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Abstract

We introduce Classification with Alternating
Normalization (CAN), a non-parametric post-
processing step for classification. CAN im-
proves classification accuracy for challenging
examples by re-adjusting their predicted class
probability distribution using the predicted
class distributions of high-confidence valida-
tion examples. CAN is easily applicable to any
probabilistic classifier, with minimal computa-
tion overhead. We analyze the properties of
CAN using simulated experiments, and empir-
ically demonstrate its effectiveness across a di-
verse set of classification tasks 1.

1 Introduction

Classification is core to NLP, and many language
problems can be effectively addressed as super-
vised classification tasks. However, even the most
effective classifier can suffer when given examples
to classify that are close to its decision boundary.
The reasons for such failures vary, and include lack
of training data coverage, limited representation ex-
pressivity, or over-fitting the training data. Despite
significant progress, including using pre-trained
models (Devlin et al., 2019) to address these is-
sues, every classifier has its weak spots, and some
examples will be hard to classify correctly.

In this paper, we study a simple non-
parameterized post-processing step to improve clas-
sifier accuracy on difficult examples. At the core
of our approach is using Alternating Normaliza-
tion (AN; Sinkhorn and Knopp, 1967) to re-adjust
the prediction of low-confidence examples using
the predicted class distributions of a reference set
of high-confidence validation examples.

Our process, Classification with Alternating Nor-
malization (CAN), is applicable to any classifier that
generates a distribution over target classes. We first

1Our code for the work are open sourced at
github.com/kmnp/can.
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Figure 1: An illustration of Classification with Alternat-
ing Normalization (CAN). Given an example “smile”,
the classifier f assigns equal probability to both emo-
jis (b). CAN re-scales the class probability distribution
and produces a less ambiguous prediction (c).1

identify challenging examples and a disambiguat-
ing reference set using the ambiguity level of the
predicted class probability distributions. Then we
perform a series of normalizations, alternating be-
tween normalizing across examples for each class
and for each example across classes. For example,
in Figure 1, we classify an input example (“smile”)
to one of two labels ( and ). The example sits
at the decision boundary between the two target la-
bels, and is completely ambiguous. The reference
set includes a single example (“hat”), which the
classifier can resolve with high confidence. Here,
we use a single alternating normalization step, in-
cluding normalizing across rows (examples) and
columns (target labels), which disambiguates this
simple example to classify it correctly.

We study CAN on randomly generated matrices
(Section 3) and evaluate it on several text classifica-
tion tasks (Section 4). In general, we find that CAN

is most effective when the original predictions are
of higher ambiguity. Our experiments also suggest

1We use a classical pragmatic reasoning example for our
illustration, highlighting our inspiration in the Rational Speech
Act (RSA; Frank and Goodman, 2012) model, which we dis-
cuss in Section 6.

https://github.com/kmnp/can
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CAN is more beneficial for tasks with many labels.
All code will be released upon publication.

2 Classification with Alternating
Normalization

We modify the output of a probabilistic classifier
for an ambiguous input example at test time us-
ing alternating normalization with respect to an
additional set of examples to re-adjust the input
example’s predicted probabilities. Let X and Y be
random variables for input and labels, respectively.
Given a challenging example x ∈ X , and a prob-
ability distribution P(Y = y|X = x) over a set of
m classes produced by a probabilistic classifier, we
compute P′(y|x) as an adjusted distribution in three
steps, the second of which is an iterative process.

Our method requires a reference set of exam-
ples. We use the confident portion of the validation
data commonly used in standard evaluation set-
tings. Given n confident examples, we create a row
stochastic matrix A0 ∈ Rn×m by concatenating
the predicted probability distributions. We describe
the proposed method below.

Step 1: Identify Hard Examples Let b0 ∈ Rm
be the source prediction, i.e., the predicted class
probability distribution for a challenging example
x. We identify examples that can benefit from CAN

by computing the ambiguity level of its class proba-
bility distribution b0. With a selected example, we
construct a matrix L0 ∈ R(n+1)×m by concatenat-
ing A0 and b0 along the rows:3

L0 =

[
A0

bT0

]
. (1)

A common way to identify challenging examples
is by measuring the entropy of their predicted class
distribution H(b0) = −

∑
i b0,i logm(b0,i). The

higher the value ofH(b0) is, the more uniform the
distribution v is, which indicates higher ambiguity
level. We observeH(b0) may not be ideal to cap-
ture ambiguity well for our classification purpose,
which is concerned mainly with high probability
events. For example, consider two distributions
b1
0 =

[
0.5 0.25 0.25

]
and b2

0 =
[
0.5 0.5 0

]
,

for which H(b1
0) > H(b2

0). However, b2
0 ex-

presses a more uncertain classification result.
Instead, we select challenging examples based

on the entropy near the peak of the distribution.
We define top-k-entropy to focus on the top of the
distribution. Let T : Rm → Rk be the top-k

3bT0 denotes the transpose of b0.

operator. The top-k-entropy is:
Htop-k(b0) = H(T (b0, k)) . (2)

We use a base of m so that 0 < Htop-k(b0) ≤ 1.
Given a scalar threshold 0 ≤ τ ≤ 1 and the

number of classes kmax, the ambiguity level of
a probability distribution b0 is larger than τ , if
for any k ∈ [2, kmax], the top-k-entropy of b0 is
greater than τ .

Step 2: One Iteration of AN Each iteration d of
AN normalizes L0, first across its rows (row norm)
and then along its columns (column norm). Let
D : Rn → Rn×n turn a vector v into a diagonal
matrix, and let e be a vector of ones.

Step 2.1: Row Norm The row normalization
of Ld−1 is:

ΛS = D((Lαd−1)T e) (3)

Sd = Lαd−1Λ−1
S , (4)

where α > 0, Lαd−1 is the matrix exponentiation of
Ld−1, and Λ−1S is the inverse of ΛS . The diagonal
entries of ΛS ∈ Rm×m represent the column sums
of Lαd−1, so that Sd is column stochastic. The pa-
rameter α controls the rate of convergence of b0 to
a high confidence state.

Step 2.2: Column Norm The column normal-
ization step is:

ΛL = D(SdΛqe) (5)

Ld = Λ−1
L SdΛq , (6)

where Λq ∈ Rm×m is a diagonal matrix that repre-
sents the class priors, which we approximate using
the training class distribution. The diagonal entries
of ΛL ∈ R(n+1)×(n+1) are the row sums of SdΛq
so that Ld is row stochastic.4

Step 3: Re-adjusted Output Extraction Let
Ld be the resulting matrix after d steps of Step 2:

Ld =

[
Ad
bTd

]
. (7)

We keep bd as the re-adjusted class probability
distribution P′(y|x), and discard Ad.

3 Simulations on Random Matrices

We study the effect of the ambiguity level of the
source prediction and the reference set using Monte
Carlo simulations. We randomly generate A0,
b0, and Λq to evaluate the expected performance

4Each normalization step (Steps 2.1–2.2) takes O(mn)
because the matrices ΛS ,ΛL,Λq are diagonal.
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Datasets # Classes Method Marco F1 Mirco F1

val test val test

Ultrafine
Entity
Typing

10331

BASELINE (Multitask; Choi et al., 2018) 31.32 31.98 27.92 28.80
CAN (↑2.15) 33.47 (↑1.71) 33.69 (↑2.51) 30.43 (↑1.89) 30.69

BASELINE (Denoised; Onoe and Durrett, 2019) 40.07 40.22 37.88 37.87
CAN (↑0.34) 40.41 (↑0.53) 40.75 (↑0.59) 38.47 (↑0.84) 38.71

DialogRE 36

BASELINE (BERT; Yu et al., 2020 ) 35.89 35.76 59.44 57.93
CAN (↑0.91) 36.80 (↑0.70) 36.45 (↑0.16) 59.60 (↑0.34) 58.27

BASELINE (BERTs; Yu et al., 2020) 40.58 39.45 62.18 59.52
CAN (↑0.83) 41.41 (↑0.68) 40.13 (↑0.33) 62.51 (↑0.29) 59.81

Table 1: Performance on the Ultrafine Entity Typing and DialogRE tasks.

δ(b0, b1) Δ(B0, B1)

min

max

Figure 2: Averaged expected accuracy gain (δ(b0,b1))
and classification accuracy gain (∆(B0, B1)). Original
prediction b0 with high ambiguity level yields higher
expected accuracy gain.

change after each iteration of AN (b0 → b1) as a
function of the ambiguity level of b0 and A0.

Setup The ambiguity levels are grouped into
4 intervals: {[0, 0.25), [0.25, 0.5), [0.5, 0.75),
[0.75, 1]}. Given the number of classes m and
an ambiguity interval, we randomly generate A0 ∈
R(m−1)×m,Λq, and B0 ∈ Rn×m independently,5

where each row of B0 represents a randomly gen-
erated b0. For each interval and each m ∈
{2, . . . , 10, 20, . . . , 100}, we randomly generate
A0, B0, and Λq 200 times with n = 100. We
compute each b1 separately using CAN with α ∈
{0.1, . . . 0.9, 1, . . . 9}, and construct B1.

Evaluation Metrics We define two metrics
to evaluate the expected classifier performance
change: (a) δ(b0,b1) measures the expected per-
formance gain of b1 w.r.t. b0; and (b) ∆(B0, B1)
measures the accuracy gain (i.e., of the arg max)
of a set of input examples B1 w.r.t. B0.6 We ex-
plore how δ(b0,b1) and ∆(B0, B1) change as a
function of the ambiguity level of B0 and A0.

Effect of Ambiguity Level Figure 2 shows the
averaged δ(b0,b1) and ∆(B0, B1) across all ma-

5Similar to Yuan et al. (2018), we set L / S as square
matrices for simplicity. In practice, L / S do not need to be
square, as shown in Section 4.

6Appendix A.2 provides formal definitions.

trix sizes, simulations, and values of α. We observe
that (a) the expected accuracy gains are positive
across all ambiguity levels of A0 and b0; (b) CAN

tends to improve the performance of b0 with high
ambiguity level, especially using a reference set
with low top-k entropy; and (c) the performance is
robust to the ambiguity level of A0.

4 Empirical Experiments

We evaluate CAN using three classification tasks:
ultrafine entity typing (Choi et al., 2018), and
dialogue-based relation extraction (DialogRE; Yu
et al., 2020). We compare off-the-shelf classifiers
(BASELINE) and our method.7 We select CAN’s hy-
perparameters (α, d, τ ) using the official validation
sets (val) and evaluate on the official test sets ().
The challenging subsets of the val and test are
identified as the source predictions using top-k en-
tropy. The rest of val, which has low ambiguity, is
used as the reference set A0.8

Results Table 1 summarizes the experimental re-
sults. CAN offers consistent performance gains for
different classifiers and datasets by re-adjusting the
uncertain examples only, especially when the task
has many classes. Table 1 suggests more effective
classifiers benefit less from CAN, but still see im-
provements. For example, in the ultrafine entity
typing experiment, we observe a larger improve-
ment for the multitask version (Choi et al., 2018)
compared with the denoised one (Onoe and Dur-
rett, 2019), which uses a cleaned up version of the
training data.

Tuning CAN Figure 3 shows the how the values
of the hyperparameters (α, d, τ ) affect CAN on the
val set using ultrafine entity typing multitask BASE-

LINE. We observe that the effect of d and τ dimin-
ish gradually as α grows, because α controls how

7Appendix B.1 provides details for BASELINE methods.
8Appendix A and B provide implementation and repro-

ducibility details.
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(a) (b)

Figure 3: Effect of α, recursion depth d, and τ on the macro F1 scores of ultrafine entity typing val set with the
BASELINE multitask classifier.

Figure 4: Image blurring examples.

quickly CAN transforms the source predictions to
high-confidence ones. For a fixed recursion depth
d, the performance does not always improve using
a larger α. This suggests that larger α can dete-
riorate the performance through over-calibration.
We also see that a small value of recursion depth d
yields the best results in general.

5 Analysis

We hypothesize that classifiers with better perfor-
mance require less re-adjustment. We test this hy-
pothesis by controlling the number of “hard” ex-
amples, therefore controlling the performance of
the BASELINE classifier. We use ImageNet (Deng
et al., 2009) because of the existence of established
ways for image perturbation without modifying the
image semantics. We use a ResNet-50 (He et al.,
2016) model from the default pretrained models in
torchvision (Paszke et al., 2017) as BASELINE.

We systematically make the task harder by con-
volving the images with a Gaussian function with
zero-mean and various values of standard deviation
σ. Higher values of σ results in more blurred image,
which emulate examples with higher uncertainty
and lower BASELINE classifier performance. Fig-
ure 4 shows example images with different values
of σ ∈ {2, 4, 8, 16, 32}.

We assess the effect of CAN by comparing two
variants of CAN with BASELINE using this setup: (a)
CAN-NAIVE: α = 1.0, recursion depth is 1; and (b)
CAN-BEST: an upperbound-version of CAN with α
and depth d optimized on the test data.

Figure 5 presents the absolute top-1 accuracy
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Figure 5: Effect on accuracy of making examples
“harder” by blurring.

(%) gain on the hard subset of val. Optimizing
α and d (CAN-BEST) indeed offers larger perfor-
mance gains across six different image settings
comparing with CAN-NAIVE. We observe a general
positive correlation between the number of hard
examples and the relative gain using CAN, confirm-
ing that our method benefits classifiers that receive
harder data. However, this advantage diminishes
when a classifier significantly under-performs, as
the accuracy gain dropped for Blur (σ = 8) onward
and its top-1 accuracy is only 3.25% on hard subset.

6 Related Work

Rational Speech Act (RSA) RSA is a frame-
work for pragmatic reasoning, where a speaker and
a listener generate and understand utterances by
reasoning about the understanding and intentions
of their interaction partner (Frank and Goodman,
2012; Goodman and Frank, 2016). Both agents are
probabilistic, and RSA uses alternating normaliza-
tion in a recursive process. Our technique is moti-
vated by the type of reasoning provided by RSA,
whereas interpretation and generation of messages
are considered within the context of other interpre-
tations and messages to resolve ambiguities.

We adapt the RSA technique to post-process the
output of probabilistic classifiers. The classifier
takes a similar role to the RSA listener in the al-
ternating normalization process. The matrices Sd
and Ld from Equations 4 and 6 are aligned with the
stochastic matrices for the derived speaker and lis-
tener in RSA. The row norm (Equation 4) mirrors
the special case of a speaker that considers the cost
of generating a message as zero. This assumption
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is reasonable for classification. It is also common
practice when working with a finite set of intents in
RSA (Monroe et al., 2017; Zarrieß and Schlangen,
2019). The column norm (Equation 6) describes
a mathematical formulation aligned with how a
pragmatic listener infers speaker expectations.

Previous work has applied RSA to systems
that generate and understand language (Andreas
and Klein, 2016; Mao et al., 2016; Vedantam
et al., 2017; Cohn-Gordon et al., 2018; Zarrieß and
Schlangen, 2019) in both referential games (Frank
and Goodman, 2012; Goodman and Frank, 2016;
Monroe et al., 2017) and sequential decision-
making systems (Fried et al., 2018a,b). Our method
departs from these applications by focusing on the
ambiguity avoidance property of the listener agent
as applied to generic classification tasks.

Confidence Calibration Similar to confidence
calibration techniques (Platt et al., 1999; Zadrozny
and Elkan, 2002; Guo et al., 2017; Kumar et al.,
2019), our method rescales the posterior distribu-
tion produced by the classifier at test time. How-
ever, the aim of calibration is to make the output
probabilities more representative of the correctness
likelihood, whereas our’s is to resolve ambiguity.

7 Conclusions and Future Work

We propose Classification with Alternating Nor-
malization (CAN) as a simple and light-weight post-
processing step. Our method adjusts the predicted
class distribution of “edge cases” for a generic clas-
sifier during test time. Via experiments on both
simulated and real-world NLP tasks, we show that
CAN helps improve performance using a fixed ref-
erence set with low ambiguity and increases the
performance of standard classifiers. Future work
may further investigate the properties of CAN. For
example, Appendix 5 describes an initial study on
vision examples showing the benefit of CAN in-
creases as examples become noisier, even with the
same classifier. Advancing this study and gener-
alizing it to language is an important direction for
future work. Finally, one could study improving
CAN, for example by selecting A0 strategically, or
applying it during training.

Acknowledgements

We would like to thank the members of the Cornell
NLP group, and anonymous reviewers for their
helpful feedback. Photo of Figure 4 by Joe Caione
on Unsplash.

References
Jacob Andreas and Dan Klein. 2016. Reasoning about

pragmatics with neural listeners and speakers. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1173–1182, Austin, Texas. Association for Compu-
tational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Reuben Cohn-Gordon, Noah Goodman, and Christo-
pher Potts. 2018. Pragmatically informative image
captioning with character-level inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 439–443, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 248–255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Michael C Frank and Noah D Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018a.
Unified pragmatic models for generating and follow-
ing instructions. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1951–1963, New Orleans, Louisiana. Association
for Computational Linguistics.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018b. Speaker-follower mod-
els for vision-and-language navigation. In Ad-
vances in Neural Information Processing Systems,
volume 31, pages 3314–3325. Curran Associates,
Inc.

Noah D Goodman and Michael C Frank. 2016. Prag-
matic language interpretation as probabilistic infer-
ence. Trends in cognitive sciences, 20(11):818–829.

https://unsplash.com/@joeyc
https://unsplash.com/@joeyc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/N18-2070
https://doi.org/10.18653/v1/N18-2070
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://proceedings.neurips.cc/paper/2018/file/6a81681a7af700c6385d36577ebec359-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6a81681a7af700c6385d36577ebec359-Paper.pdf


1721

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 770–
778.

Ananya Kumar, Percy S Liang, and Tengyu Ma. 2019.
Verified uncertainty calibration. In Advances in Neu-
ral Information Processing Systems, volume 32. Cur-
ran Associates, Inc.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, page 94–100. AAAI Press.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
11–20.

Will Monroe, Robert X.D. Hawkins, Noah D. Good-
man, and Christopher Potts. 2017. Colors in context:
A pragmatic neural model for grounded language
understanding. Transactions of the Association for
Computational Linguistics, 5:325–338.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2407–2417, Minneapolis, Minnesota. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

John Platt et al. 1999. Probabilistic outputs for sup-
port vector machines and comparisons to regularized
likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2016. An attentive neural ar-
chitecture for fine-grained entity type classification.
In Proceedings of the 5th Workshop on Automated
Knowledge Base Construction, pages 69–74, San
Diego, CA. Association for Computational Linguis-
tics.

Richard Sinkhorn and Paul Knopp. 1967. Concerning
nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1070–1079.

Dian Yu, Kai Sun, Claire Cardie, and Dong Yu. 2020.
Dialogue-based relation extraction. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4927–4940, On-
line. Association for Computational Linguistics.

Arianna Yuan, Will Monroe, Yu Bai, and Nate Kush-
man. 2018. Understanding the rational speech act
model. In Annual Meeting of the Cognitive Science
Society (CogSci).

Bianca Zadrozny and Charles Elkan. 2002. Transform-
ing classifier scores into accurate multiclass prob-
ability estimates. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’02, page
694–699, New York, NY, USA. Association for
Computing Machinery.

Sina Zarrieß and David Schlangen. 2019. Know what
you don’t know: Modeling a pragmatic speaker that
refers to objects of unknown categories. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 654–659, Flo-
rence, Italy. Association for Computational Linguis-
tics.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper/2019/file/f8c0c968632845cd133308b1a494967f-Paper.pdf
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/W16-1313
https://doi.org/10.18653/v1/W16-1313
https://doi.org/10.1109/CVPR.2017.120
https://doi.org/10.1109/CVPR.2017.120
https://doi.org/10.18653/v1/2020.acl-main.444
http://mindmodeling.org/cogsci2018/papers/0522/index.html
http://mindmodeling.org/cogsci2018/papers/0522/index.html
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.18653/v1/P19-1063
https://doi.org/10.18653/v1/P19-1063
https://doi.org/10.18653/v1/P19-1063


1722

A Implementation Details

A.1 Extension to Multilabel Problems

The problem we describe in Section 2 is supervised
multi-class classification. For multi-label classifi-
cation task, given n input examples and m classes,
a classifier usually produces an array of size n×m
where the value in each position represents the
predicted probability of one input-class pair. We
transform this array into shape nm×2, where each
row is the binary probability distribution for each
input-class pair. This is similar to the common
binary cross-entropy loss for this task.

A.2 Simulation Metrics Definitions

Under the framework described in Section 2, we
define two metrics to evaluate the expected clas-
sifier performance. Expected performance gain
measures the performance of b1 w.r.t. b0. Let Y ,
Ŷ be two random variables. Y represents the true
label of a given instance, and Ŷ is the predicted
class label out of a set of classes C. The expected
accuracy of b0 would be:

E0[Acc] =
1

|C|
∑
c∈C

P(Y = c)P(Ŷ = c) (8)

=
1

|C|q
Tb0 , (9)

where each entry at position c of q ∈ R|C| is the
probability mass function (PMF) of Y when Y = c.
q is the main diagonals of the randomly generated
Λq. Each entry at position c of b0 is the PMF of Ŷ
when Ŷ = c. The relative expected performance
gain is then defined as:

Definition 1 (Expected Performance Gain). The
relative expected performance gain of b1 w.r.t. b0

is:

δ(b0,b1) =
E1[Acc]− E0[Acc]

E0[Acc]
. (10)

δ quantifies the performance on individual example.
Next we introduce a second metric, accuracy gain,
to measure a set of input examples.

Definition 2 (Accuracy Gain). GivenB1 ∈ Rn×m,
where the ith row represent a re-adjusted predicted
distribution, denoted as bi1, the overall performance
of B1 w.r.t. B0 is evaluated as:

∆(B0, B1) =

1

n

∑
i

1{δi > 0, arg max
bi
0

6= arg max
bi
1

} , (11)

where δi = δ(bi0,b
i
1). We consider CAN is suc-

cessful when the predicted classes change from b1

to b0 and δ(b0,b1) > 0. ∆ is used for the primary
metric in our simulation study.

B Reproducibility Details

The experiments in this work do not require train-
ing or GPU. We either download the publicly avail-
able pre-trained model checkpoints, or obtain the
model output on val and test sets from the re-
searchers who propose the BASELINEs.

B.1 Datasets and BASELINEs

The statistics of the evaluated tasks and the associ-
ated datasets are shown in Table 2. All evaluation
and optimization protocols are based on the prac-
tices of the corresponding BASELINEs for each task.

Ultrafine Entity Typing This task is to predict
a set of semantic types of a given entity mention
within a sentence. The dataset (Choi et al., 2018)
contains 10,331 entity types, including coarse, fine
and ultra-fine grained classes. Since each entity
can have more than one types, this task is a multi-
label classification problem. Following previous
practices (Ling and Weld, 2012; Choi et al., 2018),
we adopt the loose Macro and loose Micro F1 score
as metrics. We optimize the loose Macro F1 score
on the val set to select hyperparameters. Two ex-
isting classifiers are evaluated: (1) Multitask (Choi
et al., 2018): a model proposed along with the
dataset and utilizes a LSTM-based AttentiveNER
model (Shimaoka et al., 2016); (2) Denoised (Onoe
and Durrett, 2019): uses denoised distant training
data.

DialogRE The task of Dialogue-based relation
extraction (DialogRE) (Yu et al., 2020) dataset is
to predict one or more types of relations between
two entities mentioned in dialogues. We applied
CAN to the two baselines proposed in the paper:
BERT, and BERTs. Each experiment has five runs
following the practices of Yu et al. (2020), so we
report the average Macro F1 and Micro F1. The
Micro F1 is used for the parameter optimization
following Yu et al. (2020).

B.2 Hyperparameters

A hold-out validation set is required by our method.
In practice, this can be the same set for fine tun-
ing other hyperparameters during training neural
classifiers. Our assumption is that the different
splits of a dataset (train, val, test) are sam-
pled from the same distribution. The training
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Task Datasets BASELINE Cls. Type # Classes train / val / test

Entity Typing
Ultrafine Entity Typing
(Choi et al., 2018)

Multitask (Choi et al., 2018) Multi-label 10331 1998 / 1998 / 1998Denoised (Onoe and Durrett, 2019)

Relation
Extraction

DialogRE
(Yu et al., 2020)

BERT (Yu et al., 2020) Multi-label 36 5997 / 1914 / 1862BERTs (Yu et al., 2020)

Image
Classification

ImageNet
(Deng et al., 2009)

ResNet-50
(He et al., 2016) Single-label 1000 1,281,167 / 50,000 / -

Table 2: Evaluation tasks and off-the-shelf BASELINE methods used. Multiple BASELINE architectures types are
evaluated in our experiments.

Task Datasets BASELINE α d τ

Entity Typing Ultrafine
Entity Typing

Multitask 16 1 0.25
Denoised 22 2 0.75

Relation
Extraction DialogRE

BERT 5, 0.7, 8, 5, 0.6 2, 3, 1, 3, 2 0.75, 0.25, 0.25, 0.75, 0.5
BERTS 0.8, 7, 4, 7, 4 5, 1, 1, 1, 1 0.25, 0.5, 0.5, 0.75, 0.25

Image
Classification

ImageNet-Original

ResNet50

0.6 1

0.75

ImageNet-Blur (σ = 2) 0.7 2
ImageNet-Blur (σ = 4) 0.9 5
ImageNet-Blur (σ = 8) 0.9 3
ImageNet-Blur (σ = 16) 0.5 1
ImageNet-Blur (σ = 32) 0.6 1

Table 3: Hyper-parameters used for all experiment. We report details of all the output from five runs of DialogRE
dataset.

Task Datasets BASELINE val test

Entity Typing Ultrafine
Entity Typing

Multitask 14269 | 0.07% 19007 | 0.09%
Denoised 4454 | 0.02% 4601 | 0.02%

Relation
Extraction

DialogRE

BERT

1478 | 2.15% 1430 | 2.13%
4598 | 6.67% 4512 | 6.73%
4126 | 5.99% 3993 | 5.96%
1210 | 1.76% 1148 | 1.71%
2610 | 3.79% 1148 | 1.71%

BERTs

3725 | 5.41% 3841 | 5.73%
1539 | 2.23% 1513 | 2.26%
1579 | 2.29% 1547 | 2.31%
885 | 1.28% 859 | 1.28%

3131 | 4.54% 3153 | 4.70%

Image
Classification

ImageNet-Original

ResNet50

13484 | 26.97%

-

ImageNet-Blur (σ = 2) 24788 | 49.58%
ImageNet-Blur (σ = 4) 34421 | 68.84%
ImageNet-Blur (σ = 8) 41230 | 82.46%
ImageNet-Blur (σ = 16) 45721 | 91.44%
ImageNet-Blur (σ = 32) 48889 | 97.78%

Table 4: Number of ambiguous examples in val and test sets (absolute | relative (%)).

class distribution is utilized as prior Λq. We use
the original val set of the datasets to optimize
for α ∈ {0.1, . . . , 0.9, 1, . . . , 35}, iteration num-
ber d ∈ {1, . . . , 5}, and the ambiguous threshold
τ ∈ {0.25, 0.5, 0.75}. Table 3 summarizes all
the hyperparameters used in this paper. Table 4
presents resulting number of ambiguous distribu-

tions to re-adjust. We find that the optimized values
of d are mostly ≤ 2 (77.3 % of all experiments),
which is in line with the discussions previously in
the main text.


