strategies on various models, and results are
shown in Table 5. First, we find that the APGN with
fixed domain representations like Jia et al. (2019)
achieves lower performance than other models.
The main reason may be that without cross-domain
language model as a bridge, it is difficult for the
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PC PB ZX Avg.
UAS LAS UAS LAS UAS LAS UAS LAS

Models with the fixed domain representations
DE 48.23 36.40 73.25 67.39 73.27 66.49 64.92 56.76
ADE 49.16 36.68 73.49 67.89 73.91 67.01 65.52 57.19
APGN 44.20 30.89 71.28 65.35 71.50 63.85 62.33 53.36

Models with the distributed domain representations
DE 50.37 38.13 73.96 67.88 73.71 66.61 66.01 57.54
ADE 50.63 38.50 73.90 68.08 73.72 67.79 66.08 58.12
APGN 52.22 40.58 74.60 68.90 75.19 68.26 67.34 59.25

Table 5: Results of different models with fixed or dis-
tributed domain representations.

PGN to model the relationships of different do-
mains. Second, the APGN with distributed domain
representations achieves best performance among
all models, revealing that the PGN with distributed
domain embeddings can accurately measure the
domain similarity and significantly improve our
model performance. Finally, we can see that all
models with distributed domain representation out-
perform them with the fixed one by a large margin,
demonstrating that distributed domain representa-
tion is helpful to reduce potential domain conflicts
and extracts more reliable domain knowledge that
benefits the parsing task.

5 Related Work

Domain adaptation has been extensively studied in
many research areas, including machine learning
(Wang et al., 2017; Kim et al., 2017), computer vi-
sion (Ganin and Lempitsky, 2015; Rozantsev et al.,
2019) and natural language processing (Kim et al.,
2016; Sun et al., 2020). Here, we first simply re-
view single-source domain adaptation researches,
and then give more detailed illustration about the
studies of multi-source domain adaptation.

Single-source domain adaptation. Single-
source domain adaptation assumes training data
comes from a source domain. Due to lacking target-
domain labeled data, previous researches mainly
investigate unsupervised domain adaptation, which
attempt to create pseudo training samples by self-
training (Charniak, 1997; Steedman et al., 2003;
Reichart and Rappoport, 2007; Yu et al., 2015),
co-training (Sarkar, 2001), or tri-training (Li et al.,
2019c). However, selecting high confidence sam-
ples is a challenge.

Thanks to large-scale labeled web data released
by parsing communities, recent existing works pay
more attention to semi-supervised scenario. Yu
et al. (2013) give detailed error analysis on cross-
domain dependency parsing and solve the ambigu-
ous features problem. Sato et al. (2017) propose to

separate domain-specific and domain-invariant fea-
tures via applying adversarial learning on shared-
private model, but find that there is little gains and
even damage the performance, specially when the
scale of target-domain training data is small. Most
recently, Li et al. (2019b) propose to leverage an
extra domain embedding to indicate domain source
and achieve better performance on semi-supervised
domain adaptation. In this work, we adjust the
domain embedding method as our strong baseline.

Multi-source domain adaptation. Multi-
source domain adaptation assumes the training data
comes from multiple source domains. Many ap-
proaches of multi-source domain adaptation focus
on leveraging domain knowledge to extract domain-
related features, thus boosting the performance of
target domain (Daumé III, 2007; Guo et al., 2018;
Li et al., 2020a; Wright and Augenstein, 2020).
Zeng et al. (2018) design a domain classifier and an
adversarial network to capture domain-specific and
domain-invariant features, achieving good perfor-
mances on machine translation. Guo et al. (2018)
apply meta-training and adversarial learning to
compute the point-to-set distance as the weights of
multi-task learning network, leading to improve-
ment on classification tasks.

As another interesting direction, Platanios et al.
(2018) propose a parameter generation network to
generate the parameters of the encoder and decoder
by accepting the source and target language em-
beddings as input. Recently, a number of works
attempt to use the parameter generation network to
improve the cross-domain or cross-language perfor-
mance (Cai et al., 2019; Stoica et al., 2020; Jin et al.,
2020; Nekvinda and Dusek, 2020). Particularly,
Jia et al. (2019) propose to generate BiLSTM pa-
rameters based on task and domain representation
vectors, leading to very promising performances
on cross-domain NER task.

Due to the limitation of annotation corpus and
the essential difficulty of multi-source domain adap-
tation, there still lacks such studies on dependency
parsing. Inspired by these prior works, we pro-
pose a novel approach to separate domain-invariant
and domain-specific features by the utilization of
adversarial and parameter generation networks.

6 Conclusion

This work for the first time apply the APGN ap-
proach to multi-source cross-domain dependency
parsing, obtaining better performance than multiple
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baselines, even when all models are enhanced with
BERT representations. The ablation study reveals
that both adversarial and parameter generation net-
works are equally important and complementary
in capturing domain-related features, which mo-
tivates us to make a deep analysis to gain crucial
insights on the effectiveness of the two components.
Based on the in-depth error analysis, we find that
in spite of local divergences, domain-invariant and
domain-specific features generated by adversarial
and parameter generation networks actually both
have the power of modeling short- or long-range
dependencies and can certainly benefit from each
other. Furthermore, detailed comparative experi-
ments demonstrate that the distributed domain rep-
resentation is extremely useful to reduce domain
conflicts and accurately measure the domain simi-
larity, thus extracting more reliable domain-specific
features to boost the parsing performance.
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