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Abstract

While state-of-the-art Dialogue State Tracking
(DST) models show promising results, all of
them rely on a traditional cross-entropy loss
function during the training process, which
may not be optimal for improving the joint
goal accuracy. Although several approaches
recently proposed augmenting the training set
by copying user utterances and replacing the
real slot values with other possible or even sim-
ilar values, they are not effective at improving
the performance of existing DST models. To
address these challenges, we propose a Turn-
based Loss Function (TLF) that penalises the
model if it inaccurately predicts a slot value
at the early turns more so than in later turns
in order to improve joint goal accuracy. We
also propose a simple but effective Sequential
Data Augmentation (SDA) algorithm to gen-
erate more complex user utterances and sys-
tem responses to effectively train existing DST
models. Experimental results on two stan-
dard DST benchmark collections demonstrate
that our proposed TLF and SDA techniques
significantly improve the effectiveness of the
state-of-the-art DST model by approximately
7-8% relative reduction in error and achieves
a new state-of-the-art joint goal accuracy with
59.50 and 54.90 on MultiWOZ2.1 and Multi-
WOZ2.2, respectively.

1 Introduction

Task-based Virtual Personal Assistants (VPASs) in-
teract with users in natural language to help com-
plete tasks such as making hotel bookings and
restaurant reservations. Dialogue State Tracking
(DST) is an essential component for VPAs that
aims to track the dialogue state from the user’s ut-
terances at each turn (Rastogi et al., 2019). Based
on the current dialogue state, VPAs decide the
next action to perform. In general, existing DST
models rely on an ontology that defines slots for a
particular domain/task (e.g. hotel-name and taxi-
destination). To accomplish the tracking task, given
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Turn 1 - Usr: I'm looking for somewhere to stay in north Cambridge.}

‘Dialogue State Prediction 2
hotel-area : north Cambridge
JGA: 1

Dialogue State Prediction 1
hotel-area : None
JGA: 0

Turn 2 - Sys: Would you like to try the Lovell Lodge?
Usr: Yes, please.

/Dialogue State Prediction 2"
' hotel-area : north Cambridge

' hotel-name : Lovell Lodge
JGA: 1

Dialogue State Prediction1’
hotel-area : None
hotel-name : Lovell Lodge
JGA: 0

Turn 3 - Sys: The booking goes through [....]
Usr: Can you book a taxi from the hotel to the Ballare.

‘Dialogue State Prediction 2"
“ hotel-area : north Cambridge

" hotel-name : Lovell Lodge
 taxi-departure : Ballare
 taxi-destination : Ballare
JGA: 0

/Dialogue State Prediction 1
hotel-area : None

hotel-name : Lovell Lodge
taxi-departure : Lovell Lodge

' taxi-destination : Ballare
LJGA: 1

Figure 1: An example of multi-domain dialogue. The
terms highlighted in green and red represent correctly
and incorrectly predicted dialogue states respectively.

the user’s current utterance, a slot to track and dia-
logue history, the DST models need to 1) predict if
the user has mentioned the given slot and 2) if so,
predict/extract its value from the current utterance.

Joint Goal Accuracy (JGA) is a widely used
metric to evaluate the effectiveness of DST mod-
els (Zang et al., 2020; Eric et al., 2019; Shah et al.,
2018; Wen et al., 2017). At each turn, the joint
goal accuracy is 1.0 if and only if all domain-slot
and value pairs are predicted correctly, otherwise
0. The existing DST models rely on the traditional
cross-entropy loss function during the training pro-
cess. We argue that this is not effective for optimiz-
ing joint goal accuracy. We illustrate this issue in
Figure 1 in Dialogue State Prediction 1 & 2, with
the traditional cross-entropy loss function, if two
models only make one mistake during the training
process they will be penalised equally. However,
the consequence that the first model incorrectly pre-
dicts the value at the first turn is worse than when
the second model fails to predict the value at the

1674

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1674-1683
November 7-11, 2021. ©2021 Association for Computational Linguistics



forth turn (i.e. average JGA across 3 turns is 0 and
0.66 for model 1 and model 2).

Training current DST models currently requires
annotated dialogue datasets that cover a wide va-
riety of diverse conversation flows. However, ex-
isting dialogue datasets (e.g. MultiwOZ2.1 (Eric
et al., 2019)) are relatively small and do not pro-
vide coverage of all slot values for open-vocabulary
slots (e.g. restaurant name and destination). To
alleviate this problem, several recent data augmen-
tation techniques propose (Giovanni et al., 2020;
Summerville et al., 2020; Song et al., 2020) re-
placing the ground-truth values of particular slots
using additional information (e.g. restaurant and
movie name corpus). Although these augmented
dialogues increase coverage of all slot values, the
complexity of the dialogues remains the same'.

To address the aforementioned challenges, we
propose a novel Turn-based Loss Function and
Sequential Data Augmentation algorithm that im-
proves the effectiveness of DST models. Our con-
tributions are:

* We modify the traditional cross-entropy loss
function to take into account the turn informa-
tion during the training process. Our proposed
Turn-based Loss Function (TLF) penalises the
DST models more heavily if they fail to pre-
dict dependent slot values in subsequent turns.
To the best of our knowledge, this work is the
first to incorporate turn dependence into the
loss function of the DST models.

* We propose a simple but effective Sequential
Data Augmentation algorithm (SDA) to gener-
ate complex dialogues that can be used to train
DST models to generalize more effectively.

* We conduct comprehensive experiments on
two DST benchmark datasets. Experimental
results demonstrate that our TLF and SDA
approaches consistently and significantly im-
prove the effectiveness of the state-of-the-art
DST model in terms of joint goal accuracy. In
particular, we study the state-of-the-art DST
model behaviour based on turn depth, do-
mains, slot complexity, and robustness using
perturbed dialogue history. We find the model
does not perform well on later turn depths, dia-
logues with more active slots, and does not de-
pend heavily on aspects of the dialog history,

"We will further explain the complexity of dialogues in
Section 4.2

while the model with our proposed TLF and
SDA approach can effectively address these
challenges.

2 Related Work

DST models can be categorised into two types: the
ontology-based (Zhang et al., 2019; Chen et al.,
2020) and span-based models (Heck et al., 2020;
Kim et al., 2020; Wu et al., 2019). Zhang et al.
(2019) propose an ontology-based DST model that
leverages a pre-defined ontology to predict dia-
logue state based on the similarity between the en-
coded candidate values and encoded user utterance
and slot description. Recent work in DST focuses
on the span-based approach to address the scalabil-
ity and generalisation issues of previous ontology-
based models. Wu et al. (2019) proposed a scalable
span-based DST model that encodes the whole dia-
logue context and decodes the value for every slot
using a copy-augmented decoder. Recently, several
DST models (Kim et al., 2020; Heck et al., 2020)
incorporate the predicted dialogue state from pre-
vious turns when tracking the dialogue state at the
current turn using a copy mechanism.

Data augmentation is widely used to improve
the effectiveness of the existing DST models (Hou
et al., 2018; Giovanni et al., 2020; Song et al.,
2020). Hou et al. (2018) use a sequence-to-
sequence model and delexicalisation to generate a
variety of diverse utterances based on the original
utterances. These generated augmented utterances
help improve the language understanding of the
DST models. In addition, the span-based DST
models often encounter out-of-vocabulary words
(e.g. unseen restaurant name) at inference time. As
a result, these DST models are likely to fail to ex-
tract unseen words from the utterances. To address
this problem, Summerville et al. (2020) augment
the training dataset by randomly replacing origi-
nal slot values with other possible values obtained
from external corpora (e.g. restaurant name cor-
pus). Similar to (Summerville et al., 2020), Song
et al. (2020) augment the training data by copying
user utterances and replace the ground-truth slot
values with randomly generated strings. Recently,
Li et al. (2021) proposed to use the pre-trained ut-
terance generator and counterfactual goal generator
to create novel user utterances that are correlated
with the original system response. Their approach
showed significant improvement on the DST per-
formance.
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Figure 2: Generic architecture of existing DST models.

3 Neural Models for DST

We first formalise the task of Dialogue State Track-
ing and define key notations. Then, we briefly
describe the general architecture of existing neural
network DST models (see Figure 2 that consist of
three main components: the dialogue encoder, the
slot operation predictor, and the slot value predic-
tor.

3.1 Problem Statement and Notation

DST tracks the state of the user at a particular turn
given the user’s utterance and system response. Let

= {(Ul, Rl), (UQ, RQ), ceey (UT, RT)} be the
sequence of user utterance U and system response
R pairs, given a dialogue context with 7' turns.
Each (Uy, R;) pair can involve a single or multiple
domains (e.g. restaurant and taxi) and a certain
number of slots (e.g. restaurant-name and taxi-
destination) associated with the domains. Let B =
{By, Bs, ..., B;} be the dialogue state of the user
for each turn. We denote all the N possible domain-
slot pairs as S = {s1, s2, ..., sy }. Each dialogue
state By is a set of tuples (s,v), where s € Sis a
domain-slot pair and v is a value associated with
the domain-slot s.

3.2 The Dialogue Encoder

The dialogue encoder is the core component of
DST models that aims to capture the user’s intent
from the dialogue context (see the blue box in Fig-
ure 2). The input of the dialogue encoder is the
dialogue context at turn ¢ that consists of the cur-
rent utterance Uy, system response R; and dialogue
history Hy = (Uy—1, R¢-1), -, (U1, Ry). Existing
DST models exploit pre-trained language models
(e.g. BERT(Devlin et al., 2019)) to encode the
input as follows:

Ey = BERT([CleU;@[S|®R:®[S|®H®[S]),

where @ is the concatenation operation, [C] and
[S] are BERT’s special CLS and SEP tokens. E; =

[eFL9 el ..., e;"™] is the output of the dialogue

encoder that represent each token in the dialogue
context. In particular, etc LS ¢ Re where d is
BERT’s contextual embedding dimension, is the
aggregated representation of the total input tokens
that captures the user’s intent from the whole di-
alogue context, while [e},e?, ..., ;"] is the

token-level representation.

3.3 The Slot Operation Predictor

The slot operation predictor aims to predict an op-
eration for each slot as one of the slot operations
Osiot = {none, dontcare, update} (see the red box
in Figure 2). none and dontcare operations denotes
that the slot does not take a value or could be any
value, respectively. The update operation denotes
that a value of the given slot could be predicted or
extracted from the current utterance U, (see Turn 1
& 2 in Figure 1). If the slot operation predictor pre-
dicts that a value of the given domain-slot pair then
the DST models will obtain the value from the slot
value predictor described in Section 3.4. The input
to the slot operation predictor is the aggregated rep-
resentation % and the probability distribution
over the slot operations Og;,; for domain-slot pair
s at turn ¢ is defined as follows:

gt = softmax(WE-(ef M @iydds,) T +b5")

ey
where Wlot ¢ RIOsiolxd and pslot are learnable
parameters and bias. Then, the cross-entropy loss
function for the slot operation prediction is defined
as follows:

slot - Z Z _log y;tslsOt yflst) ) (2)

t=1 s=1
where ySZOt is the one-hot slot operation label for
domain-slot pair s at turn ¢.

3.4 The Slot Value Predictor

The final component of DST models is the slot
value predictor that aims to extract a value for each
domain-slot pair from the dialogue context (the vi-
olet box in Figure 2). The slot value predictor takes
the token-level representations [e}, €7, ..., e;7™*]
of the entire dialogue context for turn ¢ as input
and applies a two-way linear mapping to compute
the probability of the terms being the start and the

end position of the span for slot s, y“‘”“t and yf@d,
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respectively, as follows:

[oF, B7] = Were - ([[eg, ef, -
~start
)
)

., e?EQmaxH) + bgalue
Uis = = softmaz(oj
Ji? = softmaz (5
Similar to the slot operation predictor’s loss func-

tion (Equation (2)), the loss function for the slot
value prediction, Lqye, is defined as follows:

where T is the total number of turns for a given
dialogue, ¢ is the current turn number and X is a
turn weight parameter that controls the influence
of the turn-based penalty. For example, if a given
dialogue consists of 5 turns (1" = 5), the model will
be penalised more heavily if it makes a mistake at
the first turn (¢ = 1) than the last (¢ = 5).

4.2 Sequential Data Augmentation

Our proposed Sequential Data Augmentation algo-

) Trithm improves the generalizability of DST mod-

i o —log(yile™ - (5 T) — log (i - (57"
2
t=1 s=1
3)
where g% and y§7¢ are the one-hot start and

end position label for domain-slot pair s at turn
t. Finally, the DST models are trained using the
following joint loss function:

L= Hslot - Lot + Hvalue * Loyatue, “4)

where figor and fiyq1ue are hyperparameters that
control the weights of the slot operation prediction
and the slot value prediction, respectively. Note
that the joint loss function in Equation (4) is widely
used by the existing DST models (e.g. (Heck et al.,
2020; Kim et al., 2020; Zhang et al., 2019)).

4 Proposed Methods

We now describe the proposed methods that im-
prove the effectiveness of DST model.

4.1 Turn-based Loss Function

We start by describing our Turn-based Loss Func-
tion which improves the effectiveness of the core
DST model. As discussed in Section 1, most ex-
isting DST models (e.g. (Heck et al., 2020; Kim
et al., 2020; Zhang et al., 2019)) still rely on the
traditional cross-entropy loss function during the
training process, which may not be optimal to im-
prove the joint goal accuracy. To address this, we
incorporate the turn information during the train-
ing process. Our proposed TLF penalises the DST
model more heavily if it inaccurately predicts a slot
value at the early turns than the later turns. This is
important to avoid the error cascade in early turns
that results in highly degraded JGA in later turns.
To model this dependency explicitly during the
training process we modify the joint loss function
as shown in Equation (4) as follows:

L= [,Uslot : Eslot + value Evalue] . [1 + (T - t) * )\]
5)

els. The overall training process of DST algo-
rithms with SDA is summarised in Algorithm 1.
In particular, for each turn ¢, given the current ut-
terance Uy, system response R; and dialogue his-
tory H;, we generate augmented training data by
concatenating Uy and Ry with Uy 1, Upya, ..., Uiy
and Ryi1, Riq2, ..., Riqy, respectively. The hyper-
parameter 7 controls the complexity of the aug-
mented dialogues. For example, we can generate
augmented data for the dialogue in turn 1 in Fig-
ure 1 with n = 2, as follows:

U™ — ’m looking for somewhere to stay in

north Cambridge . Yes, Please. Can you book a
taxi from the hotel to the Ballare
Rcllugment

= Would you like to try the
lovell lodge ? The booking goes through [...].

The larger 7 is, the more complex the augmented di-
alogue becomes. We hypothesize that the complex
augmented dialogues help the DST model to learn
to more effectively track dialogue state for several
reasons. First, the longer augmented dialogues
help the model to understand the intent deeper in
the conversation than the original dialogues, which
are often relatively short. Second, the augmented
dialogues contain more ground truth labels than the
original dialogues?, which helps to train the DST
models more effectively to extract the domain-slot
values from the utterance and system response. For
example, in Figure 1, the utterance on turn 1, Uy,
consists only of one ground truth label, whereas the
augmented utterance U{""™“" and the augmented
system response R{"“™“™ contains 3 ground truth
labels, highlighted in green. Our proposed SDA
algorithm differs from the previous data augmen-
tation algorithms (e.g. (Summerville et al., 2020;

Indeed, on average, the user’s utterance and system’s

response in the original dialogues contain only a few ground
truth labels(Zang et al., 2020; Eric et al., 2019)
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Song et al., 2020)) in two key ways: 1) SDA takes
into account the sequential property of dialogues
when generating the augmented training data, while
(Summerville et al., 2020; Song et al., 2020) do not
and 2) (Summerville et al., 2020; Song et al., 2020)
require external information (e.g. a restaurant name
corpus), while SDA does not.

Algorithm 1 Training process for existing DST
models with our TLF and SDA approaches

1: Input: training data X', hyperparameter
2: Output: DST model’s parameters ©
3: Initialise © with pre-trained BERT

4: repeat
5 for x € X do
6: fort < 1to T, do
7: Ut,Rt,Ht,it,dStZIt
8: Compute £ (Eq.(5))
9: Update model’s params ©
10: end for
11: for j < 1ton do// Seq. Data Augmentation
12: fort < 1to T, do
13: Init augment dialogue U,, R, = Uz, Ry
14: fork<t+1tot+ jdo
15: Uk,Rk,Hk,ik,d8k=xk
16: Uo=U, ® Uk
17: Ro=Ra® R
18: Compute £ (Eq.(5))
19: Update model’s params ©
20: end for
21: end for
22: end for
23: end for

24: until convergence

5 Experimental Setup

We conduct experiments on the two most widely
used multi-domain task-based dialogue state track-
ing datasets (MultiWOZ2.1 (Eric et al., 2019) and
MultiWOZ2.2 (Zang et al., 2020)). These two are
the largest datasets which contain over 10,000 di-
alogues across seven domains: restaurant, taxi, at-
traction, hotel, train, hospital and police. Follow-
ing (Wu et al., 2019; Zhang et al., 2019), we re-
move hospital and police domains in MultiWwOZ2.1
and MultiWOZ2.2 because they only appear in the
training dataset. This results in five domains with
30 domain-slot pairs. We use the standard train-
ing/validation/test splits provided in the original
datasets. Following previous literature (Heck et al.,
2020; Zhang et al., 2019), we evaluate all the DST
models using the Joint Goal Accuracy (JGA) met-
ric (Henderson et al., 2014). At each turn JGA is
1.0 if and only if all domain-slot and values pairs
are correctly predicted, otherwise 0. The score is
averaged across all turns in the test set.

5.1 Baseline Models

We compare our proposed approaches with a vari-
ety of recent DST baselines. TRADE (Wu et al.,
2019) encodes the whole dialogue context using
bidirectional Gated Recurrent Units (GRU) and
generates the value for every slot using the GRU-
based copy mechanism. Picklist-DST (Zhang
et al., 2019) is the ontology-based DST model that
requires a pre-defined ontology with all possible
values for each domain-slot pair. DS-DST (Zhang
et al., 2019) is a hybrid DST model that jointly
trains both the ontology- and span-based models.
SOM-DST (Kim et al., 2020) is the span-based
DST model that uses the copy-mechanism for the
slot operation prediction and uses GRU for the
slot value prediction. TripPy (Heck et al., 2020)
is the state-of-the-art span-based DST model that
uses the triple copy mechanism to track the di-
alogue state. DialoGLUE (Mehri et al., 2020)
is the TripPy model that uses ConvBERT, a fine-
tuned BERT trained on an open-domain dialogue
corpus consisting of 700M conversations, as dia-
logue encoder. TripPy-V is the TripPy model that
uses the existing Value-based Data Augmentation
(VDA) (Summerville et al., 2020), that randomly
replaces original slot values with other possible val-
ues. TripPy-CoCo (Li et al., 2021) is the TripPy
model trained on the augmented data generated
by the Controllable Counterfactual (CoCo) data
augmentation algorithm that consists of three main
components: value substitution, controllable coun-
terfactual generation and classifier filter.

5.2 Implementation Details

We implement our proposed TLF and SDA ap-
proaches using PyTorch®. The hyperparameters
of TLF and SDA (i.e. the turn weight parameter A
and the sequence number parameter 7)) are tuned
on the validation set. We use the pre-trained BERT-
base-uncased model(Devlin et al., 2019) with 12
hidden layers and embedding dimension d = 768
as the dialogue encoder”. For all baselines, we op-
timise them similarly using cross-entropy loss and
the Adam optimiser (Kingma and Ba, 2014) with
a learning rate of 2e~°. For the hyperparameters,
we use the optimized parameters reported in the
original papers.

Shttps://github.com/feayl234/TLF-SDA
*nttps://huggingface.co/transformers/
pretrained_models.html
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Table 1: Effectiveness of various DST models on Multi-
WOZ2.1 and MultiWOZ2.2 with the best result is high-
lighted in bold; * denotes a significant difference to the
best performing result according to a paired t-test at
p < 0.01. { indicates a previously reported result; we
are unable to test these for statistical significance.

Models Encoder ~ MultiwOZ2.1 MultiWw0Z2.2
TRADEf GRU 45.60 45.40
DS-DSTt BERT 51.21 51.70
SOM-DST BERT 52.37* -
DST-picklist} BERT 53.30 -
TripPy BERT 55.52% 50.71%*
DialoGLUET ConvBERT 58.70 -
TripPy-TS BERT 59.50 54.90
TripPy-T BERT 56.44%* 52.85%
TripPy-S BERT 58.03* 53.89%
TripPy-V BERT 56.14* 52.02%
TripPy-CoCo (1x)f BERT 56.00 -
TripPy-CoCo (2x)t BERT 56.94

TripPy-CoCo (4x)f BERT 59.73

TripPy-CoCo (8x)f BERT 60.53

6 Experimental Results and Discussion

Tables 1 reports the effectiveness of DST models
in terms of joint goal accuracy on the two datasets.
The table contains two groups of rows: The first
group reports the effectiveness of the TripPy model
that uses our proposed Turn-based Loss Function
(TLF) and Sequential Data Augmentation (SDA)
approaches compared to the baselines. The sec-
ond group reports the effectiveness of TLF, SDA
and the existing data augmentation algorithms (i.e.
VDA and CoCo). The encoder column indicates the
pre-trained language model used by the baselines
as the dialogue encoder, described in Section 3.2.
Due to their recency or a lack of details, we were
not able to re-implement all baselines. For those
baselines, we include the as-reported results and
are unable to test for statistical significance.

We first reproduce results with TripPy and SOM-
DST models in Table 1. We find that the rela-
tive dialogue state tracking effectiveness of these
two models on MultiWwOZ2.1 is consistent with
the results reported in the original papers (Heck
et al., 2020; Kim et al., 2020). For instance, SOM-
DST outperforms both TRADE and DS-DST and
is as effective as the state-of-the-art ontology-based
DST model (DST-picklist). Similarly, we observe
that TripPy outperforms all the ontology-based
and span-based baselines on the MultiWOZ2.1 and
MultiWwOZ2.2 datasets. Note that Multiw0Z2.2
is the most recent DST dataset and has not widely
used in the previous literature, hence some base-

lines results are not available yet on MultiW0Z2.2>.
The results of TRADE and DS-DST on Multi-
WQOZ2.2 are those reported in (Zang et al., 2020).

Comparing the baseline model that uses our TLF
and SDA approaches (TripPy-TS) with baselines
across the two datasets in Table 1, we observe that
TripPy-TS consistently and significantly outper-
forms all the ontology and span-based DST base-
lines in terms of JGA across all datasets. TripPy-
TS improves joint goal accuracy by 7.17%, 11.63%
and 14.12% relative reduction in error over the
base TripPy, DST-picklist and SOM-DST models
that use BERT as the dialogue encoder on Multi-
WO0OZ2.1. Comparing TripPy-TS with DialoGLUE,
the TripPy model that uses the fine-tuned BERT
on 700 million open-domain dialogues, we ob-
serve that TripPy-TS still outperforms DialoGLUE
by 1.36% relative reduction in error on Multi-
WOZ2.1, although TripPy-TS only uses the pre-
trained BERT-base-uncased model as the dialogue
encoder. Similar results are observed on Multi-
WOZ2.2 where TripPy-TS outperforms TripPy, DS-
DST and TRADE by 8.26%, 6.19% and 20.93% rel-
ative reduction in error, respectively. These results
imply that our TLF and SDA approaches signifi-
cantly and consistently improve the effectiveness
of the state-of-the-art DST model, TripPy.

Next, we further analyse the effectiveness of
TLF and SDA using an ablation study. We note
that TripPy-T and TripPy-S are the baseline mod-
els using TLF and SDA. Comparing TripPy-TS to
TripPy-T, we observe a significant decrease of ef-
fectiveness in terms of JGA across both datasets.
The relative reduction in error decreases around
1.55-5% in TripPy-TS’s performance compared to
TripPy-T. These results indicate the importance of
SDA in enhancing the effectiveness. In addition,
comparing TripPy-S and TripPy-V that uses the ex-
isting Value-based Data Augmentation, we find that
SDA is more effective than the VDA in improving
the effectiveness of TripPy. Comparing TripPy-TS
and TripPy-S, we observe approximately 2.53%
and 1.87% relative reduction in error decreases
of the TripPy-TS’s performance on Multiw0Z2.1
and MultiwOZ2.2 datasets, respectively. These
results are intuitive because TLF improves the ef-
fectiveness of DST models by penalising the DST
models heavily if they fail to accurately predict
the dialogue state at the early to mid turn depths.

SThe SOM-DST implementation does not currently sup-
port Multiw0Z2.2
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Figure 3: The performance of TripPy with/without TLF
and SDA across different turns on MultiwOZ2.2.

80 1 B TripPy
TripPy-T
B TripPy-S
60 1 = TripPy-TS

401

201

Joint goal accuracy

9 10
(1000)X1000)(991) (944) (873) (791) (670) (465) (292) (171)
Turn
(number of dialogues)

Overall, we find that our proposed TLF and SDA
approaches together consistently and significantly
improve the effectiveness of state-of-the-art DST
model (TripPy) across the two used datasets.

We further compare the performance of SDA
(TripPy-S) and the state-of-the-art CoCo data aug-
mentation algorithm (TripPy-CoCo). Note that
TripPy-CoCo (2x) denotes the TripPy model that
is trained on the augmented data two times larger
than the original training data. First, we observe
that TripPy-S outperforms TripPy-CoCo (1x) and
(2x) by 3.63% and 1.91% relative reduction in er-
ror on MultiwOZ2.1. Although TripPy-CoCo (4x)
and (8x) are more effective than TripPy-S, such
comparison is not fair due to several reasons. First,
the value substitution component of CoCo relies on
a pre-defined value set for each domain-slot which
is manually created. Second, CoCo initialises the
parameters of the controllable counterfactual gen-
eration model and the classifier filter using the pre-
trained T5 (Raffel et al., 2020) and BERT models.
Third, CoCo uses MultiWOZ2.2 to train the con-
trollable counterfactual generation model and the
classifier filter, yet evaluate the performance of
TripPy-CoCo on MultiWOZ2.1. In contrast, our
SDA approach does not use any pre-defined value
set for each domain-slot, the advanced pre-trained
models (i.e. T5) as well as the Multiw0Z2.2
dataset during the training process.

6.1 Turn Depth and Domain-specific JGA

Dialogues vary in length and longer dialogues are
likely to be more challenging. In this section, we
study the relationship between the depth of dia-
logue and the effectiveness of different models®.
The trend in Figure 3 clearly shows the effective-
ness of all models decreases steadily and dramat-

%We conduct this experiment on both MultiWOZ2.1 and
MultiWOZ2.2 datasets and we obtain similar results. We omit
the results on MultiWwOZ.21 due to space limitations.

ically as the turn depth increases. Comparing the
effectiveness of TripPy that uses the traditional
cross-entropy loss function and TripPy-T that uses
our proposed Turn-based Loss Function, we ob-
serve that TripPy-T outperforms the baseline start-
ing from the third turn consistently through to turn
ten. The improvement of TripPy-T compared to
TripPy from the early to mid turn depths has a large
impact in the later turns. These results imply that
we should penalise the model more heavily if it
fails to predict the slot value early-ish in the con-
versation as the error from the first turn cascades
in later turns, degrading JGA.

Next, we investigate the utility of our proposed
SDA algorithm to improve the quality of DST. We
see that the performance of both TripPy and TripPy-
S are similar on the first and second turns. Then,
from the third to the tenth turn, TripPy-S consis-
tently outperforms TripPy on Multiw0Z2.2. When
we compare TripPy with TripPy-T, SDA does not
improve the performance of TripPy at the early
turns but increases the effectiveness of the model in
the later turns. Finally, the performance of TripPy-
TS with the base model is comparable at the first
and second turn. Interestingly, we observe that
TripPy-TS consistently outperforms TripPy from
the third turn to the tenth turn. This demonstrates
that TLF and SDA are complementary and together
play an important role in improving the quality of
state tracking across increasing turn depths.

We also analyse the effectiveness of the algo-
rithms examining joint goal accuracy for each do-
main over turn depths. First, in Figure 4, the re-
sults show that TripPy-TS consistently outperforms
TripPy across the first five turns on the restau-
rant, hotel, attraction and train domains on Mul-
tiW0Z2.27. In particular, TripPy-TS outperforms
TripPy by approximately 15%, 7%, 14% and 20%
relative reduction in error for the restaurant, ho-
tel, attraction and train domains. We also observe
that TripPy-TS outperforms TripPy from the third
turn on the taxi domain. On the fourth turn TripPy
completely fails to track the state from fourteen di-
alogues while TripPy-TS accurately predicts three.
The performance of TripPy-TS averaged across
all turns on the taxi domain is better than the per-
formance of TripPy by approximate 22% relative
reduction in error (i.e. 31.70 JGA compared to
25.79 JGA).

"Note that the results after the fifth turn are relatively simi-
lar to the first five turns’ results across the two used datasets
and we omit them due to the space limitation.
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Figure 4: The effectiveness of TripPy-TS on different turn depths across domains on MultiWwOZ2.2. The results
shown on top of each figure report the average joint goal accuracy of each model across all turns.
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Figure 5: The performance of TripPy with/without TLF
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6.2 Complex Turn-specific JGA

We compare TripPy and TripPy-TS on different
turns with a particular number of active slots, i.e. a
simple turn contains either one or two active slots.
We define a complex turn to be one containing
either three or four active slots. In Figure 5, we
observe that TripPy-TS consistently outperforms
TripPy on the simple turns by approximately 6-
10% relative reduction in error in terms of JGA
across MultiwOZ2.1 and MultiWOZ2.2. It is clear
on both datasets that TripPy-TS is more effective
in predicting state for the complex turns. TripPy-
TS outperforms TripPy by 17-21% and 23-34%
relative reduction in error in terms of JGA over
the complex turns on MultiWwOZ2.1 and Multi-
WOZ2.2, respectively. These results imply that
both TLF and SDA consistently improves the ef-
fectiveness of TripPy in accurately predicting the
state over the turns with more active slots. As il-
lustrated in Section 4.2, the augmented dialogues
generated by our algorithm are contain more active
slots than the original dialogues in the training set,
that usually have a small number of active slots per
turn. These augmented dialogues help the model
to learn to effectively extract the slot values from
complex turns.

1 2 3 4 5
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Turn
(number of dialogues)

1 2 3 4 5 1 2 3 4 5
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Figure 6: The sensitivity of hyperparameters for turn
weight A and sequence number 7).
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6.3 Impact of hyperparameters

We evaluate the sensitivity of the hyperparame-
ters for our proposed methods. First, we study the
effect of the turn weight parameter A of TLF in
Equation 5 by varying its value in the range of
{0,0.01,0.05,0.1,0.5}%. Note that A\ = 0 corre-
sponds to the baseline model without TLF. From
the left figure in Figure 6, we observe that setting
A =0.01, 0.05, 0.1 or 0.5 is more effective than the
baseline with A = 0 across both datasets. Next, we
study the impact of the sequence number parameter
7 of the Sequential Data Augmentation algorithm.
From the right figure in Figure 6, we observe that
n =1,2,3,4or5 is more effective than n = 0. The
most effective is obtained when n = 3 orn = 4
respectively.

6.4 Impact of perturbed dialogue history

Recent work by Sankar et al. (2019) shows exist-
ing task-based models seldom understand or use
the dialogue history effectively. We first study the
behavior of the state-of-the-art TripPy model to
use it (i.e. H; in Section 3.2). Then, we compare
behavior of the proposed TLF and SDA methods.
We apply four types of perturbation operations to
the dialogue history in the test set. P1 and P2 are
utterance-level perturbation operations that shuffle
and reverse the sequence of utterances in the dia-

8Qther values up to 1 were tried in preliminary experiments
and were not as effective as the intervals we report.
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Figure 7: The effect of varying dialogue history pertur-
bations on TripPy and TripPy-TS.
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logue history. P3 and P4 are word-level perturba-
tion operations that randomly shuffle words within
an utterance and reverse the ordering of words.

In Figure 7, we observe that the effectiveness of
TripPy and TripPy-TS decreases by 0.5-2.5% rela-
tive reduction in error across different perturbation
operations on MultiWwOZ2.1. These results are intu-
itive because the DST models are less likely to cap-
ture intent from the perturbed history, hence being
less effective. For the P3 operation that randomly
shuffles the words within the utterance, the results
show that this operation negatively impacts the per-
formance of TripPy-TS, while it only slightly af-
fects TripPy. Similar to the results observed on
MultiwW0OZ2.1, on MultiwWOZ2.2 we also observe
that both TripPy and TripPy-TS suffer from the
four perturbation operations, except on P1 with
TripPy. As desired, it shows that TripPy-TS is
more sensitive than TripPy to the four perturbation
operations. This implies that our proposed TLF
and SDA approach rely more heavily on turn and
word order. This is behavior that we expect and
desire in a tracking model. We hypothesize that the
augmented dialogues (which are complex and long)
generated by SDA force the model to incorporate
the dialogue order during the training process.

7 Conclusion

We propose two novel algorithms, TLF (Turn-
based Loss Function) and SDA (Sequential Data
Augmentation), that improve the effectiveness
of state-of-the-art dialogue state tracking models.
TLF penalizes such models more heavily if they fail
to predict slot values in the middle of the conversa-
tion. On the other hand, SDA generates dialogues
used to train existing DST models to generalize
more effectively. Our comprehensive experiments
on multiple benchmark datasets demonstrate the
combined utility of both TLF and SDA to improve
the effectiveness of the leading model in the litera-
ture. Indeed, TLF and SDA significantly improve
the effectiveness of TripPy by approximately 8.26%

relative reduction in error on Multiw0OZ2.2, which
constitutes the new state-of-the-art result on this
most recent benchmark dataset. For future work,
we plan to extend both TLF and SDA to incorpo-
rate additional information such as dialogue length
and the number of active slots during the training
process to be even more effective for long and com-
plex dialogues. We also plan to investigate the
effectiveness of TLF and SDA on other existing
DST models.
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